V7 ry=T7IT%¥ 73—1
(1990. 7. 19

V7 bUx 7 OERBELICEAT SRS

A% R L B
B B OERE A ST TR EHEWE AT R

® B

VIR T YAFART 7 Y —& LTRRMICEL - EET 3. v 7 b v =7 OBRMNES LU20
LR UBET 3 - pOREE LT, V7 by = THREENSERIWTOS, LAL, ThETORRE
Bk CEROTERASRNL TV, BROCEL - BBV 7 b YT YAFA 77 1Y —2EE
FTBEBIE, LohbDelf, $ARELOLVERORESSFARTSS. CORXTE, 235 L
ARHFTOB—HBELT, v7 bv=T A7 AHREBRIL, £OMRMZILEERNICHTLTL S,
¥, HRWREEY 7 b Y= TORRMZLONEICER L, HELOEMSEAEHOLS 5T LERL
TWw3,

Theoretical Analyses of

Software Architectural Changeé
Akira OHHORI * and Hikio AOYAMA **

% International Institute for Advanéed Study of Social Information Science
Fujitsu Limited, 17-25, Shinkamata]-Chome, Ota-ku, Tokyo 144, JAPAN
% Telecommunications Software Division

Fujitsu Limited, 629 Shimo-Kodanaka, Nakahara-Ku, Kawasaki 211, JAPAN.

ABSTRACT

Software systems architecturally change or evolve as a family. Software configuration management
(SCM) is an emerging technique used to describe and manage software architectural aspects and their
changes. However, conventional SCM techniques lack theoretical bases, ‘A sound and penetrating
theoretical framework is indispensable to manage an architecturally evolving family of software
systems. As a step toward such a framework, in this paper we formalize a software system
configuration and theoretically analyze its architectural changes. Qur theoretical analysis is
applied to a taxonomy of software architectural changes. Through this application, we show that

combinatorial complexity of change categories can be drastically reduced.

__1__

1. Introduction

A software system architecturally changes or evolves
during development and maintenance. Software
configuration management (SCM) addresses such changes
from a variety of viewpoints, Conventional studies focus
on the methodology and environmentyof SCM [Bers80,
Nara87, Yau87, Baze85] . These works do not explicitly
address the analysis of software architectural changes,
which is concerned with both elemental changes and

structural changes made to software, The importance of

analysis of software architectural changes to be managed

is no wonder for SCM.

Software systems tend to form a family. We have
obseryed the evolution and architectural changes of a
family of switching software systems as illustrated in
Pig. 1. The family consists of several models which
fulfill different requirements to the performance and
capacity, However, they are developed based on a single
design concept. Numerous software components are used
in common by different models, which evolve in parallel
and interactively with one another. As they evolve, new
models are derived and step in their respective
evolutional ways. In this way, switching software

systems evolve as a family.

Revisions (successive changes of models)

“Model

The family concept is effective to the productivity
and quality of switching software systems, However, the
maintenance and management of such an evolving family
are error-prone tasks due to a large number of software
components and complicated relationships among them, and
also due to complicated interrelations among systems in
the family. Yet, conventional SCM does not cover such
aspects. ‘

The idea underlying SCM is promising to manage the
evolution of such a complicated family. However, the
theory of SCM is still in its infancy, and so the
management methods tend to be ad hoc, depending on the
application domain, A sound and penetrating theoretical
framework of SCM is indispensable to effectively
establish management systems of family-widely evolving
sof tware systems

Thus, as a step toward such a framework, this paper
analyzes software architectural changes in a theoretical
manner with an entity and relationship approach. In
Sections 2 and 3, we formalize a software system
configuration and set-theoretically analyze its
architectural changes. Bach theoretical result is
presented as a proposition, and their proofs are
outlined in Appendix, Section 4 shows that, based on
our theoretical framework, categorical complexity of
changes can be drastically reduced in a taxonomy of

sof tware architectural changes.

