V7 o T7TI% T0—3
(1989.12. 8)

ATERICXBYTNIA L « VAT LD
V72 by aT e TubsAETT

xum n—! mar mzx! wx —x' pE e

1 (B B2 U2FLV7 Mo 2T7HEEAWNR
9 bEA% BI¥SB—BHERAEHMBFERN

WTPRNFA L e P RFLEHRELEAITERKERVEZY 72T - FObsMEY

FEREIZOWTHENRE, £F. TOPI A TOWERTF v 7, EFTRT» 7, FHRT v
7#Bm&én67nby48yro7ntz~ﬁxU07w94A~yz%A%ﬁ%&
L= BaDBRADRF v 7B 3 ERAREWHSML, B2 DEREMATHLDA
IHAIZPWTRE 2, Bt VTAI AL VRFLOBEIZIR, BELITa b5 A
IHEZShEREEREZHBLTHESIHIORMIEMR T v THLETHH. TOLDIC
SO PS4 TEFEF ARy P72 ICRBIE, THBRFEIIXOHF LA v 72K
2T5FEE1ERT 5,

An Application of Artificial Intelligence to
the Process of
Prototyping Real-time Systems

Shinichi Honidenl Naoshi Uchihiral Kazunori Matsumotol Kiyoshi Itoh?

1 Systems and Software Engineering Laboratory, Toshiba Corporation
70 Yanagi-cho, Saiwai-ku, Kawasaki 210, Japan

2 Faculty of Science and Technology, Sophia University
7-1 Kioi-cho, Chiyoda-ku, Tokyo 102, Japan

This paper describes the role of artificial intelligence in the
prototyping process for real-time systems. A prototyping process
consists of three steps: prototype construction, prototype execution,
and prototype evaluation. This process may be repeated until the
users' requirements are all satisfied. 1In the prototyping process, all
three steps should be accomplished rapidly or the number of iterations
of this process should be reduced, so as to satisfy the rapidity
property of the prototyping process. The authors present the following
artificial intelligence based methods and tools to be applied in each
step. In the prototype construction step, a rapid construction
mechanism using reusable software components is implemented based on
the "planning” method. In the prototype execution step,, a hybrid
inference mechanism is used to execute the prototype which is described
in declarative knowledge representation. 1In the prototype evaluation
step, an expert system which is based on qualitative reasoning is
implemented to automate the diagnosis and improvement of performance
evaluation.

=1=

1. INTRODUCTION

Recently, various multiprocessors have
become commercially available and have
been used in many applications. The
objective of multi-processing is to
process the application software quickly
to satisfy performance requirements. In
several applications, severe performance
requirements are needed. For example, a
real-time process control system requires
much more precision timing than a business
application system. The response time is
defined as the elapse time between receipt
of signals from the external environment
and generation of required output. If the
response time exceeds the allowable limit,
several malfunctions will certainly occur.
If the real performance is discovered to
be out of the allowable range after
shipping from the factory, a substantial
amount of time and labor will inevitably
be spent in maintenance activities, such
as reconfigurations and modifications. To
avoid such a situation, it is very
important to predict the target system
performance precisely during the design
phase, in order to find the optimal
software and hardware configurations which
satisfy users' requirements. However, in

several real-time systems on the
multiprocessor, it is quite difficult to
adjust several factors such as load-

balance on the given multiprocessor
architecture to satisfy the performance
. requirements. In practice, the
performance evaluation tends to be
empirical, because there are few
algorithms which derive the optimal
software configurations to satisfy the
performance requirements under a given
hardware configuration. The simulation
method still plays an important role in
detailed performance evaluation.
Simulations are wusually carried out
repeatedly by varying several performance
factors, until simulation results satisfy
the system requirements. In other words,
the performance evaluation activity is
carried out on a trial~and-error basis,
and this activity may be a prototyping-
like approach. However, this method is
not equal to the prototyping approach,
because it does not satisfy the rapidity

which is the major property in the
prototyping method. The following
problems, existing in the performance

evaluation activity, are the reason for

this opinion.

(a) The process to construct the
performance model for performance
evaluation 1is not often included in a
software development main-stream on which
the function model of software is mainly
constructed. The consistency check 1is
also required between function model and
performance model. The cost to construct
the performance model may not be low.

(b) As there are few algorithms which can
be used to evaluate the simulation results
rapidly, analysis of the simulation
results is a time-consuming activity. 1In
the performance model, one of the typical

analysis activities is the diagnosis for
bottlenecks on the multiprocessors.

(c) It is difficult to generate the
adequate improvement plans which consist
of appropriate ©performance tuning
parameters to eliminate the bottlenecks
found in analysis activities. Inadequate
plans may force useless simulation again.

This
evaluation is
prototyping method,
problems, as mentioned above,
solved.

simulation method in performance
considered to be a
on condition that all
must be

The authors present an application of
artificial intelligence to a rapid
prototyping method in the performance
design to solve these problems.

