VI b 27 69— 7
(1989 11 24)

WBE A N Y 2y Mk BEFTT TS LRI
NRNY Ry NEHFREE AW ARIEE S —

PN SE E AR s {57 B B —
WE YAFL-VY7 by o7 BWHRER

ANPMY 3y PERHREIE, LHBIIRTOAFTLOUEMRERFBLLTCHEHTCHY, ThThRie>
BRIASOEBNRTES. $2bb, RV Xy MVISAFLOMMITH R IMENCERTE, B
RBEBCATFLOBEDPHMWEEIMNIIERTES. RHtHR, 2ToLREEEFNIERTESD
BTlhwl, F2ToWMPWERGLHBEHCERTIALZhBbEPHEMBATHS. RIAEMHIC
LHEWICOERNERCE I RMEANRRENCEYTHS. 22T, RbY Ry b RHHERBEORM
Ak, WDV SLOERBRER/LLTHBFER7 TO-F B LR 3. KBETH,
FFARMUXy PERHRBERBALAISAERL, ThEAVAERT I OSSLORIEL ERF
EERT.

Verification and Synthesis of Concurrent Programs
Using Petri Nets and Temporal Logic

(Preliminary Report)
Naoshi Uchihira Shinichi Honiden

Systems & Software Engineering Laboratory
TOSHIBA Corporation
Yanagi-cho 70, Saiwai-ku, Kawasaki, Kanagawa 210, JAPAN
uchi%ssel.toshiba.junet@uunet.uu.net

ABSTRACT

Both Petri net and temporal logic have been widely used to specify concurrent systems. Petri net is
appropriate to explicitly specify the behavioral structures of systems, while temporal logic is
appropriate to specify the properties and constraints of systems. Since one can complement the other,
using a combination of Petri net and temporal logic is a highly promising approach to analyze, verify
and synthesize concurrent programs. Several reports on research efforts [CK87,SL89,HR89] have been
presented to combine a non-restricted Petrl net with propositional temporal logic. However, the Petri
net combined with temporal logic in these reports is so powerful that it is inappropriate for use in
automatic program verification and synthesis, because of its undecidability. This paper reports a
class that is decidable and shows how to verify and synthesize concurrent programs using Petri nets
and temporal logic. Especially, in the proposed method, a concurrent program is compositionally
synthesized with reusable components.

€1

1. INTRODUCTION

The Petri net is widely accepted as a graphical
and mathematical modeling tool, applicable to
concurrent systems [Pe81]. Temporal logic is
also successfully applied as a tool for the
verification {Pn77] and synthesis [MW84] of
concurrent systems. The Petri net and
temporal logic have different features with
each other. The Petri net is suited for modeling
the behavioral structures of a concurrent
system, and temporal logic is suited for
specifying the timing constraints of a system.
In other words, one can model or program
concurrent systems operationally using Petri
nets, while one can specify them declaratively
using temporal logic. For example, a
prohibiting constraint, such as "once an error
event occurs, a start event must not be
activated” can be described explicitly by
temporal logic, but it can only be described
implicitly by Petrl nets. Reversely, it is often
tedious work to describe concrete action
sequences by temporal logic, which can easily
be accomplished by Petri nets. It is an excellent
idea to combine the Petri net and temporal
logic as a specification language for analyzing,
verifying and synthesizing concurrent systems,
because the Petri net and temporal logic
complement each other. However, most classes
[CK87,SL89,HR89], in which the unbounded
Petri net is combined with linear time
propositional temporal logic, are undecidable
in regard to the emptiness (satisfiability)
problem. In this paper, we select a class that is
decidable in Section 3 and show verification
and synthesis methods for concurrent
programs using Petri nets and temporal logic,
in Sections 4 and 5, respectively.

2. PRELIMINARIES

Definition 1 (Petri net) [Mu89]:

A Petri net is a 5-tuple, N=(P,T,F,w,Mq) where:
P=(p1.p2,....pm} is a finite set of places,
T=(t1,t2,...,tn} is a finite set of transitions,

FC(PXT)N(TXP) is a set of arcs (flow relation),
w: F-{1,2,3,...} is a weight function,
Mq:P-(0,1,2,...} is the initial marking,

PNT= @ and PUT# &.