Distinctive components

Common components

» Different models in a family

Versions (customizations or derivations of models)

Fig. 1 A family of software architectural changes

2. Software System Configurations

A software system configuration can be described in
terms of software architectural entity and relationship
between entities [McCa75, Bers80, Nara87] . In this
section, we first introduce the concept of a software
architectural entity, and a relationship betweer
entities. And then, we describe a software system
configuration,

2.1 Software Architectural Entities

A functional unit in a software system is called a
software architectural entity, or simply an entity, We
can recognize three types of software architectural
entity as follows,

(1) Module Entities

A module entity is a minimal software architectural
entity to be developed and managed.
(2) Feature Entities

There can be a software architectural entity which
uses one or more module entities in order to implement
its function. Furthermore, there can be a software
architectural entity which uses such entities; and so
on. The entity which is of this type, and used by other
entities, is called a feature entity, A feature entity
architecturally lies between a module entity and a
system entity which we next mention, It is often called
a program or a subsystem in practice.

(3) System Entities

A system entity is a software architectural entity
which uses one or more feature entities in order to
implement its function and can be regarded as a
delivery unit to a customer.

The form of a software architectural entity is not
restricted to an executable one. Even if a software
architectural entity is nonexecutable, it is not
restricted to a set of statements written in-a
programming language, either. It can be a requirements
specification, or a functional specification, or a
logical specification.

We observe an entity from a macroscopic viewpoint, and

concentrate on its name and body. Thus, any entity e is
expressed as a pair of its name n and its body b, that
is, e =(n,b)., This formalism is motivated by management
experiences in practical software development. If we
consider a program as an entity e=(n,b), n'and b
respectively correspond to its'name and the set of its
statements.

We assume that there is a universal set E that
contains all software architectural entities.

The name of a system entity might be different from
the name of a software system that contains the system
entity because the system entity is not a software
system itself. In this paper, however, the name of a
system entity will be regarded as that of a software
system, and vice versa.

2.2 Entity-Relationships

In the previous section, we have mentioned that an
entity can "use’ other entities. From this observation,
we introduce a binary relation USE-in the set E as
follows:

(e, e’)& USEC EXE
' the entity e uses the entity ¢” in order to implement
its function,’

For a USE relation, we assume the followings.

(1) Antireflexive-use assumption

For any ¢ €E, (e, e)&USE
(2) Asymmetric-use assumption

For any ¢ and ¢’ €E, if (e,¢")EUSE, (e',e) EUSE.

(3) Direct-use assumption

USE N(USE- USE)= ¢, where USE- USE is the
composition of USE relatfons.

The assumption (1) implies that any entity does not
externally use itself, Thus, it allows a kind of
reflexive relationship, such as recursion mechanism,
which can be regarded as an internal relationship. Such
a relationship is not explicitly addressed in our
framework. The assumption (2) implies that if an entity
e uses another entity e’, the entity e’ never uses the

entity e. If an entity e uses another entity ¢’ and the

entity ¢’ uses another entity ¢”, it might be
considered that the entity e uses the entity e”. The
assumption (3) implies that such a relationship does not
exist in a USE relation,
2.3 System Configurations

In this subsection, we describe a software system
configuration based on the entity set E and the entity-
relationship USE.

Definition i

Let T be a time set and ¢t €T be arbitrary; s any
software system name, Let E(s;t)CE be the set of
entities which are employed at time t to configure a
specific software system named s. Let USE/E(s;t) be the
relation induced by USE in E(s;t), that is, USE/E(s;t)
= USEN(E(s;t) XE(s;t))

Then, if SC(s;t)=<E(s:t);USE/E(s:t)) satisfies the
following conditions, it is called a system
configuration for s at time t.

(a) a single system entity

E(s;t) contains one, and only one system entity named
S.

(b) a finite entity set -

E(s;t) is a finite set
{c) a single name for the same body

For any (n,b) and (n",b") €E(s:t), if b=b", then n=
n.

(d) a single body for the same name

For any (n,b) and (', b") €E(s;t), if a=n", then b=
v.

(e) no isolated entity

If Card(E(s;t)) = 2, for any entity e € E(s;t)
there exits an entity ¢’ € E(s;t) such that (e, e’)E
USE or (¢',e)< USE, where Card(E(s;t)) is the cardinal
number of E(s;t), that is, the number of entities in
B(s;t).0d . .

A software system configuration consists of the two
parts, that is, the elemental part E(s;t) and the
structural part USE/E(s:t). We can easily show that the

structural part inherits the assumptions to a USE

relation,

In practice, there can be an isolated entity; several
different bodies can have the same name; and there can
be a body which has some different names. Those
conditions (c), (d) and (e), which can be regarded as
desirable conditions for a software system
configuration, are introduced to avoid such managerial
inconvenience and obtain a sound theoretical base.