Knowledge-based system, as an artificial
intelligence method, has been used
effectively to tackle the ill-defined
problems where few algorithms exist. In
the software engineering domain, various
ill-defined problems also exist such as
programming tasks. Several attempts made
in applying the artificial intelligence
method to these ill-defined problems in
the software engineering domain have been

presented. Typical examples are GIST
[CohB4), Programmer‘'s Apprentice [Ric78],
¢0 [Bar82), Glitter [Fic85], Data-

Representation Advisor (Kat81] and AFFIRM
{Ger80]. These methods seem successful in
the particular phases or domains in which
they are applied. Individual method can
be applied to some steps in the software
process, but does not cover the software
process as a whole and does not fully
implement the prototyping process.

Hence, artificial intelligence based
standard methods, which actually implement
the prototyping process, are rare. One of
the major reasons for the lack of standard
methods is that the following items have
not been clearly defined:

(1) The software prototyping process,
which consists of several steps.

(2) The requirements pertinent to each
step in the prototyping process, in order
to apply artificial intelligence.

(3) The implementation method based on
artificial intelligence to satisfy the
requirements in each step.

(4) The integration method which consists
of various methods in order to cover the
whole prototyping process.

The objective of this paper is to clarify
the above items (1)-(4) in the performance
design for real-time systems.

A prototyping process is defined to
consist of three steps: prototype
construction, prototype execution, and
prototype evaluation [ItoB89al. This
process may be repeated until the users'
requirements are all satisfied. In the
prototyping process, all three steps
should be accomplished rapidly or 'the
number of iterations of this process
should be reduced, so as to satisfy the
rapidity property of the prototyping
process. Moreover, as the performance

feature characteristic is that a long time
execution step exists due to the use of
the simulator, the other steps must
compensate for the execution step length.
That is, the following items are firm
requirements for the prototyping process
in the performance design.

(i) Performance evaluation activity should
be incorporated naturally in the software
development process.

(ii) As real-time systems consist of many
software modules, when constructing
prototypes, increasing software
productivity is required.

(iii) The prototype evaluation step, which
has not been automated up till the
present, should be implemented.

The authors present the following
artificial intelligence based methods and
tools in three steps.

1) In the prototype construction step, a

rapid construction mechanism, wusing
reusable software components, is
implemented based on the "planning"”
method.

2) In the prototype execution step, a
hybrid inference mechanism is used to
execute the prototype which is described
in declarative knowledge representation.

3) In the prototype evaluation step, an
expert system, which ~ is based on
qualitative reasoning, is implemented to
automate the diagnosis and improvement of
performance evaluation.

In this paper, Section 2 describes the
requirements for the prototyping tools for
real-time systems. The prototyping process
is accomplished in three steps: prototype
construction, prototype execution, and
prototype evaluation. The requirements
for implementing each step are also
described. Section 3 describes prototype
construction and execution steps, Section
4 describes prototype evaluation step,
Section 5 evaluates the presented method
and compares related work and Section 6

summarizes the unique features of our
presentation.
2. PROTOTYPING PROCESS

FOR REAL-TIME SYSTEMS

This section describes the requirements
such that artificial intelligence can be
. applied or wused to implement the
prototyping process for real-time systems.

In designing real-time systems, it is
important to consider both the functional
and performance features. This implies
that two prototypes exist in designing
real-time systems: functional and
performance. The functional design should
be accomplished under satisfying
performance requirements. That is, during
function implementation, the performance
requirements must be satisfied while
several constraints. The example
constraints are the number of processors
and a task configuration. These
constraints may affect the real
performance and are determined in
accordance with the actual execution of
the functional design. Therefore,

" non-declarative

prototyping should be accomplished under
defined constraints at various design
phases. '

In the previous section, the authors have
mentioned that the prototyping process
consists of the prototype construction,
execution, and evaluation steps, as shown
in Fig.l. This process may be repeated
until the constructed prototype satisfies
all the users' requirements. Note that,
since the rapidity property for the
prototyping process has to be satisfied,
all three steps in the process need to be ~
accomplished rapidly or the iterations of
the process minimized. In practice, it is
often impossible to accomplish all the
steps rapidly. For example, much effort
and time is often taken in a particular
step in the prototyping process. In such
a case, the other steps must compensate
for steps which cannot be accomplished
rapidly.

Hence, characteristics and requirements
for the three steps depend on the
prototyping applications. This section
describes the requirements needed to
implement the three steps in performance
design for real-time systems.

2.1 Prototype construction step

Various methods are available to construct
a prototype rapidly, such as the use of a
executable specification language, a
pictorial editor, and a reusable component
retrieval tool. The requirements in this
step depends on the method adopted. For
example, with a specification language,
easy modelling ability is included.

Most real-time systems consist of many
software modules. As any prototyping
method should be able to treat large-scale
programs, increasing software productivity
is required in order to construct
prototypes rapidly. Software reuse
methods have been considered among the
most effective methods in increased
software productivity and are used in
several domains ([Hon86b, Jon84). Various
specification methods, such as keyword,
case grammar, and formula, have been
presented to retrieve the reusable
component . However, these methods can
only retrieve one reusable component using
one specification statement at a time.
The size of the specification is then
proportional to the number of desired

reusable components. To achieve the
rapidity property in the prototype
construction step, the size of the

specifications necessary to retrieve the
reusable components must be as small as
possible.