A marking in a Petrl net is changed according
to the following firing rule:

1) A transition is said to be enabled, if each
input place p of t is marked with at least w(p,t)
tokens, where w(p,t) is the weight of the arc
fromp to t.)

2) Only one of the enabled transitions can fire
at a time.

3) Firing of an enabled transition t removes
w(p.t) tokens from each input place p of t, and
adds wit,p) tokens to each output place p of t,
~ where w(t,p) is the weight of the arc from t to p.

Definition 2 (Labelled Petri net)

A labelled Petrl net is a 6-tuple, N= (P, T, F, w,
h, MO) where:

(P,T.F,w,MQ) is a Petri net, and

h:T- ¥ (alphabet) U {A (empty string)} is a
labelling function.

Let X (X) be a finite set (alphabet). ® means
infinitely many. The set of all finite sequences,
including an empty sequence, over X is denoted
by X*, and the set of all infinite sequences over

X iIs denoted by X¥. X*° = X* U X®. The labelling
function h:T-Y, is extended to h:T*°-X>° by h(6)(1)

= h(9() for all 6T and 1<i<I9l, where x(1)
means the 1-th element in sequence x and 16l is
the length of 6. A sequence of transition (8 € T*)
is called a firing sequence for the Petri net
N=(P,T,F,w,Mg), if the successively firing
sequence of the transitions is allowed by the
firing rule in N; an infinite sequence of the
transitions (6 € T®) is an Infinite firing
sequence if every prefix is a firing sequence.
The set of all (infinite) firing sequences of N is

denoted by F(N) (Fp(N)).

Definition 3 (Petri net language)

L(N) is a Petri net language generated from Petri
net N if L(N) = {h(8) ! 6eF(N)}, and Lg(N) is a
Petri net language generated from Petri net N,
if Ly(N) = {h(8) 1 6€F,(N)}

Definition 4 (Linear time propositional
temporal logic) :

(1) Syntax

Linear time propositional temporal logic
(LPTL) formulas are built from

® A set Prop of atomic propositions: p1,p2,p3,...

® Boolean connectives: A, -

® Temporal operators: X ("next"), U ("until”)

The formation rules are:

® An atomic proposition p € Prop is a formula.

o If f1 and f2 are formulas, so are f1Af2, -f1,
Xf1, f1 U f2.

(2) Semantics

- The operators intuitively have the following

2)

meanings:

~ : NOT, A : AND, Xf (read next f) : f is true

for the next state, f1 U f2 (read fl until f2)
fl is true until f2 becomes true. The

precise semantics are given as a Kripke

structure in [Wo89].

We use Ff ("eventually ') as an abbreviation for
(true U f) and Gf ("always f") as an abbreviation

for -F~-f. Also, fl v f2 and fl1 > f2 abbreviate
-(~fl A -f2) and ~fl v {2, respectively.

Definition B (Buchi sequential automaton)
[Wo89j:

Biichi sequential automaton is a tuple
A=(%,S,p,50.F), where

e Y is an alphabet,

® S is a set of states,

e p: S x ¥ - 25 is a nondeterministic transition
function,

es0 € S is an initial state, and

o F C S is a set of designated states.

A run of A over an infinite word w=t1i2..., is a
sequence s0,s1,..., where sjep(sj-1.ty), for all i21.

A run s0,s1,... is accepting if for some s€F there
are infinitely many 1's such that si=s. An

infinite word 6 is accepted by A if there is an

accepting run of A over 0. The set of all words
accepted by A is denoted L(A).

Theorem 1: "
Given an LPTL formula f, one can build a Buchi
sequential automaton Ap=(},S,p,s0,F}, where

$=2PT0D such that LA is exactly the set of
sequences satisfying formula f.
Proof. Cf. [WVSS83]. &

Definition 6 (Single Event Condition) [MW84]:
A single event condition is

Al v pial A —(pi A pj)),
1<i<n 1<ig<jsn
where pl,...,pn are all atomic propositions.

