VI MY 27T 63— 2
(1988 11. 25)

HEAE YU — v X EEEIEME U /s XK EEE

G EH mE JH Wil BA

NTT V7Y =7HEH

BEVIVITHRBREAVFF VR, BRY—-ECAURZERLVERES
BGSAL2#ER¥5. GSALBRF+2 FUROFHESAL (Service Add-
tion Language, [ICHIBB]) 2B LT HY, BEY - 2O0RREHEX»SH
VWHRTVWBE Ay =Yy —r Y AROBERT-TVWE. GSALORKER,
BREOHIK, y—C22HET S S v e AMCRLTEEORYBMY— R
REBECRESNIARSS5. GSALKL349—Ex@Bik, SALZHE
E#cE, SALEBHLCCCITTOREHBREATESDLEERENS.

A Graphic Language for Telecommunication Services Based on
the Message Sequence Chart

Masaki Itoh, June Kato and Haruhisa Ichikawa
NTT Software Laboratories

Abstract

A graphic language, GSAL, which facilitates communications software development and maintenance, es-
pecially service enhancement during its life cycle, is presented. GSAL is based on a textual language, SAL
(Service Addition Language, [ICHI86]) and is an extention of the message sequence chart being widely used for
telecommunications service description. GSAL features drawing capabilities which maintain the consistentcy of
the interaction between communicating processés. Descriptions in GSAL can be transformed via SAL into process
descriptions in SDL, the CCITT standard specification language.

17

1 Introduction

The results of FDT (Formal Descrition Techniques) use
are now coming to fruition in communications software
development. The three ISO standards Estelle [ESTESS],
ASN.1 [ASN188] and LOTOS [LOTO88] have been ap-
plied in the area of protocol. DL (Functional Speci-
fication and Description Language, [SDL84]), a CCITT
standard, has already been widely used in the telecom-
munication industry. It offers a flow-chart-like graphic
version -§DL/GR-, which seems to be the main reason
for its popularity.

A current trend in FDT use is the growing impor-
tance of the service concept [VISS85). The service con-
cept was first presented in [BOCHS0] for the extended
state transition machine, w_hich is the model of Estelle.
Also, a more formal concept of the service specifications
for LOTOS, which are independent of its implementa-
tion, was presented in [BRIN86] and [SCOL86]. Here,
the service specification of a system represents how the
system interacts with its environment. In layered proto-
col, for example, the service specification of ith layer pro-
tocol represents the interaction with its upper (i + 1th)
layer.

The authors developed a different, SDL-oriented ap-
proach to service specification. SAL (Service Addition
Language, [[CHI86]) captures a service as a tuple of par-
tial behaviours of processes to implement. That is, SAL
aims at describing sets of those tuples as requirements
for the communicating processes represeni:ed in SDL.

GSAL (Graphic SAL), presented in this paper, offers
a graphic interface to SAL. As described in Section 2,
SAL is compatible with the so called message sequence
chart which is a widely used graphic expression as is SDL.
For this reason, GSAL expressions are an extention of
the message sequence charts. GSAL has an important
feature that SAL does not. An arrow indicating a mes-
sage passing in GSAL expressions shows a one-to-one
correspondence between the message transfer action of a
process and another action to receive it. Therefore, the
inter-process communications are validated through the
conversion from SAL to GSAL shown in Section 4.

