V7MY 2 FI¥ 52—19
(1987 -2-14)

TYIVHMAYPNVNE ALY I N Y PO
BRELEHFTF POV

Bk —% BRE &— WE ¥ HH A
K B K % T % %

BRI, BEHHEOIYIVHEBRBY I b2 P IcBRYN 3 HMEOR KIS KL,
V72r9x70REVEELZ->TETWVIS ., B, BHHEHOTY YV IcBINT
RVDbDYZYVPLEALBIEETIHLVEF I SY, 2hi) —-BHELWS
NDeLTWV3., FFLSREL, TYIVHEAVPLR ALY I Y 27 0REH
FRUULT, BREBMBAHFEZRERLTOVLS . APHFHEI MR BMe =
MBE>»OHBBREATULIN, B TREFTLEHDVIOARNS , FHBE I,
BT VI I 27 2BBEBUANVCRI(EEI)L, A BREBY I Ty S
LOFAPM(HMTRAPM)Z2RITT S, chicky, JyFuo¥si Loy Y
VHEAY I b s P oRRBE RGBT S . BB, BMFRbITR, BAAHTF —
FEHT BV IL I 7O0RZIBUREARBELLFEY I 2L -2 a3 Y 2475 .

A Visualized Test of Real-Time Software for Engine Controller

Kazuyuki TOMINAGA, Jun'ich MIYAO, Tohru KIKUNO and Noriyoshi YOSHIDA
Faculty of Engineering, Hiroshima University
Higashi-Hiroshima, 724 JAPAN

Embedded compdters have recently been used widely in the controller of automotive engines.
Generally, the severe timing constraints are needed in control software. As the functions of
the controllers increase, it has become difficult to develop such real-time software.

The authors have already proposed a new approach, called a two-stage and visualized approach,
to develop software. This approach consists of an abstract stage and a detailed stage. This
paper presents only the detailed stage extensively and shows a prototype system VD/ECS based on
the proposed approach. In the detailed stage, software is deﬁeloped on a high level programming
language C*, and then the simulation test is performed visually for software. By using the pro-

posed approach, even non-programmers can develop real-time software for engine controller.

—145—

1. Introduction

Recently, embedded computers have been
widely used in the controller of automotive
controllers must respond

[Anderson81,

engines. These
within a given time period
Quirk85]. The controllers with this property
controllers, and the
called

are called real-time
software for the controllers is
real-time software.

Conventionally, most real-time software
for engine controllers is directly designed at
the machine code level. Then, testing of the
software is performed at the instruction level
[Glass80)}. Thus, there mainly exist the fol-
lowing three problems (a)-(c).

(a) Only professional programmers can develop
the real-time software.

(b) It is inefficient to modify and improve
the real-time software.

(c) Refinement of one part of the software may

cause side effects on the other parts.

In order to resolve these difficulties,
we have proposed a top—down and visualized ap-—
proach for the development of real—time soft-
ware for engine controllers [Miyao86]. The
proposed approach has the following novel
features (1)-(3).

(1) Top—down and modular design: Top-down and
modular design approach is desired to
enhance productivity and understandability
[Palmer82].

(2) Visualized design: To support the

non—programmers who have a good working

knowledge of engines, visual design
capability is incorporated [Ting84].

(3) Testing at the abstract level: Testing of
timing constraints is done at the abstract

level of the design step [Oki85].

The proposed method consists of two
stages: abstract sta;e and detailed stage, and
each stage is composed of design phase and
test phase [Miyao861.

This paper explains the detailed stage.
In the detailed design phase, a task graph G,

which represents structure of real-time soft-—

ware visually, is translated into instructiom

codes. Successively, in the detailed test

phase, functional test and performance test

are performed visually using detailed simula—
tion on the instruction codes.
Finally, a visual design system VD/ECS

based on the proposed approach is presented.

2. Design of Engine Control Software

developed engines for

embedded -

Most newly
automobiles are controlled by
computers, and for each engine, control soft-
ware must be developed and/or tuned. Then,.
the enhancement of productivity for control
software is required. Furthermore, the
requirements of high power and efficient
engines increase the functions, such as gas
injection, ignition, EGR, turbine, automatic
transmission and so on, of the control soft-
ware. This makes the control software complex
and costly.