A single event condition provides that just only
one atomic proposition is true at any moment.
When we build a Buchi sequential automaton
Af '=(%,S,1,s0,F), where { ' is f with a single event
condition, we can make Y=Prop in place of
3=2PT0P because only one atomic proposition
is true.

Definition 7:

Ls(f) 1s a @ language generated from an LPTL
formula { with a single event condition if
Ls(f)=L{ Al ') where [is f with a single event
condition and ¥ of A{ ' is Prop.

Lemma 1:
Given an LPTL formula f, Ls{f)¢ = Ls(~f}, where

Ls()€ = 3¥ - Ls(N.

Proof.

In [WVS83], it i1s proved that L(Af]1)¢ = L(Ap),
where f2 = - {1 and no single event condition is
assumed. This lemma is a special case of the
theorem. W .

3. HOW TO COMBINE A PETRI NET AND
TEMPORAL LOGIC

There are several ways to combine a Petrl net
with temporal logic. The key point in
combining is what the atomic proposition in
temporal logic corresponds to in the Petri net.
Some correspondences will be shown between
atomic propositions in LPTL and Petri net
properties:

a) atomic proposition p is true iff place p has at
least one token.

(3)

b) atomic proposition ge(p,c) is true iff place p
has at least ¢ tokens.

a) is a special case of b), i.e. ge(p,1).
c) atomic proposition en(t) is true iff transition
t is enabled.
d) atomic proposition fi(t) is true if transition t
fires.

Here, fi(t) Den(t) always holds.

Emptiness
Paper Type Petrl net Problem
[KI82] a safe decidable
[CK87] b,c,d normal undecidable
[SL89] a,c,d normal undecidable
[HR89] b,c,d conflict-free undecidable
[UKH89] d bounded decidable

Table 1 Several Combination of
Petri Net and LPTL

For these correspondences, several research
results are presented as shown in Table 1. It can
be seen that the emptiness problem becomes
undecidable in some Petri nets combined with
temporal logic. Some are decidable but are
restricted to bounded ones. Our purpose is to
select an unbounded Petri net class combined
with temporal logic in which the emptiness
problem 1is decidable. The reason is that
decidability is necessary for automatic
program verification and synthesis, and
unboundedness of the Petri net is necessary for
modeling asynchronous communication in
concurrent programs.

Here, we adopt only d-type correspondence and
combine the Petri net and LPTL in the world of
formal language over a set of transitions. In a
previous section, it was pointed out that Petri
net language L(N) is generated from Petri net N,
and o language L(f), which is exactly the set of
sequences satisfying the LPTL formula f, can be
represented as L(Af) where Af is a Buchi
sequential automaton.

When combining Petri net N and temporal logic
f, all transitions of N do not necessarily
correspond to atomic propositions. Some
transitions may be invisible to a user who
describes temporal logic specifications. Let T be

a set of all transitions of N and X < T is a set of
visible transitions. A labelling function h: T-X
is defined such that h(t)=t, if t € T is visible, and

h(t)=A, if te T 1s invisible. We now define a new
formal language from L(N) and Ls(f).

Definition 8:

Let T be a set of all transitions, ¥ < T be a set of
visible transitions, and Propc} be a set of
visible transitions, which appear in a temporal
logic formula f. L(N,f) Lo (N) n Ls(f)
where Lw(N) is a language generated from
Petri net N=(P,T,w,h,M0), h: T-X and Ls(f) is a

language generated from f under a single event
condition.

Theorem 2:

For a given labelled Petri net N=(P,T,w,h,MO)
and LPTL formula f composed of a set of atomic
propositions Prop, the emptiness problem of
L(N.f) is decidable. "

Proof.

It is sufficient to prove that the emptiness
problem Lw(N) n Ls(f) is decidable. To begin
with, a procedure is provided which constructs
a coverability graph CG with Af:

Main_Algorithm
1) Make a Biichi sequential automaton

Agp=(Prop,S,p,so.F) accepting Ls(f).

2) Expand Af into Af ' = (T,S',p',s0.F) appending
dummy states and transitions for invisible
transitions (T-Y) according to [UKS89].