2 Service specification language
SAL '

2.1 SAL and SDL

Figure 1 illustrates a pair of communicating processes,
p and ¢, in SDL/GR, the graphic version of SDL. Table

1 defines the different box types, though it is not a full
set. In Fig. 1, messages to transfer and target process
names are described in the iriput and the output. The de-
scription “g(3 : question)” in the output box means that
process p sends the message “3 : question” to process g.
If the process name is omitted, the box denotes an input
or an output from/to its environment. The description
(digit) in the first input box in Fig. 1 (a) means that pro-
cess p receives message digit from its environment. As
is easily seen by tracing the message transfer between p
and ¢, the system specified in Fig. 1 takes one of the
following three behaviours:

1. p follows the path p; (shown in Fig. 1), and ¢
follows the path ¢;. This behaviour is denoted by

(P1,q1)-
2. (p2,q2)-

3. (ps, q3)-

In the case of (ps, g3), p receives (address, message) from
its environment and executes setadr(g,address). Next,
p sends message “8 : message” to ¢ and terminates. Pro-
cess ¢ sends message message to its environment after
receiving “8 : message” from p.

The SDE [ICHI86] derives the system specifications
in SDL from given sets of such tuples as shown above.
SAL facilitates describing partial behaviour tuples. Tu-
ples (p1,41), (P2, ¢2) and (ps, gs) are described in SAL as
shown in Fig. 2. The five lines following the comment
service 1 represent the tuple (p1,q1). The next five lines
and two lines delimited by ’|’ represent the tuples (p2, ¢2)
and (ps, g3), respectively.

These delimited lines of of the service description,
which correponds to tuples, are called multilogues. A
multilogue consists of unilogues, each of which denotes
the behaviour of a process. The unit of the behaviour,
message reception, etc., is called an event. A unilogue de-
scription begins with the expression “< process.name >=
7 which is followed by an event sequence.

The message transfer events are indicated by expres-
sions with a prefix of '+’ or >-’. An event with prefix "+’
indicates a message reception, while one with -’ indi-
cates a message transmission. An identifier following the
signs denotes the target process name. For example, the
expression +g(answer) in the unilogue of the process p
says process p receives message “answer” from process g.
When the target process name is omitted, for example
+(guestion), the expression indicates a message transfer
from/to the private environment of the process. It is pos-
sible that no message is specified in the message transfer

(2)

(Y
__/
) iain)]) ttassresa. mznsett |
52 ats
|| |
2

5. a1
Qi1

-
Pldranever)

3

pis)

e
tottr)

selved 1]

im
12

m
lgvertion)

12

(reply)

13
pisizeply)

Figure 1 (2) SDL Chart

Table 1. Box types in SDL/GR

Box type

Meaning

U0

State.
are ac

A state from where transitions
tivated on the reception of a message

Message Input.

Task.

A set of internal actions

Logical decision. Originally, <>

Message Output.

it

Figure 1 (b) SDL Chart

mesTransfer() {
/% service 1 ¥/
p = +(digit) .analysis(digit) -q{) +q{) -(responce:)
+(question) —q(question) +q(answer) -(answer) +(off:) —q() :
q = +p() -(arrival:) +(responce:) -p()
+p(question) . solve(question) . if (solved)
-p(answer) +p() -(off:) ;
| /% service 2 ¥/
p = +(digit) .analysis(digit) -q() +q() ~(responce:)
+(question) -q(question) +q{reply)-(reply) +(off:) -q() :
q = +p() —(arrival:) +(responce:) —p()
+p(question) .solve(question) .other —(question)
+(reply) -p(reply) +p() —(off:) ;
| /% service § %/
p = +((address, message)) . setadr(q, address) —q(message) ;
q = +p(message) —(message) ;

}
%

Figure 2 SAL program
(3>

to specify a message whose content is irrelevant. Mes-
sage headers can also be omitted. The message reception
p(4 : answer) in Fig. 1 is described as +p(answer) in
Fig. 2. This is because SAL facilitates the description of
each service without referring to other services. The SDE
arranges the appropriate constant messages and message
headers to combine service descriptions into SDL pro-
cesses, preserving well-formedness of their branches. In
SDL, branches in processes are restricted by decisions or
by message receptions. For more detailed explanation,
see {ICHI86].

