VI7bv7LTE¥ 22-15
(1982 2 10)

An Interactive Support System for SIMPL Program Construction

Morio Nagata, Yoshitake Mishima and Yoshiyuki Shikano
Dept. of Administration Engineering, Keio Univ.

Ken'"ichi Harada -

Keio Institute of Information Science

An interactive support system have been implemented
for the sake of incremental program construction

in SIMPL.

The SIP (SIMPL Interactive Programming)

system obtains information of the user's program

from the SIMPL compiler.

It provides interprocedural

and/or intermodule information during the program
creation and modification process at any time. Our
approach can be applied to procedure-oriented languages

and their compilers.

1 Introduction

As one of programming methodologies, it

has been proposed that the program
should be divided into logical and
functional modules. Moreover,

incremental programming has come to be
recognized as a promising methodology.
Here, term of "incremental programming"
means a program development process
with taking advantage of separate
compilation facility in a time-sharing
system., Combining these notions, this
paper presents an intermodule analysis
tool for definition and use of
identifiers (variables, procedures and
functions), which works cooperating
with a compiler.

Really to construct a procedure by
using the structured programming
language in the incremental programming

environment[3], interprocedural
information at that state of
programming is- useful. For example,

global variables wused in the other
procedures are important to construct a
new procedure. - But it is difficult to
obtain such information, and as the
state of programming progresses, the
configuration of a program always
changes. Thus, our attention is
concentrated upon interprocedural
and/or intermodule information at any
stage of the program construction
process. Notice that the word
'procedure' is used to mean both a
procedure and a function in this paper.
We consider that a module consists of
one or more procedures and global
variable declaration as a compilation
unit,)

Our system, called the SIP
Interactive Programming)

(SIMPLI[5]
system,

provides the following interprocedural

information in accordance with the
programmer's request: attributes and
cross reference lists of all
identifiers - in each module or over
modules, data binding 1list on global
variables, call graph representing
invocation relationships between each
module to the other modules,
statistical information of programs,

and check list of interface of a module
and the other modules, Whenever a
programmer wants to get such
information, he will use the SIP system
interactively.

The main design policy is to provide
useful facilities by a little
modification to the existing compiler.
The SIP system has been implemented by
adding only the Line Reference Table
(LRT) to the SIMPL compiler.,

2 An Overview of the SIP System
2.1 Structure of the SIP System

The SIP system consists of the SIMPL
compiler and the intermodule analyzer.
Although the SIP system does not allow
any - dynamic editting or compiling, an
user can get a great many static
information from the SIP system. At
each time of a compilation, the SIP
system collects the internal
information of a program given by the
compiler, As a result, the SIP system
can respond to an user's query on his
programs interactively. Figure 1 shows
a structure of the SIP system.

— 85—

SDPL Interprocedural Information
program
Call graph
. a/'
Compiler T
[~ Global
———- \ Bindings Statistics

Interactive
I dule

o
Info.
Analyzer ‘\}
H

windows
summary listing window listing

Intermodule Information

Fig. 1 Structure of SIP System

2.2 An Output from the Compiler

On the contrary to a normal
compilation, the compiler gives some
useful information independently on the
other separately compiled modules. The
output information with some typical
examples is as follows:

1. Cross reference list: The
attributes and cross reference
list of all identifiers in one
program module is generated.

2. Global data bindingl[l] list:
The data binding information on
global variables is produced by
interprocedural analysis for one
program module. As the
invocation relationships between
procedures have been made clear
in a form of internal
representations, a binding
analysis can determine a point,
where a global variable is
defined, and where the global is
referenced to. Through these
analyses, some logical error
such as a side-effect with no
care can be easily detected.