3) Construct a coverability graph CG. CG is a
labelled directed graph. Each node x in CG is
represented as a vector x = (x1,x2,...,xk,s.flag)
where xi € {0,1,...})u{o} (1<ick), IPi=k, s€S',
flage { d (designated node), n (normal
node) }. Each edge e=(xi,xj) in CG is labelled
with an element of T.CG is constructed as

follows:
2-1) Start with a graph CG containing one

initial node x0=(x01,...,x0x,sp.flag) where
(x01.....x0}) is an initial marking Mg, sp € S'Is
an initial state of Af, flag=n(normal).

2-2) Repeatedly apply steps 2-3) to the CG nodes
until they have been applied to all nodes.

2-3) Let x be an unapplied node in CG with
x=(x1,...,xk,s,flag).

{Case 1) If there is no enabled transition t € ¥ on
x, x has no child node; otherwise,

(Case 2) For every enabled transition t € ¥ on x
and every s' € p(s,t), add new child edges and/or
nodes to CG by the following Graph Addition
Procedure.

raph Addition Pr ur
For a given x, t€ ¥ and s,s'e §', add new nodes
and edges to CG according to 1) - 4).
1) Make a new vector x'={x'1,x'2,...,s'.flag), such
that flag=d s'€F, otherwise flag=n, and each x{'
(1<i¢k) is computed as follows:
(Case 1) if xi = 0 , x'i = & (1<igk);
(Case ~2) if there 1is an ancestor
y=(yl,....yk,s".flagy) of x such that yj < xj -
w(pj,t) + w(t,pj) for all j (1gj<k) and yi< xi -
w(pi,t) + w{t,pi) for some i‘(i¢i¢k), then
x'i=w; otherwise, :
(Case 3) x'1 = x1 - w(pl.t) + wit,pi).
2) If x' is new in CG, add a new node x' and a new
edge e=e(x,x) labelled with t, otherwise add only
a new edge e=(x.x)) labelled t.

4

The above algorithm always terminates,
because the number of nodes and edges is finite.
Claim: Lo(N) n Ls(f) # @ iff there exists a
cycle e=x(gx]...xkxQ such that xg is a designated
node and A(c)20, where A(c) is a difference
vector of the number of tokens in each places
between a start point and an end point in c.

The above claim follows directly from the
result of [SCFM84]. Furthermore, it is decidable
if there exists such a cycle from [VJ85]. B

When L(N,{) is nonempty, it is very important to
find a concrete sequence -accepted by L(N.f). for
the sake of program synthesis.

Definition 9:

A linear Y -labeled graph is a tuple
G=(V,vq,h,p), where V is a set of nodes, v0 is
an initial node, and p: V-V is a transition
function and h: V-3 is a labelling function.

Note that a linear X -labeled graph defines
one deterministic sequence obtained by
infinite unwinding from node vgQ.

Theorem 3:
Given L(N,f) that is nonempty, we can construct

a linear T-labeled graph G=(S,s0,p,h) defining a

concrete firing sequence 0 € L(N,{).
Proof. Cf. [vJ85] W

4. CONCURRENT PROGRAM VERIFICATION

Consider concurrent program verification
focusing on the behavioral properties. After
retracting the basic behavioral structures
represented by Petrl nets from concurrent
programs, it is possible to analyze the
behavioral properties of programs. This
verification means to check whether or not a
given Petri net satisfies a given specification.
What language should be used to describe the
specifications? Temporal logic was adopted
where atomic propositions correspond to
transition firing as described in the previous
section. However, only the o Petrl net language
Lu(N) is considered there, which doesn't care
for finite behaviors of N including deadlocks.
Therefore, Petrl net N is extended to Petrl net
Ny which is made deadlock-free by adding a
dummy transition nop (no operation) in Fig.1.

DOP

Fig.1 nop

It will be shown how to verify that a given
concurrent program meets a given
specification. A concurrent program is
represented as a Petrl net Ny, and a
specification is described as a temporal logic
formula f. Thus, to verify that the program
meets the specifications, it suffices to check

Ls(f) oLy(Ng), that means each of all possible
computations in Petri net Ng is a model of
temporal logic formula f.