An easy modelling method is also necessary
to describe each reusable component for
the prototype construction step. In cases
where declarative knowledje is used for
modelling, it is more advantageous than
(procedural) knowledge,
because the prototype is easily refined or
modified.

=3=

The process to construct the performance
model for performance evaluation is not
often included in a software development
main-stream, on which the function model
is constructed. Naturally, the cost
involved in constructing the performance
model may not be low. Also, the
consistency check is required between
function model and performance model.
Therefore, performance evaluation activity
should be incorporated naturally in the
software development process.

2.2 Prototype execution step

One of the major properties of prototyping
is executability. This property means
meeting the following requirements. .
(a) To execute rapidly.
(b) To execute
preparation.

(c) To execute visually.

(d) Arbitrary interruption and re-starting
during execution.

(e) To execute while displaying results
which are easy to evaluate.

without complex

From the aspect of performance design,
since simulation execution time is 1long,

there is a need to display visual
performance data during execution, and to
collect the performance data to be

evaluated effectively. For example,
during execution, it 4is important to
display the queue length dynamically as
well as dead-lock detection. Performance
statistics factors such as queue length at
each server, utilization rate and wait
time at each server, and response time are
also required. Also, an on-line simulator
-should be implemented, in order to
interrupt and re-start prototype execution
arbitrarily ©because the simulator
execution time is long.

2.3 Prototype evaluation step

In some prototyping methods, even if the
prototype construction and execution steps
are accomplished rapidly, any method which
requires much time and effort in the
evaluation step, will not be regarded as a
rapid prototyping method. This is because
inadegquate evaluation may force useless
repetition of the prototyping process and
time-consuming evaluation is merely slow.
These factors violate the major
prototyping property of rapidity. To
solve this problem in the prototype
evaluation step, the following function is
required.

Rapid detection of a bug which would cause
undesired output and rapid generation of
appropriate improvements.

This is particularly true £from the
viewpoint of performance design, because
this requirement means rapid detection of
bottlenecks and rapid generation of
performance improvement plans, which
consist of several appropriate performance
factors. However, there are few standard
methods which can satisfy this requirement
and the requirement becomes time consuming
and difficult for a non-expert who has no

=4

experience and is not familiar with
performance evaluation. It is necessary
to automate this step, in order to
accomplish it accurately, rapidly, and
appropriately for non-experts. As
mentioned previously, much time is
generally taken to accomplish the

prototype execution step due to the use of
a simulator. Therefore, the prototyping
cost can be lowered by reducing the
iterations for the prototype execution
step. Reducing prototyping cost also
depends on the rapid generation of
appropriate improvements.

In real-time systems on a multiprocessor,
it is important to wvalidate the
performance in the constructed prototype,
which is mapped to the given
multiprocessor. Therefore, the
constructed prototype must be evaluated on
the given multiprocessor in the prototype
evaluation step.

3.PROTOTYPE CONSTRUCTION
and EXECUTION STEPS

In real-time systems, the combination of
declarative knowledge description and
actor-based object modelling is considered
to be one of the effective methods to
describe the prototype. The inter-
relationships among objects are described
by actor-based object modelling and the
inner behavior of each object is described
by declarative knowledge. The authors
adopt MENDEL as the executable
specification language to satisfy this
requirement. MENDEL is a Prolog based
concurrent object-oriented. language
[Hon86a,Uch87,Hon89]. MENDEL is used as a
functional and performance prototype
construction tool and a prototype
execution tool.

3.1 MENDEL object
reusable component

A concurrent

Since the OBJECT in MENDEL is a concurrent

processing unit, the OBJECT can be
regarded as a task or a process. Each
OBJECT has finite pipe caps and can

transmit messages only through the pipe

caps. An attribute is assigned to each
pipe cap and 4is wused to identify
input/output messages. Messages are

transmitted between OBJECTs through the
transmission pipe connected to the pipe
caps. Each OBJECT consists of one
working-memory and several METHODs, which
are declared as follows.

METHOD (attribute?variable...attribute!vari
able) <- <guard> | Prolog clauses.

Each message consists of an attribute
name, an input/output identifier- "?" or
"!", and a variable name. If a METHOD's
variable after an attribute”?" has been
received, that METHOD's Prolog clauses are
executed. When the METHOD is executed,
the variable after attribute”!" will be
unified and sent to the other OBJECTs.
Each METHOD is regarded as a production-
rule and is used by the forward inference

mechanism. A METHOD consists of a left-
hand side (LHS) and a right-hand side
(RHS) . LHS contains the input messages

and RHS contains the output messages.
Both LHS and RHS contain internal state
variables which are stored in the working-
nemory. METHOD selection in a conflict
set is non-deterministic. The body part
in a METHOD consists of Prolog clauses.
As the Prolog system can be regarded as
backward inference engine, each METHOD
includes the backward inference engine.
The overall architecture is a distributed
production system in which each OBJECT has
inherent working-memory and both a forward
and a backward inference mechanism.