This section presents a top—down and

visualized design method for engine control

software.

.1 Real-Time Software for Engine Controller

A real-time system consists of a
controlled system and a real-time controller
(see Figure 1). 1In the automotive engine, a
controlled system and a real-time controller
correspond to an engine and an engine
controller, respectively. The real-time con-—
troller receives an internmal state of the
controlled system as input data, and then
returns output data to the controlled system.
The special features of engine
controllers are summarized as follows.
(a) Most data input and data output are

triggered by either irregular interrupts from

Interrupt
= o= - = o -

Controlled Data Real-time Data
e—

System Controller

Figure 1 Real-time system.

—146—

the controlled system or regular interrupts
from ‘an interval timer. Thus, the control
software should provide capability of flexible
interrupt control.

(b) The controller must respond within a given
time period to the interrupt. If the timing
constraint is not satisfied, the énginé may be
stopped. Then, the engine controller is a
hard real-time system in this sense. In
addition, the time periods are not always the
same for each task. Thus, the controller
should process tasks in the order of the time

period.

E;Z Two—stage and Visualized Approach

The proposed new method pays attention to
the top—down design and visualization (see
Figure 2). The idea of ’'visualization’ is in-
troduced into the whole design phases.

The abstract design phase constructs a

task graph, which represents the structure of

real~time software. The task graph enables us

I Requirements l

e 1
i i
: Abstract : Abstract
! Design i Stage
)
]]
1 '
' 1
]]
: Abstract :
1 Test 1
1]
1]
L T T T pepe dmmeed
Pty byl f
H 1
1 .
1 | petailed | Detailed
H Design ! Stage
i
! :
! '
! '
' '
i X
) Detailed H
! — Test H
1]
i]

Figure 3 Task graph.

to design abstract structure of controller
visually (see Figure 3).

Then, the abstract test phase checks
whether the task graph and specifications
satisfy the followings or not.

(1) For each task, necessary input and output
data are specified correctly.

(2) Performance constraints, especially timing
constraints, are satisfied.

In the test (2), the execution time for
each task must be estimated. Since the
application of the real-time software is
limited to the automotive engine controller,
the execution time can be estimated with
sufficient accuracy.

In the detailed design phase, the task
graph is translated into executable object
code. Then, in the detailed test phase,
functional test and performance test are
performed visually using detailed simulation
on the instruction code.

In this ©paper, we concentrate our
consideration only on the detailed design and

the detailed test with visual capability.

2.3 Hierarchical Structure of Controller

T In the following, a real-time software
consists of a set of tasks T‘=[T1.T2,...,Tm}
and a set of data D‘={d1,d2,....dn]. Each
task Ti has one or more input data and an
output datum. .Then, tasks are classified into
the following three categories.

(1) T*(INTX): a set of tasks, for which the

execution is requested by an irregular inter—

rupt from the controlled system.

(2) T*(INTR): a set of tasks, for which the
execution is requested by a regular interrupt
from the interval timer in the controller.

(3) T*(UPD): a set of tasks, for which the
execution is requested by the occurrence of
the update of input data.

The proposed real-time controller is
hierarchically constructed as shown in Figure
4. It consists of the following components.
(1) Tasks: User defined tasks, which are
specified by a task graph G=(V,E).

(2) Real-time

monitor: A so—called

—147—

— -~ - Tasks

-~ Real-Time Monitor

Library
[Driver

Hardware Scheduler

Figure 4 Real-time software for

engine controller.

mini-operating system, which includes the fol-

lowing routines.
(a) Library: Standard arithmetic opera-—

tions, and special purpose routines to be
defined by user.

(b) Driver: Task management routines, which

include task state management, interrupt and

internal timer handling.

(c) Scheduler: Deadline scheduler, which
assigns a processor to each task under the
policy of deadline scheduling.

(3) Hardware: Processors, which are available

in the real-time controller.

This structure enhances physical indepen—
dence between hardware and task. Moreover,
the functions induced by multi-tasking and
deadline scheduling enhance logical indepen—
dence among tasks. Then, each task may be

developed independently.