Definition 10:

A deadlock-free Petri net N satisfies the
temporal logic specification f with a single

event condition iff Ls(f)>Ly(Ny). And it is
called the verification problem to decide
whether N wsatisﬁes f.

Theorem 4:

The verification problem is decidable.

Proof. From lemma 1, Ls(f)lDLy(Ny) =
Ls(=HNL(Ny)=@. It is decidable from Theorem
3. N

It will now be made clear what the inputs and
outputs are:

INPUT:

Concurrent program structure
(represented by Petri net Ng),
INPUT:

Specification

(represented by temporal logic 1),
OUTPUT: Yes/no,

where "yes" means that the program satisfies
the specification, and "no" means otherwise.

Some examples will be shown to clear what is
possible and what is impossible in this
verification method:

<Possible to verify>

1) Mutual exclusion

ex. Intervals [t1,t2] and [t3,t4] between two
transitions do not overlap each other:

Gt1 D X(-{t3 v t1) Ut2) AG(t3 D X(~({t1 v t3) U t4)
2} Partial ordering among transition firing
ex. Transition t1 and t2 fire in turn:

Gltl D X(-t1 Ut2) AG(t2 D X(-t2 U t1)

3) Firing prohibition

ex. G(t1 D XG -t2)

4) Deadlock inevitability

ex. FG -t

Note: Each place in a Petri net represents either
an internal state or a communication buffer in
a concurrent program. Places representing
states can be taken place of intervals of two
transitions [t1,t2].

<Impossible to verify>

1) Number of tokens

It is impossible to verify about the number of
tokens in the places, which is used to represent
reachability and boundedness properties.

2) Possibility of deadlock (liveness property)
This arises from the introduction of nop.

The blind side of this verification can be
complemented by the traditional analysis
method for Petri nets.

t

ta

tﬁ, B Jts t\

Example of Verification:

As a simple example, verifying a concurrent
program, let's consider a mutual exclusion
problem containing unbounded buffers. Note
that a bounded Petri net that is equivalent to a
finite state program is easier to verify using
Clarke's model checker [CES86]. A target
program is illustrated in Fig.2, where places P4
and P5 are unbounded buffers. And
specification f is given that intervals [t1.t2] and
[t3,t4] satisfy a mutual exclusion condition as
follows:

Spécification f:

f=G(t1 DX(~t3UL2) AG(t3 D X(~t1Ut4))
f=F(t1 AX~(~t3U2) VF(t3AX-(-t1U4))

Deadlock-free Petri net Ne,:

P

()

P4 te - Ps

Buchi Sequential Automaton A-f:

bbbt
£

AN T ,t¢,t$

t3

t'JT?;fs, &, ts
F=1{Ss}

Reachability Graph CG: (represented by Petri net)

Synthesis Procedure (sketch)
This program synthesis method consists of the

following three steps:

1) Bulild a linear structure G représenting a
model 6 such that § € L(N1,f).

2) Transform G into an equivalent Petri net NG.
3) Make a product Petri net N2 of N1 and NG.

Example:
Reused Petri Net N1:
t ta 13

Specification f:
G(tl oXt2) AG(t1 vi2 v t3)

Buchi Sequential Automaton Af:

t,t;

Fig.2 Verification example

designated node, that means Ls(-f) N L¢y(Nyy)
= @ from Theorem 2. We conclude Ny, satisfies f.

t

In CG, there exists no cycle including a ‘ e
11(

5. COMPOSITIONAL SYNTHESIS WITH F h { SO, S'}
REUSABLE COMPONENTS Linear Structure G:

This section describes a method to synthesize a

concurrent program with reusable components @ @
by program tuning. The goal programs are

synthesized by tuning up reused programs that @

are represented by Petri nets to satisfy the given

specification. This method differs from other @ @
synthesis methods [MW84,CE82] that also us«;

the temporal logic specification, in the point o .

utllizing software rense [BP84.KGS7, URMHS?]. Tuned Program N2:

The model building technique in Theorem 3 is
used in this tuning process.

At first a flat synthesis method is explained, t 'tz
and then a compositional synthesis method is /
mentioned briefly.