3.2 Planning

The authors extend MENDEL to contribute to
the rapid prototype construction, using
reusable components, by introducing a
planning method. One method to satisfy
the requirements mentioned in 2.2 is
"planning” which achieves the generation
of an action sequence or action program
for an agent such as a robot [Nil82].
Input for planning includes the initial
world, a set of actions which change the
world, and the final world. Output from
planning forms the sequence of actions
which is an acyclic-directed graph. As
each action can be regarded as a reusable
component and the world can be input and
output specifications, the sequence of
actions is the set of reusable components
necessary to satisfy the input and output
specifications. Each reusable component
has the specification itself, called the
F-rule [Nil82]. F-rule consists of
precondition, add formula, and delete
list. Precondition corresponds input data
into the component, add formula
corresponds output data from the
component, and delete list includes the
input data not appeared in add formula.
For the acyclic-directed graph, each node
corresponds to a reusable component and
each arc corresponds to the data flow
between reusable components in the
acyclic-directed graph. Also, the
acyclic-directed graph can be translated
into the task graph which has been used
for resource allocation in multiprocessor
[Gon77]. By using the "planning" method,
the user can retrieve and interconnect
several reusable components at one time by
giving input and output specifications
only.

MENDEL applies software reusability to
increase software productivity. In
MENDEL, the binding between pipe caps is
accomplished automatically by "planning"”
method. "planning"” method selects the
necessary OBJECTs and binds the
transmission pipes to create the message
passing route from input specifications to

output specifications. It performs
reusable component retrieval and
interconnection by determining the

reusable components which will satisfy the
given input-output specifications. The
automatic retrieval and interconnection
are performed according to the following
principles: ‘

(a) A pair of pipe caps having the same or
similar attribute meaning can Dbe
interconnected using semantic networks
which consists of several attributes.

(b) All required output specifications
must be reachable from given input
specifications through connected objects
and pipes.

MENDEL has a hierarchical planning
mechanism similar to ABSTRIPS [Sac74]. 1In
MENDEL, the assignment strategy for

criticality values to the literals of a F-
rule's precondition is based on the design
information from the reusable component
generation process by structured analysis

(sa) [DeM84}. That is, in SA, each bubble
corresponds to an individual reusable
component. Input to the bubble is

classified into two groups: input which
had appeared in an already upper structure
and input which has newly appeared-in a
current . structure. In this case, MENDEL
assigns a higher value to the former input
and a lower value to the latter input.

As a prototype execution tool, MENDEL
provides visual execution, where an
activated object can be recognized as a
blinking object displayed on the screen
and message queue and message contents are
displayed dynamically. In MENDEL
execution, it is assumed that each object
is assigned to each processor in a
multiprocessor system. The statistical

data, collected during execution, are
passed to BDES&BIES to be analyzed.

3.3 Example

The authors adopt well-known the "LIFT

Problem” in. [Iws87] as one of the typical
real-time system examples. In MENDEL, a
concurrent reusable component corresponds
to an OBJECT, and the planning method
carries out the automatic retrieval and
interconnection among reusable components.
For this example, by giving the input
specification (hall~up-call, hall-down-~
call, emergency-call, lift-call) and
output specification (lift-lamp-control,
up~lamp-control, down-lamp-control, motor-
control), several OBJECTs are retrieved
and interconnected, as shown in Fig.2. 1In
Fig.2, OBJECTs "ol", "o2"™, "o3", "o4",
"55", "of", "o7" and "o8" are retrieved
and interconnected by the planning method.
Interconnected objects in MENDEL form the
queueing networks, in which each object in
MENDEL corresponds to a server and each
message in MENDEL corresponds to a
transaction. It is assumed that each
OBJECT is assigned to each processor in a
multiprocessor system. This LIFT problem
runs on the multiprocessor system, where
OBJECT "o04" including main 1ift control is
distributed to three processors "s4",
"s5", and "s6", because of load-balance,
as shown in Fig.3. Emergency-call and
lift-lamp-control are omitted in this
queueing network, because they are out of
statistical measurement. "r" from "s2" to
"s4" and "r" from "s2" to "s5" indicate
the load-distributed factor, because the
message from "s2" may be sent to either
"54" Or "55"- llr" from "s3ll to nssn and

5 =

"r" from "s3" to "s6" indicate the load-
distributed factor. In a queueing
network, called "NQ10" in Fig.3., "M"s for

all servers, "A"s for the entries into
NQ10, "r"s, and the NQ1l0 structure are
given from prototype construction step
before the prototype execution. "p"s and

"t"s for all servers and "A"s for all
servers can be obtained by the prototype
execution.