2.4 Preliminary Analysis of A System Configuration

We have some prelimin;ry analytic results concerned
with a system configuration SC(s;t} =<E(s;t);USE/E(s;t)
). In order to show them, let us introduce the following
notations.

NAME(SC(s;t)) = { nl| (n,b) € E(s;t) } .

BODY(SC(s;t)) = { b (n,b) € E(s;t) } .

N-struct(SC(s;t))

= {(nnw)| ((nb).(n'.b)) SUSE/E(s;¢t)} .

B-struct(SC(s;t))

= {(b.¥")} ((n,b).(w.b")) EUSE/E(s;1)} .

NAME(SC(s:t)) and N-struct(SC(s;t)) represent the
nominal aspects of a system configuration SC(s;t) =
<E(s;t);USE/E(s;t)) ; on the other hand, BODY(SC(s;t))
and B-struct(SC(s;t)) represent the bodily aspects.
These notations are illustrated in Fig, 2, where my
and by are respectively an entity name and an entity
body.

Proposition 1

PFor any system configuration SC(s;t)=<E(s;t);USE/E(s;
t)), Card(E(s;t)) =Card(NAHE(SC(s;t))="Card(BODY(SC(s;
). O

Proposition | analyzes a relationship among the number
of entities, the number of names and the number of
bodies used for the elemental part of a system
configuration, And it shows that those numbers are the
same, This result seems to be trivial. However, if we do
not have the conditions of ’a single name for the same
body’ and ’a single body for the same name’, which have
been mentioned in the previous section, the above result

cannot be derived,

Proposition 2

Let SC(s;t) =<E(s;t);USE/E(s;t)> be an arbitrary
system configuration, If Card(E(s;t)) = 1, then
USE/E(s;t) =¢ and therefore N-struct(SC(s;t)) =¢
and B-struct(SC(s;t))=¢. O
Proposition 3

Let SC(s;t) =<E(s;t);USE/E(s;t)> be an arbitrary
system configuration. If Card(E(s;t)) ;:2, then USE/E(s;
t)# ¢ and therefore N-struct(SC(s.;t))#di and B-
struct(SC(s;t))#¢. O

Propositions 2 and 3 show that whether the structural
part of a system configuration is an empty or not
depends on the number of entities employed. From
Proposition 2, if a system configuration has only one
entity, its structural part is an empty. For this
result, the antireflexive-use assumption mentioned in
Section 2.2 is critical. On the other hand, Proposition
3 means that if a system configuration has at least two
entities, its structural part is not an empty. The
condition of 'no isolated entity’ mentioned in the

previous section is critical for this result,

3. Analysis of Software Architectural Changes

In this section, we show analytic results concerned
with the differences between two system conf igurations.
Proposition 4

Let SC(s;t) and SC(s’;t’) be arbitrary system
configurations and E(s;t)#E(s’ ;t’). Then, the
following hold.
(a) If Card(E(s;t)) =1 and Card(E(s’ ;t’))=1, USE/E(s;
t) = USE/E(s’;t").
(b) If Card(E(s;t)) =1 and Card(E(s’ :t')22, USE/E(s:
t) # USE/E(s';t").
(c) If Card(E(s;t)) 22 and Card(E(s’ :t"))=1, USE/E(s;
t) # USE/B(s" :t").
(d) If Card(E(s;t)) =2 and Card(E(s’ ;t'))=2, USE/E(s;
t) # USE/E(s" ;t").[]

{m. 2, N3, M4, 1us, ne }

Nominal aspect of the elemental
part: NAME(SC(s;t))

"

f2 /\ﬂs

Nominal aspect of the structural

part : N-struct(SC(s:t))

{(n1, b1), (na, b2), (ns, ba),
(na, bs) , (ns, bs), (ne, be)}

Elemental part of a system
configuration : E(s;t)

(nz, bz) /\(na. bs)
e /\

(ns, b4)

(ny, by)

(ns, bs) (ne, be)

Structural part of a system
configuration : USE/E(s;t)

{ b1, ba, bs, ba, bs, be }

Bodily aspect of the elemental
part : BODY(SC(s:t))

b4/

by
b2 /\ b3
bs /\ be

Bodily aspect of the structural

part : B-struct(SC(s:t))

Fig, 2 The nominal and the badily aspect of a system configuration

Proposition 4 addresses two system configurations
whose elemental parts are different from each other, And
it shows how the cardinal numbers of their elemental
parts influence a relationship between their structural
parts, The condition of 'no isolated entity’ mentioned
in Section 2.3 explicitly plays an important role in
Proposition 4, and also does in Propositions 10, 11 and
15 shown in what foilows.