<Flat Synthesis>

It is assumed that the program has already been
constructed from reusable software
components up to this step. To start with, it is
made clear what the inputs and outputs are :

INPUT:

Specification f t3
(written by LPTL)

INPUT:

Reused Programs N1 t, .tz

(represented by Petri net)
OUTPUT:
Tuned Programs N2

Fig.3 Flat Synthesis Example

€6

The main drawback in this flat synthesis is
that a synthesized program has no
concurrency, because the program is serialized
by a linear structure G. :

To overcome this drawback, the compositional
synthesis method is mentioned by introducing
a module structure (Fig.4) into the Petri net,
where an inside behavior of individual
modules is serialized and becomes a sequential
program. However, the modules can run
concurrently with each other. This |is
summarized as illustrated in Fig.5.

Fig.4 Module Hierarchy

i-th Synthesis

S hop

#-th Synthesis

& o,

Ni: Local Petri net for module i,
Niall: Global Petri net linking Ni,

Nit: Tuned Petri net after i-th synthesis
Ci: Constraint to i-th synthesis

fi: Temporal logic specification®

Fig.5 Compositional Synthesis
<Compositional Synthesis> '
i-th hesis Pr ure (sketch

1) Transfer Ci into an equivalent Petri net Ng,
where Ci is a linear structure representing

constraints to i-th synthesis that is generated
by 1-1-th synthesis procedure.

2) Make a product Petri net N2 of Njall and Ne.
3) Build a linear structure G representing a

model § such that 8 € L(N2,fi).
4) Reduce G into Cij focusing on module Nij.
5) Reduce G into GI focusing on module Ni.

6) Make a product Petri net Nt of Nj and Gy.

6. MENDEL/89

MENDEL/89 [UH89] is a concurrent
programming language which is based on Petri
net. MENDEL program consists of several
objects that is a process. Behavior of an object
is described as a set of methods, which
intuitively looks IF-THEN rules. The skeleton
of MENDEL/89 program is represented by
MENDEL net, which is a Petri net with module
structures (Fig.6). Therefore, it is possible to
verify MENDEL programs using the proposed
verification method. MENDEL/89 is powerful
enough to describe practical concurrent
programs such as a robot control system and
the lift system. a MENDEL/89 program can be
executed on the multi-personal computer
system.

lifk - controller

Fig.6 MENDEL Net Example
7. CONCLUSION

This research was carried out to establish a
method to verify and synthesize concurrent
programs automatically using the Petri net and
temporal logic. In this paper, (1) we define the
class combining Petri net and temporal logic
which is decidable, (2) the decision procedure
for this class is applied to concurrent program
verification, and (3) a compositional synthesis
method is provided by modifying reusable
components to satisfy a specification. Our
approach means relaxing automatic
verification and synthesis for only finite-state

programs to infinite-state programs such as
Petri net.

We have already implemented a programming
synthesis system for finite-state programs
{(bounded Petri nets) which is called the
MENDELS ZONE [UKMIH90]. This system
consists of two major steps: (1) construction of
a body part by reusable objects, and (2)
synthesis of a synchronization part which is
consistent with the body part, from a temporal
logic specification and a bounded Petri net. We
plan to extend this system so as to be based on
this paper's method for infinite-state programs
(unbounded Petri nets), after establishing
reasonable efficiency for the synthesis
algorithm.

At present, much still remains to be explored:
(1) In concurrent program verification, the
branching time propositional temporal logic
(BPTL) is more useful and practical than LPTL.
It is important to develop a BPTL version.

(2) In the proposed synthesis method, a
synthesized program may be unnecessarily
deterministic, since it is synthesized from only
one model satisfying the LPTL specification. To
improve this demerit, it is necessary to
introduce one of two program synthesis
approaches. One is synthesis from a model
generator in LPTL. The other is synthesis from
a model in BPTL.

ACKNOWLEDGMENTS

This research has been supported by ICOT. We
would like to thank Ryuuzou Hasegawa of ICOT
for their encouragement and support. We are
also grateful to Sefichi Nishijima and Takeshi
Kohno of the Systems & Software Engineering
Laboratory, TOSHIBA Corporation, for
providing continuous support. We are also
indebted to Fujio Umibe for proofreading and
correcting the original English manuscript.