A decision event is expressed by the form “if(<
expression >)'. A task event must start with *’. It
is beyond the scope of this paper to present more de-
tailed syntactical conditions for the above ezpressions,
or the expression of messages to be transfered. More
complex structures of the SAL programs and the event
descriptions necessary for the subsequent discussion will
be presented in the next subsection.

The concept of multilogues is a common one in the
message sequence chart. The multilogues in Fig. 2 are
described in the message sequence chart shown in Fig. 3.
A vertical line in the chart represents the progress, from
top to bottom, of a process behaviour. The meaning
of the boxes are self-explanatory. The arrows between
process lines denote message transfers between processes.
One arrow represents both message transmission and the
corresponding message reception.

2.2 Structure of SAL description

The expressive power of SAL is beyond that of the usual
message sequence chart. The three features described
below are unique to SAL. For the sake of simplicity, other
facilities, such as the declaration of types, variables and
so forth, are not presented in this paper.

(1) Compound event: The following is the syntax of
a compound event:

{< multilogue >}, or

{< event_sequence > | < event_sequence > |-}
The second case denotes the choice of alternative be-
haviours. The first case is a special case of the second.
It is important that not only the event sequence but also
the multilogue is allowed to occur in the compound event.
Consider the unilogue below.

p=tr() {p = +4(3) .a=40; ¢ = —p(&)+p(); }-r(2)--
This is equivalent to the following unilogue pair.

7)) + g(8) .a—q() = (D).
-p(3) +p(}

P
q

Generally, in case of unilogue p = ..{p = ...}..;, the
unilogue header “p =" in the compound event can be
omitted.

The next example contains an alternative choice.

+¢(8) {if (i >=0) .a.if(¢ < 0) .b} — a(};
—p(3) +p();

p
q

This expression is equivalent to the following:

+q(3) 4f(t >=0) .a—q();

g = —p(i)+p0;

I

p = +q(i) if(s <0).b—q()
g = —p(i)+p0;

The exact meaning of the compound event will be clari-
fied by the SAL expansion rules explained later.

digit
| analysis(
digit)
1 arrived:
{question
olved
answer answer I
reply
off: | ot reply
off: |
(a) Service S1
(b) Service S2
(address,
message)
‘message
message

(c) Service 83

Fig.3 Service descriptions in the message sequence chart

{4

(2) Multilogue call event: The multilogue set defini-
tion has the form

< name > (< parameter_list >) < body >,

where < body > is {< multilogue >} or {< multilogue >
| < multilogue > |...}. One multilogue set can be re-
ferred to in another multilogue set. Consider the follow-
ing pair of multilogue definitions:

m(){ p= +r() m2() —r(i);

: r= —p()+p(i)}

m(){ p= +4(3) .a—q();
g= -p(i)+p();}

This pair is equivalent to the following single multi-
logue definition: ‘

mO{ p= +r() {p = +4(i) .a— ¢(); ¢ = —p(i)
+p(); } — r(3);
r= —p()+p();}

Note thatithe form of the < body > in the multilogue
definition coincides with that of the compound event.
An event like .my(), whose form is same as that of the
task event, is called a multilogue call event.

(3) Loop event: This event has the form

Jdoop < compound_event >,

which represents an iterative behaviour. Every unilogue
in the compound event to be iterated must begin with
either a message reception or a decision. This is because
an iteration always induces a branch in the SDL chart.
A multilogue which holds te the following conditions

is referred to as simple.

1. No unilogue includes a compound event which com-

prises alternatives.
2. No unilogue includes a multilogue call event.

3. Every unilogue p = ... has only the events offered
by p.

Any suit of multilogue set definitions can be translated
into one in which every multilogue set definition com-
prises a suit of simple multilogues. Let us call this trans-
lation ezpansion. This expansion is performed by apply-
ing the following operation rules. These rules define the

semantics of SAL.