3. Detailed Stage

As shown in Figure 2, the detailed stage

consists of two phases: the detailed design
phase and the detailed test phase. In this
section, each phase in the detailed stage is

described.

_._l_. Detailed Design

The flow of the detailed design phase is
shown in Figure 5. The detailed design phase
consists of three processes: task graph
translation, editing of C* source code and C*

compilation. At first, a task graph is trans-—

lated into a source program in C*. C* lan—
guage is a programming language which is
specially developed for the automotive engine
control software, and the syntax of C* is sim—
[Tominaga87]. The

essential difference is adopting, in C*, the

ilar to C language
static assignments of variables and functionms.
This saves the time needed for function calls.

Then, the source program in C* is
compiled by the C* compiler into the
instruction code which is executable on a
hardware. The instruction code is passed to
the detailed test phase.

If any wrong part is detected in the
detailed test phase, the designer can modify
the C* program using C* editor. The display
screen of C* editor is shown in Figure 6. The
modification and improvement of the program is
carried out by using windows.

In this system, even the detailed design
is carried out on a high level programming
language. Then, it is not necessary for users

to have knowledge of the assembly language.

Task Graph

[Task Graph Translator I

C* Code

C* Compiler

Instruction Code

Figure 5 Flow of detailed design.

Task22

1]
Task22(d3, d8) .’ o E1 T
int d3; o
unsigned d8; O

char 1Ldl, L42;

I(

Figure 6 Display screen of detailed design.

—148—

3;3 Detailed Test

Detailed test phase performs the
functional test and performance test. These
tests are carried out by using the actual
input data, and executing the instruction code
produced in the detailed design.

The flow of the detailed test is shown in
Figure 7. The test is performed by two
modules: detailed simulator and detailed
tester. At first, the detailed simulation is
carried out for the instruction code of the
real-time software and actual input data. The
behavior of the software is simulated visually
by executing the instruction code under the
real-time monitor. Details of the simulation
are discussed in Section 4.2.

Detailed simulator outputs the history of
executed tasks and their output data. The
result of detailed simulator and the expected
value data are inputted to detailed tester.
Then, the tester compares the results with the
expected value. The expected value is
obtained based on the specification of the
software in the abstract design phase. If the
result agrees with the expected value, the
software is recognized to have satisfied the

requirements.

Instruction Code Actual Input Data
\ ol
lﬁDetailed Simulator4]

i
[kiDetailed Teste;*V]

Results

Figure 7 Flow of detailed test.

4. Visualized Detailed-Test

Detailed test is performed by visualized
simulation. In this section, objectives of
detailed test are described. Next, the novel
features of the detailed simulation are
explained wusing an example. Then, the

detailed simulator is presented.

i;l Objectives of Detailed-Test

In order to gunarantee the properties of
the real-time software, testing of the
real-time software is performed both at the
abstract level and the detailed level.

In the abstract test phase, software is
checked on the task graph whether the timing
constraints are satisfied or not. However,
the execution time of each task cannot be
known exactly in advance, since it is varied
depending on input data. Thus an approximate
test, which is based on the expected execution
time, is carried out.

In the detailed test phase, the simula—
tion is executed using the actual input data.
Thus, the followings can be performed
precisely.

(1) Functional test: The real—time software
correctly realizes the functions.
(2) Performance test: The real—time software

satisfies the timing constraints.

4.2 Visualized Simulation

The detailed simulation provides the fol-

lowing three novel features (A)—(C).

(A) Precise simulation using actuwal input
data.

(B) Performance simulation with checking of
timing constraints.

(C) Visual and

interactive simulation

enhancing usability of the system.

In order to achieve the above three
features, the detailed simulator provides the
functions described below.

(1) Actual input data: Simulation is carried

out on the instruction code using the actual
input data (feature (A)).

(2) Display of task graph: To confirm the
proper behavior of the software, the gtate of
each task is displayed on the task graph
(features (B) and (C)). Each task has one of
three states:
[Miyao86].