4. PROTOTYPE EVALUATION
STEP

In the prototype evaluation step, any
bottlenecks should be detected rapidly and
pertinent performance improvement plans to
eliminate the bottlenecks should be
generated appropriately. In particular,
reducing prototyping cost depends on the
appropriate improvement plans. In other
words, the prototyping evaluation step
accomplishes appropriate parameter tuning
to reduce prototyping cost. In MENDEL,
the parameters to be tuned are as follows:
(1) The amount of messages among OBJECTs.
Assume that same OBJECTs are distributed
on several processors, because of load-
~reducing, and that the particular OBJECT
is busy and others are not so busy. In
this case, the message from the OBJECT,
which was sent to the busy OBJECT, can be
sent to an alternative OBJECT, which is
not so busy.

(2) The reusable component itself which

corresponds OBJECT on the particular
processor.
Generally, there exist several reusable

components in the library to satisfy the
functional requirements. In this case,
alternative reusable component can be
selected. Note that the reusable
component having fastest execution time
does not always satisfy the performance
requirements on the given hardware
configuration, and important factor for
performance should be load-balance.

As the authors have mentioned in 3.3,
interconnected OBJECTs in MENDEL form the
queueing networks, in which each OBJECT in
MENDEL corresponds to a server and each

message in MENDEL corresponds to a
transaction.
The process for improving bottlenecks

elimination consists of 2 phases with
measurement quantity for the queueing
network. The 1st phase can qualitatively
diagnose or identify bottlenecks and their
sources. The 2nd phase can quantitatively
estimate the effects of the improvement in
bottleneck elimination and their sources
on the whole queueing network. Personnel
can augment the parameter tuning process
ability by applying knowledge engineering.
It can reduce the number of total
repetition in the prototyping process.

On the basis of heuristics and knowledge
obtained from evaluation experts, the
authors have developed two knowledge-based

expert systems, BDES (Bottleneck Diagnosis
Expert System) and BIES (Bottleneck
Improvement Expert System), which can
augment the ability of the 1st and 2nd
phases, respectively {[Ito89b, 1Ito90].
BDES and BIES are based on "qualitative
reasoning" and "quantitative reasoning",
respectively.

4.1 Queueing network

A queueing network is often adopted in
order to evaluate the performance for
objective systems. In a queueing network,
"entity"”, e.g., transactions, messages or
materials, are handled by a lot of
"servers", e.g., processors, channels or
production machines, which are
interconnected in the objective systems.
The gqueueing network parameters are as
follow:

A: average arrival rate of entities for a
server,

1: average servicing rate of a server for
entities,

t: average throughput of entities by a
server,

p: average utilization rate of a server,

qg: average queue length of entities in
front of a server,

r: branching probability of entities at a
branching point.

The system performance, e.g., "p"s and
"t"s for the whole system and individual
servers, can be evaluated by queueing
network-based methods. Bottlenecks, which
involve a risk in regard to reducing the
system performance, occur at one or more
servers with higher "p"s in queueing
network. The bottlenecks may give rise to
long queues of many entities waiting for
service by the bottleneck servers.
Bottlenecks occur at one or more servers
with high wutilization rates and long
demand queues in the queueing network.
The existence of bottlenecks reduces the
target system performance. The diagnosis
of bottlenecks and their sources becomes
more difficult in proportion to the
magnitude of the queueing network.

The authors' goal is to apply qualitative
and quantitative reasoning to the queueing
network, in order to improve its
bottlenecks elimination. This process is
accomplished for one or more parameters,

which are bottleneck sources. The
parameters to be tuned are, "H"s for
servers which indicate the OBJECT

execution time and "r"s for ‘entities on
branching points which indicate the amount
of messages among OBJECTs. Note that "r"s
having a functional meaning, such as a
message attribute, should not be changed
and that "r"s indicating a load-
distributed factor can be changed.

4.2
system

Bottleneck diagnosis expert
(BDES)

It

BDES analyses the message conflicts for
the specific object, detects the
bottlenecks and generates the improvement
plans. BDES can diagnose the bottlenecks
and their sources by automatic review for
the queueing network and all its
parameters. The bottleneck casues are not
only local to bottleneck servers but are
global with respect to the whole queueing
network. The bottleneck sources are
factors which govern bottleneck occurring,
e.g., low "W"s for servers, high "A"s for
servers, high "r"s on branching points,
and their inter-relationships in the whole
queueing network.

The servers with the highest "p"s are

bottlenecks, i.e., the servers are very
busy. BDES can judge that the servers
whose "p"s >= 0.7 are or may be
bottlenecks. 0.7 is called a bottleneck

landmark (BL). Moreover, BDES can detect
one or more alternative improvement plan
for one bottleneck elimination. .

On the basis of qualitative reasoning, the
authors have designed the qualitative
behavior expressions (QLBE) for a single
server in the following:

(a) in the case of p < BL, i.e., p = -,
(al) for A,

dp = * <-- dh =2 (A and p change in
the same direction.)

dt = * <-—- dA = % (A and t change in
the same direction.)

(a2) for Y,

dp = T <—- du = # (0 and p change in
the reverse direction.)

dt = 0 <-- dyu = % (although B changes,

p does not change.)