1. Macro expansion The substitution of multilogue
call events with compound events.

2. Expansion of alternatives The operation illus-
trated in the explanation of the compound event.

3. Sequencing Translation of a multilogue into a uni-
logue as described below. Let the following be a
multilogue:

= Ey;

Pn = By

Note that not every event in sequence E; is offered
" by pi. The above multilogue is translated into the
following unilogue:

p1=Ei{ps=Es}.{pn = En; };

4. Filtering Translation of a unilogue p; = E, ob-
tained by using the above rules 1 through 3, into a
simple multilogue

= E{;

Pm = E:n;

where E! is the subsequence of E, all of whose
events are offered by p;.

Example. Consider the next suit of multilogue sets.

miO{ pr= {+(a:)=pa(a)|+ (b:) —pa(b:)} +ps();
p2= +pi(2) . ma() - pa();
S pa= +p() ()} ;
my(){ pa= .store(z) .loop{+(c:y)—ps(y); ps =

+pa(y) .store(y)} + (a2); }

By applying rule 1, rule 2, rule 3 and rule 4 in this order,
the following set of simple multilogues is obtained.

mi(){ p= +(a:)—pa(a:)+ps();
P2 = +pi(y) .store(z) Joop{+(c: y) — pa(v)}
+(a:) —ps();
ps = .loop{+pa(y) -store(y)} + p2() — p1();
I
pr= +(b:) —pa(b:) + ps();
P2 = ..y
P3= ..}

Note the order of events in the unilogue for process ps.
[m]

<55

3 GSAL . in the top-level chart. Charts (d) and (e) are subcharts

coresponding to the loop box and the compound box of
GSAL offers a graphic representation of SAL programs. process g.)

GSAL involves some important extensions of the message
sequence chart to support the SAL features shown in
subsection 2.2. The elements of GSAL used to draw Event box name
charts are listed below.

Table 2 Local event boxes in GSAL

Process header

Process line Same as the vertical line of the message , .
Message reception from the environment

sequence chart.
) Message output to the environment
Arrow Denotes a message transfer between processes.

A pair of message expressions is attached to the Task

arrow.

0oofo

Compound box
Event box A box on a process line represents an event
other than the message transfer between processe. [LOOPI Loop box

Arrow: In a case where expression pair a : z/y is
E@ Selection Box

attached to an arrow a from the line of process p to the
line of process g, at the initial point of e, process p offers

event —g(a : z), and at tHe terminal point of a , ¢ offers [H:[[l Multilogue event Box
event +p(y). If no expression pair is attached, the arrow
denotes events —g() and +p(). Concerning the validity O O
of attached message expression pairs, see {ICHI86]. Note j @
that the correspondence between send/receive events is
.. . S1 [& 1

represented by only arrow. This is an important feature -
of GSAL which SAL fioes not haye. It is easy to preserve . LOOP ©
the consistency of interprocess communication in editing s2 [
GSAL charts.

Event boz: Types of event boxes are listed in Table
2. The compound boz, the selection boz and the multi-
logue event boz are important elements which introduce @
a hierarchy into GSAL charts. Each of these represents
subcharts. A selection box represents a compound event I %
which comprises alternative behaviours. A selection box c: ' d:
figured as n-repeated boxes denotes that there are n sub- ol
charts, each of which represents an alternative behaviour. [___§I:|
The other type of compound event is represented by a @ @

compound box. The meaning of the multilogue event
box is self-explanatory. A loop box is a selection box or
a compound box with an accessary loop. Figurc 4 GSAL charts
Example. Figure 4 illustrates the GSAL charts rep-

resenting the following SAL program:

i a:/a; 1 i C) 1_‘!4&._:'
m({ p= +a() {if(i >=0) alif(i < 0).b} — q(); oi
g= —p(j) + () -loop{g = +(c) = r(c3); e
r=tq(c:) .5 Ha = +d:) —r(d:); b
r=+q(d:); };} I

Chart (a) is the top-level chart. Charts (b) and (c) are

subcharts corresponding to the selection box of process p Figure 5 Ambiguous GSAL charts