From Proposition 4, we have the following three
propositions, that is, Propositions 5, 6 and 7. For any
two system configurations, these propositions show that
the situation of their elemental parts and structural
parts is closely related to the cardinal numbers of
their elemental parts,

Proposition §

Let SC(s;t) and SC(s’;t’) be arbitrary system
configurations, If E(s:t) #E(s’;t") and USE/E(s:t) =
USE/E(s’ ;t*), then Card(E(s;t))=1 and Card(E(s’ ;t’))=
1.0
Proposition §

Let SC(s;t) and SC(s’;t’) be arbitrary system
configurations. If E(s;t) #EB(s":t") and USE/E(s;t) #
USE/E(s’ ;'), then Card(E(s;t))=1 and Card(E(s’;t’))=
1 do not hold.(] ‘

Proposition 7

Let SC(s:;t) and SC(s’;t’) be arbitrary system
configurations. If E(s:t) #E(s":t"), USE/E(s;t)#
USE/E(s’ ;t") and Card(E(s;t))= Card(E(s';t’)), then
Card(E(s;t))22 and Card(E(s’ ;¢))=2.03

Up to this point, we have analyzed software

architectural changes without distinction of entity name
and entity body. In what follows, we explicitly
consider the nominal and the bodily aspect of a system
' configuration.

At first, we have the following proposition. It shows
some implications of the case where the elemental parts
in any two system configurations are not different at
all, in other words, the case where any software

architectural change does not occur,

Proposition 8

Let SC(s;t) and SC(s";t’) be arbitrary system
configurations; and E(s;t)=E(s’;t’). Then, the
following hold,
(a) Card(E(s;t))= Card(E(s’;t’))
(b) NAME(SC(s:t)) = NAHE(SC(s’ ;t’)).
{c) BODY(SC(s;t)) = BODY(SC(s" ;t*)).
(d) USE/E(s:t)= USE/E(s’;t’)
(e) N-struct(SC(s;t)) = K-struct(SC(s’ ;t’)).
(f) B-struct(SC(s;t)) = B-struct(SC(s’:t’)). O

We encounter the- following situation in the nominal or
bodily aspect of a system configuration when its
elemental part only changes,
Proposition 9

Let SC(s;t) and SC(s’;t’) be arbitrary system
configurations, If E(s;t) #E(s";t’) and USE/E(s;t) =
USE/E(s’ ;"), then NAHE(SC(s;t))#NAME(SC(s" ;t")) or
BODY(SC(s:t))#BODY(SC(s’ ;¢)).00

For any two system configurations, the following two
propositions analyze their nominal aspects and bodily
aspects, respectively, under the assumption that each
of the system configurations has at least two entities,
Proposition 10 shows that if the nominal aspects of the
structural parts are the same, the nominal aspects of
their elemental parts are also the same, Proposition 11
shows a similar result from a bodily point of view,
Proposition 10

Let SC(s:t) and SC(s";t") be arbitrary system
configurations; Card(E(s;t))=22; Card(E(s’;t’)) 22; and
N-struct(SC(s;t))=N-struct(SC(s’;t’)). Then,
KAME(SC(s 1t))=NAHE(SC(s” ;t*)).C1
Proposition 11

Let SC(s;t) and SC(s’;t’) be arbitrary system
configurations; Card(E(s;t))=2; Card(E(s’;t")) =2; and
B-struct(SC(s;t))=B-struct(SC(s’;t")). Then,
BODY(SC(s;t))=BODY(SC(s" ;t")).[]

In the above two propositions, the assumption of
Card(E(s;t)) =2 and Card(E(s’;t’))=2 plays an

important role, If such an assumption does not hold, we

have the following two propositions which are
respectively similar to but weaker than Proposition 10
and Proposition 11.
Proposition 12