(b) in the case of p>=BL, i.e., p= + or p
= 0,

(bl) for A,

dp = - <—— dh = - (as A decreases, p
decreases.)

dt = 0 <-- dA = - (although A
decreases, t does not change.)

(b2) for p,

dap = - <-- du =+ (as {4 increases, p
decreases.)

dt = + <-- dp = + (as UL increases, t
increases.)

(b3) for q,

dq = - <~- dp = - (as p decreases, q
decreases.)

dp = - <-——- dgq = -~ (as g decreases, p

decreases.)

QLBEs in (b) are in particular called
gqualitative bottleneck elimination
improvement expression (QL-BIE).

For improving bottleneck elimination, s6
and s7, qualitative simulation can be
applied. In the qualitative simulation,
possible states and state transitions are

exhaustively enumerated. As the number of
the states and state transitions are high,

it takes much time in qualitative
simulation. BDES introduces the
heuristics on queueing network
substructures, such as 1loop, joint,
branch, and tandem, into qualitative
reasoning for effective qualitative
simulation. Block 2 of Fig.4 shows that

only p7 and t4 are used in the loop
consisting of s7 and s8. Figure 4 shows
the bottleneck elimination improvement
process for s7 with these heuristics, in

which a dashed 1line box at the top
represents the goal of gqualitative
reasoning, i.e., "decrease p7". The other

4 dashed line boxes represent the results
by gqualitative reasoning, i.e., the

improvement plans for decreasing p7.

4.3 Bottleneck improvement expert
system (BIES)

According to one qualitative improvement
plan by BDES, BIES can quantitatively
improve the bottleneck elimination and
bottleneck sources, i.e., it can increase
low "U"s, decrease high "A"s and decrease
high "r"s. Moreover, BIES can estimate
the effects on the whole queueing network.
Estimating the effects is carried out by
the automatic computation of new "A"s for
servers and new "t"s for servers in the
whole queueing network to be effected by
the improvement.

This automatic computation is based on
heuristics about so-called "flow balance”.
Flow balance means that, if the bottleneck
elimination can be improved, the input
quantity is equal to the output quantity
at any part of the queueing network. For

example, "A" for the server is equal to

its "t", and "A" for the loop is equal to
its "t™ if there is no bottleneck server.
On the basis of the flow balance, BIES
forces "p" to decrease to a constant
value, called BIF (Bottleneck Improvement
Factor), with the use of the following QT-
BIEs (QualiTative Bottleneck Improvement
Equation) for the improvement:

Only if the bottleneck server can be
improved,

new "M" = original "A" / BIF.
Otherwise,
new "A" = original "u" / BIF.

The BIF value is varied from 0.7 to 0.6,
according to the "q" for the server. When
*q" is pretty high, its BIF is
automatically set to 0.6, on the basis of
the experts' heuristics. After applying
this equation, the "p" and "t" values for
the server can be improved so that "p" =
BIF and "t" = ®"\A", The new "t" can be

transmitted as the "A" for the just
downstream servers. The improvement

process with QT-BIE can be repeated in the
more downstream d;rection.

7=

4.4 Example of diagnosis and
improvement
Personnel can determine and 1locate

bottlenecks by BDES. Figure 5 shows the
list of servers and their "p”s by BDES.
In Fig.5, for example, personnel can
select bottleneck s7. BDES can diagnose
the sources for bottleneck s7 and produce

4 improvement plans for Dbottleneck
elimination improvement, which are
alternatives for bottleneck s7. For
example, personnel can select Plan 2.
BIES can quantitatively improve the
parameters in Fig.6. In order to improve
bottleneck elimination s7, BIES can

quantitatively modify "r" from s2 to s4.
In this case, "r" from s2 to s4 can be
modified, because this "r" indicates the
load-distributed factor and the message
from s2 can be sent to either s4 or s5.
In MENDEL, the message from OBJECT can be
sent to the same OBJECTs on individual
processors. .

Personnel can accomplish measurements for
NQ10 using new parameters and obtain the
new measure quantity. They can compare
the second measure quantity with the
first. Table 1 shows a comparison between
‘2 kinds of "p" values obtained by the
first measurement, by the tuning process
by BDES and BIES, and by the second
measurement . Table 1 shows appropriate
improvement for bottleneck elimination.

5. DISCUSSION

This section evaluates the presented
method and compares the related work. The
principal characteristics of the presented
method consist of the methodology employed
in the prototyping process, MENDEL as an
executable specification language and
raplid prototype -construction tool, and
qualitative reasoning used for prototype
evaluation method.

First of all, the presented prototyping
process 1includes two characteristics:
application domain such as performance
design for real-time system on multi-
processor systems, and emphasis on
prototype evaluation step. Various
prototyping methods for real-time systems
have been presented [Lug88]. However,
these methods do not include the overall
performance design from statistical
features, and treats only a part of it.
No prototyping methed, which emphasizes
the prototype evaluation step, has been
presented. This methodology is considered
to be general-purpose and can be
applicable to several other domains. In
particular, the prototype evaluation step
is needed for a more complex system.