REFERENCES

[BP84] Biggerstaff,T.J. and Perlis,A.J., Special
Issue on Software Reusability, Foreword, IEEE
Trans. on SE, SE-10, No.5, 1984.

[CE82] Clarke, E. M. and Emerson, E. A., Design
and synthesis of synchronization skeletons
using branching time temporal logic, Logics of
programs (Proceedings 1981), Lecture Notes in
Computer Science (LNCS) 131, Springer-Verlag,
pages 52-71, 1982.

[CES86] Clarke,E.M., Emerson,E.A.,
Sistla,A.P., Automatic Verification of Finite-
state Concurrent Systems .Using Temporal
Logic Specifications, ACM TOPLAS,
Vol.8,No.2,1986.

[CK87] Cherkasova,L.A. and Kotov,V.E., The
Undecidability of Propositional Temporal
Logic for Petri Nets, Computers and Artificial
Intelligence 6, Vol.2, 1987.

[HR89] Howell,R. and Roiser,L.E. , On Questions
of Fairness and Temporal Logic for Conflict-

{8

free Petri Nets, LNCS 340 Advances in Petri
Nets 1988, 1989.

[Ki82] Katai,o. Iwai,S., Construction of
Scheduling Rules for Asynchronous,
Concurrent Systems Based on Tense Logic (in
Japanese), Trans. of SICE, vol.18,No.12,1982.
[KG87] Kaiser,G. and Garlan,D., Melding
Software Systems from Reusable Building
Blocks, IEEE software, Vol.4, No.2, 1987.
[Mu89] Murata,T., Petri Nets: Properties,
Analisys and Applications, Proceedings of the
IEEE, Vol.77,No.4,1989.

[MW84] Manna, Z. and Wolper, P., Synthesis of
communicating processes from temporal logic
specification, ACM Trans. on Programming
Languages and Systems, Vol.6, No.1, pages 68-
93, 1984.

[Pe81] Peterson,J.L., Petrl Net Theory and the
Modeling of Systems, Prentice-Hall, Inc.,1981.
[Pn77] Pnueli,A., The Temporal Logic of
Programs, Proc. of 18th FOCS, 1977.

[SCFM84] Sistla,A.P., Clarke E.M., Frances,N.,
Meyer,A.R., Can Message Buffers Be
Axijomatized im Linear Temporal Logic?,
Information and Control 63, 1984.

[SL89] Suzuki,l., and Lu,H., Temporal Petrl Nets
and Their Application to Modeling and
Analisys of a Handshake Daisy Chain Arbiter,
IEEE Trans. on Computer, Vol.38,No.5,1989.
[UH89] Uchihira,N., Honiden,S. , Petri Net-
based Concurrent Programming Language on
Distributed Processing Systems (in Japanese),
EIC CPSY89-34, 1989.

[UKH89] Uchihira,N., Kawata,H, Honiden,S. , A
Concurrent Program Synthesis Using Petri Net
and Temporal Logic in MENDELS ZONE, ICOT
TR-449, 1989.

[UKMH87] Uchihira, N., et al., Concurrent
Program Synthesis with Reusable Components
Using Temporal Logic, Proc of COMPSAC87,
1987.

[UKS89] Uchihira,N., Kawata,H, Sumida,S. ,
Design Support System for Hierarchical
Distributed Systems (in Japanese), 30th
Programming Symposium, 1989.

[vJ85] Valk,R. and Jantzen,M., The Residue of
Vector Sets with Applications to Decidability
Problems in Petrl Nets, Acta Informatica 21,
1985.

[VW86] Vardi,M. Wolper,P. ,An Automata-
Theoretic Approach to Automatic Program
Verification, Proc. 1lst Symp. on Logic in
Computer Science, 1986.

[Wo89} Wolper,P., On the Relations of Programs
and Computations to Models of Temporal
Logic, in Proc. of the 1987 Manchester
Workshop on Temporal Logic, Springer-Verlag
LNCS vol.398, 1989.

[WvSs83] Wolper,P., Vardi,M.Y.,Sistla,A.P.,
Reasoning about infinite Computation Paths,
Proc. of 24th FOCS, 1983.