Let SC(s:t) and SC(s’;t’) be arbitrary system
configurations, If N-struct(SC(s:t))=N-struct(SC(s’;
t’)). then Card(E(s;t))=Card(E(s’;t')). O
Proposition 13

Let SC(s;t) and SC(s’;t’) be arbitrary system
configurations. If B-struct(SC(s;t))=B-struct(SC(s";
t')), then Card(E(s;:t))=Card(E(s’;t’)). O

For any two system configurations, we can consider
several differences between their nominal aspects, and
their bodily aspects, more concretely than a mere
inequality. In the following propositions, we address
two differences.
Proposition 14

Let SC(s;t) and SC(s’;t’) be arbitrary system
configurations, Then, the following hold.
() If NAMECSC(s:t))NNAHE(SC(s’ ;t')) = ¢, then N-
struct(SC(s;t))NN-struct(SC(s’;t’)) =¢.
(b) If BODY(SC(s:t))NBOD(SC(s’ :t')) =@, then B-
struct(SC(s;t))NB-struct(SC(s’;t°)) =¢. (3

Proposition 14 (a) shows that, for any two system
configurations, if they do not share the same entity
name at all, the nominal aspects of their structural
parts are completely different. This situation
corresponds to the case where the entity names are all
replaced by other entity names, Proposition 14 (b) shows
a similar result from a bodily point of view,
Proposition 15

Let SC(s:t) and SC(s’;t’) be arbitrary system
configurations; Card(E(s;t))=2. Then, the following
hold.
(a) If N-struct(SC(s;t))CN-struct(SC(s’;t')), then
NAME(SC(s;t)) CNAME(SC(s’ ;t’)).
(b) If B-struct(SC(s;t))TB-struct(SC(s’ ;t’)), then
BODY(SC(s:t)) CBODY(SC(s ;t*)).00

Proposition 15 shows that, for any two system

configurations, if one is structurally included in the
other, the former is also elementally included in the
latter. The case (a) addresses the nominal aspect of a
system configuration, on the other hand, the case (b)
does the bodily aspect, This proposition corresponds to
the structural and elemental enlargement of a system
configuration, ‘

4. A Taxonomy of Software Architectural Changes

In this section, we discuss what viewpoints can be
used for a taxonomy of software architectural changes,
and how many categorical candidages of changes we can
encounter. Furthermore, we describe how our theoretical
analysis ‘can be used for reducing the categorical
complexity.

4. 1 Taxonomical Viewpoints

Let us consider the case where a system configuration
SC(s:t) =<E(s;t);USE/E(s;t))> changes to a system
configuration SC(s’ ;t*) =<B(s" ;t’);USE/E(s" ;t")). Then,
we have four types of changes, including invariant, as
follows,

(A) E(s;t)=E(s" ;t’) and USE/E(s;t) =USE/E(s" ;t’).
(B) E(s;t)=E(s’;t’) and USE/E(s;t) #USE/E(s’ :t").
(C) B(s;t)#E(s" ;t') and USE/B(s;t) =USE/E(s' it”).
D) B(s;t)#E(s’ ;t’) and USB/B(s;t) #USB/B(s" ;).

The elemental parts E(s:t) and E(s’;t’) have their
nominal aspects and bodily aspects, and so do the
structural parts USE/E(s;t) and USE/E(s’;t’). For each
type of change, therefore, we can consider sixteen types
of changes based -on the following four cases:

(1) whether or not NAME(SC(s;t))#NAME(SC(s’ ;t’)),

(2) whether or not BODY(SC(s:t))#BODY(SC(s' ;t’)).

(3) whether or not N-struct(SC(s;t))#N-struct(SC(s";
t')), and

(4) whether or not B-struct(SC(s:t))#B-struct(SC(s’;
t')).

At this point, we have 64 categories of changes,
in¢luding 60 categories for which we can observe some
change in at least one aspect of ‘the system

configuration. From more detailed observations, we have

16 categories where only one aspect of the system
configuration changes, 24 categories for two aspects,
16 categories for three aspects, and 4 categories for
four aspects,

In the above discussions, the difference between SC(s;
t) and SC(s’;t") is denoted by a mere inequality, We
consider such a difference more concretely in the
fol lowing.