Second, for MENDEL,
discussions are needed, an executable
specification 1language, and a planning
method. Various executable specification
languages have been presented and used.
They are classified into two groups:
Operational approach such as GIST [CohB84]
and PAISLey ([Zav84] and Functional

following two

approach such as MODEL [Pry84] and RPS
[Dav82]. MENDEL belongs to operational
approach. The disadvantage in MENDEL is
the weakness of verification because only
synchronization part is verified using
temporal logic specification [Hon89]. As
for the combination of actor-model and
declarative knowledge representation, one
of the most similar language to MENDEL is
Orient 84/K [¥sh87] which is an object-
oriented concurrent programming language.
The main difference between MENDEL and
Orient 84/K 1is that Orient 84/K has
several message-scheduling mechanisms and
parallel control mechanism as a
programming language and does not support
hybrid inference engine. For planning,
MENDEL's planning ability is the same as
ABSTRIPS's [Sac74], and the limitation for
MENDEL includes that for ABSTRIPS.

Third, for qualitative reasoning, the
authors must mention the following items:
the relation to queueing theory and the
main difference from the other works. The
BDES&BIES application range is beyond the
range of analytical methods, which are
based on "queueing theory"”, because it is
not easy for analytical methods to produce
distinct improvement plans for bottleneck
elimination in particular, in a transient
state. The difference from other works is
the application to the prototype
evaluation step where qualitative
reasoning is indispensable to effectively
implement human's heuristics in
performance design. Also, no related work
on the queueing network model exists in
the qualitative resoning domain.
BDES&BIES present a combination method of
qualitative resoning and quantitative
reasoning on queueing network model. That
is, in performance tuning, there are so
many parameters to be tuned. BDES selects
several parameters to be tuned wusing
qualitative reasoning and BIES determines
the parameter value using quantitative
reaosning.

The current combination of MENDEL and
BDES&BIES 1is <considered to be an
appropriate prototyping method, on
condition that the number of OBJECTS is
nearly equal to the number of processors
in multiprocessor or that non-conflict for
execution on the same processor is
assured, and that no-synchronization among
messages occurs. The authors plan to
overcome this limitation by extending
BDES&BIES to introduce a hybrid queueing
network, in which the conflict on the same
processor 1is treated and synchronized-
queueing-network similar to TPQN [Cha89])
in which synchronization among messages is
treated.

6. SUMMARY

This paper describes the role of
artificial intelligence in implementing a
prototyping process for real-time systems.
The authors present the methods for each
of the following three steps in the
prototyping process.

(i) In the prototype construction step,
rapid construction with reusable software

8=

components is implemented based on a
"planning” method. Each reusable
component is described in a declarative
knowledge representation.

(ii) In the prototype execution step, a
visual execution is used to support the
display of the prototype behavior and
shows the performance data during the
execution. This execution is implemented
by the hybrid inference mechanism.

(iii) In the prototype evaluation step, an
expert system based on qualitative
reasoning is implemented in oxrder to
automate diagnosis and improvement.

Acknowledgment

Parts of this work have been supported by
the Japanese Fifth Generation Computer
Project and its organizing institute ICOT,
as a subproject. in the Intelligent
Programming System. The authors would like
to thank Ryuuzou Hasegawa of ICOT for his
encouragement .and support. The authors
are grateful to Seiichi Nishijima and
Takeshi Kohno of Systems & Software
Engineering Laboratory, Toshiba
Corporation, for their providing the
essential support. The authors also wish
to thank Jun Sawamura and Keisuke Shida
for their Thelpful cooperation in
developing BDES&BIES.

References

[Bar82] D.Barstow et al. An Automatic
Programming System to Support an
Experimental Science, Proc. of 6th ICSE,

pp.360-366, 1982.
[ChaB89] C.K.Chang et al. Modeling a
Real-Time Multitasking System in a Timed

PQ Net, IEEE Software, pp.46-51, March
1989

[Coh84] D.Cohen A Forward Inference
Engine to Aid in Understanding
Specifications, Proc. of AAAT-84, pp.56-
60,1984.

{Dav82] A.M.Davis Rapid Prototyping
using Executable Requirements
Specifications, ACM SIGSOFT, Vol.7,No.5,
pp.39-44, 1982

[DeM80] T.DeMarco Structured Analysis
and System Specification, Yourdon, New
York, 1980

[Fic85] S.Fickas H Automating the

Transformational Development of Software,
IEEE Trans. Software Eng., Vol.l1l, No.l1,
pp.1268-1277, 1985

[Ger80] S.Gerhart et al. An overview of
AFFTRM: A Specification and Verification

System, Inform. Proc., Vol.80, pp-343-347,
1980. .
[Gon77] M.J.Gonzalez Deterministic

Processor Scheduling, Computing Surveys,
Vol.9, No.3, pp.173~204, 1977

{Hon86a] S.Honiden et al. MENDEL: Prolog
based Concurrent Object Oriented Language,
Proc. of Compcon '86, pp.230-234, 1986.
[Hon86b] S.Honiden et al. Software
Prototyping with Reusable Components,
Journal of Information Processing, Vol.9,
No.3, pp.123-129, 1986, also in - IEEE
tutorial 'Software Reuse: The State of the
Practice', 1988.