— 86—

Global Data Bindings List

PROC/FURC Globals/Bindings — Line Numbers
PROCPUNCATTR
SEGNO
[Accessed] 69, 118
PLINE
[Modified] 71, 72, 75, 77, 78, 83, 9}
[Accessed] 115
BLANK
[Accessed] 71
CALLTBL
[Accessed] 73
SYMTAB
[Accessed} 74, 78, 80, 99, 104
PROCTBL
[Accessed} 77
PR
[Accessed] 81
ENTRYPLAG
{Accessed] 94
FWDFLAG
. [Accessed] 109
GENCALLEDCHAIN
SEGNO
[Accessed] 130
CALLTBL
[Accessed] 132, 158
REFS
[Accessed] 136
SYMTAB
[Modified] 139, 159
[Accessed] 137, 139
PROCFUNC
[Accessed] 137
PROCTBL
[Modified] 149, 157
[Accessed] 142
CALLED
[Modified] 147, 151
[Accessed] 143, 145
GAVAL
[Modified] 152
[Accessed] 147, 149, 151, 152
PRTCALLGRAPH
SYMTAB
[Modified] 202, 207
fAccessed] 171, 173, 188
PLINE
[Modified] 172, 174, 180, 182, 190
[Accessed] 174, 180, 182, 185, 190, 192
COLN
[Accessed] 184, 187
EXTFLAG
[Accessed] 188
BLANK
[Accessed] 192
3. Call graph: By analyzing the

invocation relationships between
procedures, procedure
invocations are represented in a
call graph. In general, the
structured programs consist of
many logical components
expressed by procedure. It is
very powerful to debug and
maintain a relatively large size
program that the procedure
invocations are exactly examined
in their relationships. In
addition, after all call graphs
of program modules compiled
separately are collected, the
call graph for the executable
(absolute) program would be
acceptable by merging all graphs
into one. Nothing is more
accurate in the invocation order
than this complete merged call
graph.

Listing of Procedures and Functions

2.3 Intermodule Information

If the following commands are given by

the user,

the SIP

* No. Name Calls Called Attribute
1 PROCFUNCATTR 1 1 PROC !
2 GENCALLEDCHAIN 0 1 - PROC
3 PRTCALLGRAPH 2 3 PROC, REC
4 CALLINGLEVEL 1 2 PROC, REC
5 CALLGRAPH 3 1 PROC 2
6 DUMP 0 0 PROC .
7 CALLGRAPHGEN 3 0 PROC, ENTRY
8 PUTGLINE 0 2 PROC
9 MANYGLOBALS 0 2 PROC
10 PRTGLOBALBIND 4 1 PROC
11 GLOBALSOFSEG 2 1 PROC 3.
12 GLOBALDATA 2 1 PROC, FWD
13 GLOBALBIND 1 0 PROC, ENTRY
CALL GRAPH
0 1 2 3
CALLGRAPHGEN(316) **Entry**
GENCALLEDCHAIN(123)
PROCFUNCATTR(56)
NAME(20) **Ext**
CALLGRAPH (241)
CALLINGLEVEL (213)
CALLINGLEVEL(213)
PRTCALLGRAPH(166)
NAME(20) **Ext** 4.
PRTCALLGRAPH(166)
PRTCALLGRAPH(166)
GLOBALBIND(534) **Entry*+*
GLOBALSOFSEG (474) 5.
GLOBALDATA (51)
MANYGLOBALS{431)
MANYGLOBALS (431)
PRTGLOBALBIND (442)
NAME(20) **Ext**
NAME(20) **Ext#*
PUTGLINE (362)
PUTGLINE(382)
4. Program statistics analysis:
The general program statistics
information such as a number of
each statement type, a number of
significant tokens, or maximum
and average of nesting level are
printed in a chart.
6.

system provides

intermodule information by using the

above

output from the compiler.

commands have several subcommands.

Some

—87—

APPEND: Add current program
information created by the SIMPL
compiler to the SIP system. If
the SIP system has information
for the same module, it is
replaced by a new one. ‘

GET: Specify the module name to
which the following commands are
to be applied.
LIST: Output statistical
information of the . module
specified by the GET command.
Any combination of the following
information is available.

-~global variables and/or
procedures defined

--entry variables and/or
procedures defined

--external variables and/or
procedures referenced

—-number of source lines,
statements, proc/func and etc.
Above statistics can also be
obtained for every modules
collected in the SIP system
instead of the specified one.
SEARCH: Search for definition
and/or reference points of
specified identifiers of the
module, This function can be
extended over all modules.
CHECK: Check the interface
consistency of the module
against all other program
modules. For each external and
entry objects, following items

are checked by this command.