6>

Restriction on GSAL charts: Consider the following
example:

—gla:)—r(b:); [*ur*/

+a(a){-r(a); r=+4g(a:);}; /*ua*/
ro= 4r(b:); [xuzx/

Q
|

We know that event +r(a :) is offered by process r before
+r(b :). This order, however, is not well represented by
the GSAL chart in Fig. 5 which is a direct interpretation
of the above multilogue. This is because both unilogues
up and uj include events offered by process r. From the
top-level chart only, we may guess that the event +r(b :)
is to be offered first by . :

For this reason, the following restriction is placed on
GSAL charts. Let P(u) be the set of processes which of-
fers some events in unilogue u. For the above multilogue,
P(u;) = {p}, P(uz) = {gq,r} and P(us) = {r}. The re-
striction is that for a multilogue consisting of unilogues
Uy, Uy« e vy U,y

P(u;)n P(UJ) =0

for any pair of distinct unilogues. Under this restriction,
the order of event offers is completely represented by the
GSAL chart.

4 GSAL Generation

Text forms and graphic form sof languages each have
. their own advantages. For example, a text form is well
suited for writing massive programs. The graphic form
is superior to the text form in readability. It is also good
for program modification. In cases where a language has
both forms, it is efficient thal translation between the
two forms is possible.

SAL generation from GSAL is straightforward. How-
ever, two steps must be performed for the converse trans-
lation. One is to determine the correspondence between
send/receive -events in order to draw the necessary ar-
rows. This steps comprises a sort of protocol verification,
and is therefore called protocol check. The second step
is to modify the SAL program so that its GSAL chart
obeys the restriction described in the previous section.
This step is called reforming.

Protocol check: This step is performed by using the
. simple multilogue set derived from a given SAL program.
The protocol check is easy for simple multilogues, as
shown by the example.below. Consider the following
multilogue:

P = +a:)—=pya:)+ps(b;);

P2 = +pi(z) .store(z) Joop{+(c: y) - ps(y)}
+(a:)—pa(b:); -
ps = .loop{+py(z) .store(z)} + pa(b:) — pr(b:);

By simulating the multilogue, the following correspon-
dences are obtained:

—pa(ax) — 4p(a), —ps(y) — +pa(2)

—pa(b:) — +pa(b:), -pi(b:) — +ps(b:)

In general, it is necessary for every interprocess com-
munication event to be related to another event, as in
the above multilogue. If this condition is not met, it
is concluded that the SAL program is not valid. (See
[ITOHS86] for more detailed techniques of the protocol
checking.) It is also easy to obtain send/receive corre-
spondences for the given SAL program from the results
of its equivalent simple multilogue set. The only diffi-
culty is the case where the members of an event pair
inducing an arrow belong to different compound events
or multilogues. In those cases, it is necessary to identify
the boxes for the events to be involved in order to induce
an arrow between a process line and a box or between
boxes. For this identification, box names are attatched
to every event when expanding the given multilogue into
the simple multilogue set.

Reforming: For this step, the process list P(u) is nec-
essary to calculate each unilogue of the given multilogue.
This calculation is defined as follows: Let unilogue u be
p = E, where E is an event sequence, and, let E be
“e E'” where ¢ is an event. Then,

P(u) = {p} U P(E), P(E) = P(e)U P(E').

When e is a compound event or a multilogue call ew;'ent,
P(e) is defined as shown below. Otherwise, P(e) = §.