(3) Interactive input and output: Data on the

Dormant, Ready and Running

task graph, deadline and interrupt data are

interactively entered and modified on the

—149—

display screen (features (B) and (C)).
(4) Display of C* code: C* code for each task

Task Graph CURRENT TIME: 0

can be displayed on the display screen in

order to edit the code (feature (C)). Data
(5) Task simulation: The behavior of each ::: e
task is simulated to check whether the task dyr 22
correctly computes or mot (feature (A)). :;: ;::4
(6) Log of data: Logs of prescribed data are :: ‘5;,7
recorded whenever the data are updated. These ds 74
are used later to analyze the behavior‘of the
software (feature (A)). (a) Display of task graph and data.
(7) Simulation from arbitrary logical time:
The simulator can go back to the previous Task Gragh CURRENT TIME: O
state by using the record which stores the all
data periodically (feature (C)).
(8) Trigger: The system allows users to :::os
specify conditions and actions, which confirm :: ;:““"
correctness of the software. When one of the d,: 1984
dsz 255 Trigger
conditions is satisfied, the prescribed :‘f 2237 TRl 1F (UPARTE)
actions will be invoked (feature (B)). ﬂ;; 7 then PAUSE
(9) Display of task execution: All executions
of tasks that are executed at current time are (b) Trigger function
displayed (features (B) and (C)).
(10) Estimation of execution time: Maximum = ——
and minimum execution times for the given
sequence of tasks on the task graph are
estimated (feature (B)). Data
dl 205

These functions are implemented by using :i‘ :g"“
the multiwindows as shown in Figure 8. :;‘ 11:“24
[Example 1] Let us comsider the engine :f" ;:
control software with the task graph in Figure g7 98
3. Figure 8 shows the display screemns of the
detailed simulation. (c) Task execution

In Figure 8 (a), the state of each task
is displayed using a color on the task graph. Task Graph
The colors greem, violet and red correspond to
the states dormant, ready and running, respec- ryy sim“huo:l i “: = dST .,
tively. Furthermore, the values of data dl’ CkU TIME: 130 2 fns - 2
dys ol ds on the task graph are displayed in a O_El__ods - g Code
another window. || :::'23,‘.23%7;

Assume that T, exceeds the deadline and ::: ::‘:" ‘ int, ray F
ds has an illegal value. On the task graph, 1 0) return ds;
tasks, which exceed the deadline, are

displayed using a color yellow.
(d) Task simulation and C* code
The faults analysis and the improvement

are performed as follows. At first, to Figure 8 Display screen of detailed simulation.

—150—

analyze T3 and TS in detail, let us observe
the task execution from the logical time when
d7 is updated. To do so, trigger functiom is
available (see Figure 8 (b)). In the trigger
expression, the condition clause UPDATE(d7)
becomes true when d7 And the
action of this trigger is PAUSE, which implies

is updated.

the pause of the simulation.

If the simulation is paused, then the
users can invoke the function (9) (see Figure
8 (¢)). 1In this case, it is found that the
execution TS’ which is invoked immediately

after T3, exceeds the deadline. These two

tasks have too long execution time compared
with the estimation time.

Therefore, the detail behaviors of T3 and
Ts must be further analyzed by the task simu—
lation and the display of C* code (see Figure
8 (d)). In the task simulation, the values of

local data in T, can be displayed. By using

these, the wrozg part of task T3 can be
detected. Then, the modification of the
program for task T3 is performed by using the
C* editor. The same operations are applied to
T5'
4.2 Detailed Simulator

Detailed simulator is composed of the
following six modules (see Figure 9).
(1) Screen Manager: This module is
responsible for the visual and interactive
facilities. Windows and a mouse are managed
by Screen Manager.
(2) Detailed Simulation Controller: This
module interprets the command from Screen
Manager, and controls all modules in the simu-—
lator.
(3) Visualization Module: According to the
Detailed

performs the

command from the Simulation

Controller, this module
visualized functions such as display of task
graph, C* code and task execution.

(4) Simulation Data Module: This module
maintains output data of the simulation to
record the log of data.