——- type of variables

~— Procedure or function type
(with type of return value for
the function)

—— number and type of parameters
for procedure/function

This command provides the error
detection capability for module

interface which can not be
gained by the conventional
linkage editor and prevents
disastrous results at run time
caused from erroneous
declaration.

AFFECT: Point out all module
names come under the influence
of a modification to specific
variables and/or procedures in
other module. This function
takes advantage of the
invocation analysis and is
especially useful for checking

the affect of modification to be
made in the maintenance process.

In addition, an analysis on the
global data bindings for ' all
modules cah be accomplished by
applying a data flow analysis
based on the merged call graph.

3 Desian and Implementation
3.1 A View of Our Desiagn

In the bootstrapping process[2] for the
compiler enhancement, several useful
facilities to support programming
activities were thought to be added to
compiler itself, if they can be
developed with a little modifications
to the compiler. The straightforward
approach to this problem is to obtain
information on the definition and

reference of variables reflected with
their 1line numbers in the source
program.

Characterizing the overall design of
this system, there are a minimal number
of the modifications in order to create
a skeletal information. The design
policies in the modifications are as
follows: -

1. It is programmed so that the
necessary information should be
collected only when the compile
option is specified.

2. Every information on data items
should be packed in a relatively
small table, and should reflect
all accesses to variables with
the line numbers where they
appeared.

3. Such a table including the
symbol table should be easily
separated independently from the
compiler.

4. All SIP functions work with the
program information library file
which contains the set of tables
created by . the compiler
mentioned above. The SIMPL
compiler and the analyzer should
be loosely connected only by a
temporary file containing such
tables.

3,2 Line Reference Table

We define a line referenceé table (LRT)
that ’‘contains the source line numbers
with ‘all definitions and references of
variables. This LRT is designed to

give a skeletal data for the debugging
and analyzing facilities. The data
items registered in LRT are identifiers
(e.q. variable or procedure and
function name) and the intrinsic
procedures used in a program. Every
item includes the 1line number: in a
source program where it appears and the
indicator whether its value is defined
or referenced to. In addition, every
procedure binds its scope in LRT.

3.3 Implementation
(1) Interprocedural analysis

The compiler at the first stage have
already had a variety of testing,
debugging and program analysis
facilities. These are 1) attribute and
cross-reference 1listing, 2) traces
available for 1line numbers, calls and
returns, and variable values, 3)
subscript and case range checking, 4)
statistics at compile time. In
generating a cross-reference listing,
especially, the 1line references have
been managed in some LRT-like table.
Therefore, we reconstructed this table
as the LRT in order to facilitate a
generation of cross-reference listing
and call graph, and a computation of
global bindings.

Call graph: The scanning for
procedure names are done
interprocedurally only in the
LRT, and the invocation
relationships are represented in
a directed-graph., A node
involves both procedure name and
referenced line number. While
the call graph 1listing can be
provided for every compiled
module, this graph is also a
subgraph of whole call graph for
all separately compiled modules.

Global bindings: The items in the

LRT are also scanned
interprocedurally with respect
to global variables.

references of
listed with line

Definitions and
variables are

numbers. The globals include
both internal and external
variables, As the local ones, a
reference preceding to an
assignment of value can be
checked if the flow of control

is accurately analyzed through
the call graph.

Module interface: As for a program
consisting of several modules,
the internal LRT and call graph
for one module are written.on

—88—

the library file together with
the symbol table. This
interface facility automatically
generates a call graph, and
rearranges the LRT into another
LRT which disables an access to
local variables and represents
the global or external ones in a
linear list with lexicographical
order.

(2) Intermodule analysis

The SIP system consists of many
separate functions[4]. Some of them
correspond to the top level SIP
commands, After a certain function is
invoked, control goes into the
subcommand mode of the function and

execution continues.,

For the purpose of the inter
communication of these functions, the
system work area (SWA) is prepared in
SIP, The SWA contains LRT, intra
module call graph and related
information only for one module at a
time. Intramodule analysis is done
using SWA, Some analysis which
requires intermodule information should
get information of each module from the

library file into SwWA and create
internal table over modules
successively.