I

[Hon89] S.Honiden et al. : An Application
of Structural Modeling and Automated
Reasoning to Concurrent Program Design,
Proc. of HICSS-22, .1989.

[Ish87] Y.Ishikawa and M.Tokoro Orient
84/K : An Object-Oriented Concurrent
Programming Language for Knowledge System,
Object Oriented Concurrent Programming
(ed. by Yonezawa and Tokoro), MIT Press,
1987

[ItoB89a] K.Itoh et al. Tools for
Prototyping for Development Software, JOHO
SHORI, Vol.30, No.4, pp.387-395, 1989
[Ito89b] K.Itoh etal. Knowledge-based
Parameter Tuning for Queueing Network Type
System -A New Application of Qualitative
Reasoning, Proc. of IFIP CAPE' 89.

[Ito90] K.Itoh et al. : A Method for
Diagnosis and Improvement on Bottleneck of
Queueing Network by Qualitative and

Quantitative Reasoning, to appear in
Trans. on JSAI.
[Iws87] Proc. of 4th International

Workshop on Software Specification and

Design, CS Press, Los Alamitos, Calif,
1987.
[Jon84) T.C.Jones Reusability in

Programming: A survey of the State of the
Art, IEEE Trans. Software Eng., Vol.SE-9,
pp.488-494, 1984.

{Kat81] S.Katz et al. An Advisory System
for Developing Data Representations, Proc.
of 7th. IJCAI, pp.1030-1036, 1981.

[Lug88] Lugi et al. : Rapidly Prototyping

Real-Time Systems, IEEE Software
September, pp.25-36, 1988.

[NilB82] N.J.Nilson, Principles of
Artificial Intelligence, Springer-Verlag,
1982

[Pry84) N.S.Prywers : Automatic Program
Generation in Distributed Cooperative

Computation, IEEE Trans. Syst. Man.
Cyber., Vol.1l4, No.2, pp.275-286, 1984
[Ric78] C.Rich et al. : Initial Report on
a LISP Programmer's Apprentice”, IEEE
Trans. Software Eng. ,Vol.4, No.6, 456-
467, 1978.

[Sac74] E.D.Sacerdoti Planning in a
Hierarchy of Abstraction Spaces,
Artificial Intelligence 5, pp.115-135,
1974

[Uch87] N.Uchihira et al. Concurrent
Program Synthesis with Reusable Component
using Temporal Logic, Proc. of Compsac
'87, pp.455-464, 1987.

[ZavB4) P.Zave The Operational versus
the Conventional Approach to Software
Development, Comm. ACM, Vol.27, No.2,
pp.104-118, 1984

I

/

Prototype
construction
step

Prototype
evaluation
step

Prototype
.execution
step

Fig.l Prototyping process

] 191t-1anp-costrel

notor-contre!
' w-laop-control

Iummnmm

Fig.2 MENDEL OBJECTs

A L t
—— __.—.
. P
oms °-°‘ 004

92 oy !

039 , -_m-m> 0147
/1,

N

02
0Dy 016 -

o031

=t]

87,38

dpTmc-dprm+
disioms —dpim+

on loop

3

5738
2 |dprm--dtam-

on loop

boos1,s234
dtam-¢ dlim-

81,5234

s

on joint

s1,82,54

dl2,4 meé-dtam-

on branch

s1,52,54
g[dtza =-cdraa- |
plan on branch

o [dprmcari]

7

extemal

10
plan l on entry

12 | dp7=-¢dgb =-

Fig.4 BDES qualitative reasoning
process

server with eaximum p : (sT .800)
server vhose o =0.9 none.
server vhose p =0.7
(s6 .770)(s7 .800) -
Please imput the name of server

for diagnosis. : sT
BDES shows the results of bottleneck
dfagnosis.
Parameter to be improved for decreasing
p of s7.

kplan-1 increase u (s7)

kplan-2 decrease r (s2.s4),
increase r (s2.s5)

¥plan-3 decrease external input, gb

%plan-4 decrease external input. ga

Fig.5 BDES diagnosis process

[network : nql0,
bottleneck server to be improved
1st improvement by plan-2]

parameter to be improved
r (s2.s5) 0.300 —0.780
r (s2.s4) 0.700 —0.220

: 8T,

Fig.8 Improved parameters by‘BlES

oo o1y - L u”
N =) [/ =
04 /'f 018 \ 0 Jous T
able.! Comparison of os and queue
> 0189 043
e ~ - hl b 02 oxs m’ len'gth
seasurementl | p improved |measurement2
P q by BIES P q
Fig.3 Queueing network
sT{ 0.80 | 2.40 0.85 0.58 | 0.52