P({EAE,|---|E}) = P(E)) U P(E,) U -+ P(E,),

P({ug;ug; - tm; }) = P(u) U P(ug) U - - - p(n),

where E;, ¢ = 1,...,n, and uj, j = 1,...,m are event
sequences and unilogues, respectively.
Let uy;us; -+ -, ux; be a multilogue. Reforming is per-

<75

formed with the following algorithm:

calculate P(uy);
i:=k—1;
while(z > 0) do
begin
calculate P(u;);
m:=1+1;
while(m < k) do
begin
(P (u:) N P(um) # 0)do
begin
u; = ti{tim; };
"P(w;) = P(u;) U P(up);
TEMOVE Up; }
end .
m:=m+1;
end
1:=1—1;
end
It is obvious that the new multilogue obtained via the
above reforming algorithm is equivalent to the original

one and obeys the restriction of the GSAL chart.
Example. Let m be the following multilogue:

p = +{a:)—pya:) loop{+(b:z) —pa(b: z);
pa=+pi(b: y) -store(y); H(c :) — pa();
pa=+p1();} +ps(); [*uax/

pr = +pi(a) my; [xugx/

ps = t—pi(); [*uzx/

pr = 8 [*ugx/

The multilogue m; is as follows:

—p3(2) + pa();
+p2(7) k() — p2(s

P2
P3

The process name list P(u;) are calculated as follows:
P(u1) = {p1,ps}, P(u2) = {p2,p3},

P(us) = {ps}, P(ua) = {ps}
Using those lists, multilogue m is reformed into the fol-
lowing:

ur{ug; }; uz{us;

5 Conclusion .

The fundamental features of GSAL and its conversion
from text-form SAL have been presented. GSAL is an
extended form of the message sequence chart which has
been widely used in telecommunications service design.

The extention mainly introduces a hierarchical structure
and an iteration structure.

GSAL is superior to SAL in readability, but also, ar-
rows in GSAL charts explicitly express the correspon-
dence between send/receive events offered by concur-
rent processes. Therefore, GSAL generation from SAL
performs a sort of protocol checking between processes,
which is a major considerations in telecommunications
services.

Acknowledgement The authors thank H. Ishimoto
for his cooperation in the GSAL system implementation.
They would also like to express their gratitude to col-
leagues at British Telecom, L.A. Jackson, M.T. Norris
and R. Tinker. This project was initiated through col-
laboration on the SDE.

References
[ASN188] ASN.11SO 8824, 8825.

[BOCHS0] G. v.Bochmann, 4 general transition model
for protocol and communication services, IEEE
Trans. on Commun., Vol. COM-28, No. 4,
pp-643-650, Apr. 1980.

[BRIN86] Ed Brinksma, G. Scollo and C. Steenber-
gen, Lotos specifications, their implementa-
tions and their test, Protocol Specification
Testing, and Verification VI (B. Sarikaya and
G. v.Bochmann, eds.), North-Holland, pp.349-
360, 1986.

[ESTESS] Estelle, ISO 9074.
[ICHI86] H. Ichikawa, M. Itoh and M. Shibasaki,

Protocol-oriented service specifications and
their transformation into CCITT specification
and description language, Trans. of IECE of
Japan, Vol. E69, No.4, pp.524-535, Apr. 1986.

[F'TOH86) M. Itoh and H. Ichikawa, Hierarchical veri-
fication of communications programs based on
concurrent processes, Trans. IECE Japan, Vol.
J69-B, No. 5, pp.449-459, May 1986.

[LOTO88] LOTOS, ISO 8807.

[SCOL86] G. Scollo and M. v.Sinderen, On the archi-
tectural design of the session standard in Lo-
t0s, Protocol specification, Testing, and Veri-
fication VI (B. Sarikaya and G. v.Bochmann,
eds), North-Holland, pp.3-14, 1986.

CCITT. Specification and Description Lan-
guage, Red Book, Recommendation Z.100 -
7.104, Vol. VI, Fasc. 10-11, 1984.

C.A. Vissers and L. Logrippo, The imporiance
of the service concept in the design of date
communication protocols, Protocol Specifica-
tion, Testing and Verification V (M. Diaz, ed),
North-Holland, pp.3-17, 1985.

(SDL84]

[ViSsss]

(8>