Table 1 shows the current program size
of the SIP system created by the SIP
system itself. Currently, as the
program size of each SIP function is
relatively small and DEC~28 has 256kw
(36bits/w) virtual address space, SIP
function programs are 1linked together
in the same address space. 1In the case

when the number of functions are
increased or each function becomes more
complex and larger, segmentation or

creation of another address space for
each function is required.

4 Discussion

The SIP system has been in use by our

colleagues and ourselves only a few
weeks. However, we conclude that this
kind of system is useful for the SIMPL
or other procedure-oriented program
construction.

During the development of the SIP
system, we have been able to detect
some ' errors by using facilities
pProviding interprocedural information.
The traditional compiler or linkage
editor can not support incremental
programming. On the other hand, the
programmer can use the SIP system
interactively during the incremental
programming process. :
This system is written in the SIMPL

language, therefore the user can modify
the SIP system with a little efforts.
Consequently, this system is flexible
in its user's modification.

In contrast to the separate programming

support system, the SIP system
effectively uses information obtained
by the SIMPL compiler.

Besides the internal form and size of

the 1library file, trade-off between
response time for query and memory
Space plays an important role. Under
the time sharing environment, response
time have an influence on the system

load. Process time for each command
should be minimized. For instance,
definition and reference list for
identifier of each module can not be
affected when other modules are
modified., On the other hand, call
graph over modules should be
reorganized each time when invocation

of external procedure in certain module
is changed.

Table 1 Program Module Statistics for == PSTAT —-— 01/26/82-23:27:35
Module~Name Ext Cycl. Lines stmt PROC/FUNC Ent Var Ent B/F Ext Var Ext P/F

1, PSTAT1 SPL 22 325 113 4/0] 2 21 5
2. PSTAT2 SPL 49 993 403 12/4] 7 24 7
3. PSTAT3 SPL 4 .203 32 1/9 3 1 2 4
4. PSTAT4 SPL 11 251 90 2/8 [1 12 18
5, PSTATS SPL 7 396 138 5/2] 1 7 8
6. PSTATM SPL 17 226 54 5/8 30 3 3 12
7. PSTATU SPL 7 133 36 6/9 [} 6 3 3

Total: 2527 866 35/6 33 21 72 49

In later case, when speed is important,
all analyses should be done at each

time of modification of modules prior
to the next query. In contrast, as it
takes time and space, creating call

graph at each query is reasonable when
such kind of query is in rare.

Only mutable information used by
current commands is intermodule call
graph. Because of the low frequency of
query using a call graph, we decided
that it is recreated on each time of
recieving the query. In future, it is
preferable that user can specify the
trade-off between time and space for
each command. In such case, system
generates internal information required
for the commands prior to the query
which is classified as time critical by
user,

5 Conclusion

We have constructed the support system
for writing SIMPL programs which
consist of a number of modules.

However, our approach can be applied to
other procedure-oriented languages and
their processors with separate
compilation facilities.

Finally, the SIP system supports an
aspect of human programming activities,
and there are tools which also support
other aspects. Thus, for the
construction of comfortable programming
environment, the compiler, the SIP
system, a structure editor, an
automatic verifier and a dynamic
program analyzer should be effectively
combined.

1. Basili,

V.R. and Turner, A.J.,
"Interactive Enhancement: A
Practical Technique for Software
Development, " IEEE Trans. on
Software Engineering, Vol. SE-1,

No. 4(Dec. 1975), 398-396.
2. Basili, V.R. and Perry, Jr. J.G.,

"Transporting Up: A Case Study,"
The Journal of Systems and Software
1, Elsevier North Holland, Inc.,
1984, 123-129.

3‘

Medina-Mora, R. and Feiler, P.H.,
"An Incremental Programming
Environment, " IEEE Trans., on
Software Engineering, Vol. SE-7,
No. 5(Sept. 1981), 472-48l.
Osterweil, L.J., "Draft TOOLPACK
Architectural Design," Dept. of
Computer Science, Univ. of
Colorado at Boulder, 198l1.

"System
SIMPL on
of DECUS
1980),

Shikano Y., et al,,
Implementation Language:
DEC System-26," Proc.
Japan, Vol. 1, No. 1(Oct.
1-27.