(5) Trigger Module: This module manages the

trigger conditions specified by the user, and

(e

Screen Manager

‘;l':‘spl:‘ Visualization
Layout Module
\ Detailed Simulation
Simulation | Data
Controller Module
c* Code /
Trigger
HModule
Trigger
Expression History simulation
Data File

Interpreter

Task
Specification

Real-Time Input
Monitor Okject Data
Code

Figure 9 System configuration of Detailed

Simulator.

requests the controller to perform the
prescribed actions if necessary.
(6) Interpreter: Interpreter performs the

sof tware simulation by interpreting the

machine instruction code.

5. Visual Design System

Based on the proposed design method, a
prototype system VD/ECS (Zisualized Design
System for Engine Eontrol _S_oftware) is now
under development. The system configuration
is shown in Figure 10.

This system consists of nine components.
These components are classified into four
groups corresponding to each phase.
(1) Abstract design: Abstract design phase is
carried out by using Specification Manager and
Task Graph Manager. These managers specify
the requirements visually and construct the
task graph, respectively.
(2) Abstract test: Abstract Simulator
performs the simulation of the software on the
task graph. Then, Abstract Tester checks
whether the software satisfies the timing

constraints.

—151—

Specification
Manager

Task Graph Task Graph Detailed
Manager Translator Design Manager

Abstract Abstract
Simulator Tester

Detailed Detailed
Simulator Tester

Figure 10 System configuration of VD/ECS.

(3) Detailed design: Task Graph Translator is
responsible for translating the task graph
into C* code. Then, the editing and
compilation of C* code are performed by
Detailed Design Manager.

(4) Detailed test: As mentioned in Section
3.2, detailed test is performed by Detailed

Simulator and Detailed Tester.

The prototype system VD/ECS is
implemented on the personal computer NEC

PC-9801 by using C language of PC-UX.

6. Conclusion

This paper has discussed a new approach

to develop engine control software.
Especially, the details of visualized test are
explained. Then, the visualized design system
VD/ECS based on this approach is presented.

We are now planning to implement the fol-
lowing extensions.
(a) Support for generating input data: In the
system VD/ECS, input data for the detailed
simulation are numeric data. Then, users must
produce numeric data based on specification
charts of an engine. Therefore, tools, which
‘generate numeric data from charts, should be

developed.

(b) Visualization of simulation results: The

detailed simulator produces histories of data
in the software. The histories can be
displayed visually by plotting value along
time axes. This makes the analysis and the

improvement of software more easy.

Acknowledgements

The authors wish to express heartfelt
thanks to Mr. S. Shibahashi, Manager, Mr. K.
Kobayashi, Assoc. Manager, and Mr. K. Iida,
Electrical and Electronic Division, Mazda
Motor Corporation. The authors would also
thank Mr. S. Amako, Hiroshima University for
his hglp on the implementation of the system

VD/ECS.

References

[Anderson81] Anderson, D.A.: 'Operating sys—
tems, ' Computer, 14, 6, pp.69-82 (1981).

[61ass80] Glass, R.L.: ’'Real-time: The 'Lost
World' of software debugging and testing,’
Commun. ACM, 23, 5, pp.264-271 (1980).

[Miyao86] Miyao, J., et al.: ‘'Visualized

testing of sof tware for a real-time
controller,’' Proc. Second IEEE Workshop on
Visual Languages, pp.117-124 (1986).

[0xi85] Oki, Y.: 'An approach to testing for
timing constraints on a real-time
controller,’ Master Thesis, Systems Eng.
Course, Hiroshima Univ. (1986).

[Palmer82] Palmer, D.F., et al.: 'Real-time
system design, sizing, and simulation using
DSIGNER, '
pp.205-210 (1982).

[Quirk85] Quirk, VW.J.:
Validation of Real-Time Software,’ Springer—
Verlag (1985).

[Ting84] Ting, T.C., et al.: 'A multi-sensory

Real-time Systems Symposium,

'Verification and

and multi-media laboratory for human-
computer interaction,’ 1984 IEEE Workshop on
Visual Langnages, pp.149-155 (1984).
[Tominaga87] Tominaga, K.: 'A high 1level
programming language C* for engine control
software,’ ECS Lab. Hiroshima Univ. Tech.

Rep. No.87-02 (1987), in Japanese.

—152—