Let us consider, for example, NAME(SC(s;t)) #
NAME(SC(s” ;t”)). We can classify this difference into
the following three cases,

(a) NAME(SC(s:t)) NNAE(SC(s ;")) =¢.

(b) NAME(SC(s:t)) SNAME(SC(s’ ;t")) or NAME(SC(s' ;t’)%
NAME(SC(s;t)).

(©) NAHE(SC(s:t))SNAKE(SC(s” ;¢*))) and

TINAHE(SC(s’ ;2")JSNAME(SC(s:t))) and

NAME(SC(s;t)) NNAKE(SC(s’ ;t’)) # ¢, where —1(a
statement } means the negation of the statement.

For the other three aspects, their respective
differences can be similarly classified into three cases,
also, k

At this point, we have 1,024 categories of changes,
which is derived from the algebraic expression (4 X3°)
+ (16X3") + (24X3%) + (16X3°%) +(4X3*). However,
we can investigate whether or not each of those
candidates is theoretically meaningful. In that case,
the theoretical analysis in Sections 2 and 3 plays an
important role for reducing the categorical complexity
of changes. In order to examine it, we show some
application examples in the next section,

4.2 Application of Theoretical Analysis to Taxonomy of

Changes

Example 1 : Consider the case where E(s;t)=E(s’ ;') and
USE/E(s;t) = USE/E(s’ ;t’). Prom Proposition 8, we have
that NAHE(SC(s:t)) =NAME(SC(s" ;t’)) , BODY(SC(s:t)) ==
BODY(SC(s’ ;t’)), N-struct(SC(s;t))=N-struct(SC(s’;t’))
and B-struct(SC(s;t)) =B-struct(SC(s’ ;t’)). Therefore,
we can eliminate 255 out of 256 change categories.[]

Example 2 : Consider the case where E(s;t)=E(s";t’) and

USE/E(s:t) #USE/E(s’ ;t'). This type of change shows
that the elemental part does not change but the
structural part does, However, (d) of Proposition 8 does
not allow such a type of change. Thus, all of 256
change categories are not feasible,

Example 3 : Consider the case where E(s;t)#E(s";t’) and
USE/E(s;t) =USE/E(s’ ;¢’). Prom Propositions 5 and 2,
we have that N-struct(SC(s;t)) =N-struct(SC(s’ ;t’))
and B-struct(SC(s;t)) =B-struct(SC(s’;t’)). From
Proposition 9, we have tilat NAME(SC(s;t)) #NAHE(SC(s™ ;
t")) or BODY(SC(s;t))#BODY(SC(s’ ;t*)). Therefore, we
can eliminate 241 out of 256 change categories. For
such a type of change, note that we address a system
configuration which consists of only a system entity.
From this fact, we finally have 3 acceptable change
categories.

Example 4 : Consider the case where E(s;t)#E(s’;t") and

 USE/B(s:t) #USE/E(s’ ;t’). Prom Propositions 12, 7 and

10, we cannot allow any type of changes that satisfy
both N-struct(SC(s;t)) =N-struct(SC(s’;t’)) and
NAME(SC(s:t)) #NAME(SC(s’;t")). Similarly, from
Propositions 13, 7 and 11, we cannot allow any type of
changes that satisfy both B-struct(SC(s;t)) =B-
struct(SC(s’ ;")) and BODY(SC(s:t)) #BODY(SC(s’ it)).
These results enable us to eliminate 87 out of 256
change categories.

Example 5 : Consider the case where E(s;t)#E(s’;t’) and
USE/E(s;t) #USE/E(s’ ;') once more, And let NAME(SC(s;
t))} #NAHE(SC(s’ ;t")) & BODY(SC(s;t)) #BODY(SC(s' ;t"))
v N-struct(SC(s;t)) #N-struct(SC(s’:t’)) i and B-
struct(SC(s;t)) #B-struct(SC(s’;t’)). In this case, we
have 81 change categories, However, we can eliminate 45
change categories with Propositions 14 and 15. For
example, let NAME(SC(s:t)) NNAME(SC(s’;t")) =¢ .and
BODY(SC(s:t))N BODY(SC(s’;t’)) =¢ . Then, from
Proposition 14, we can only accept the combination of
N-struct(SC(s;t))NN-struct(SC(s’;t’)) =¢ and B-
struct(SC(s:t))NB-struct(SC(s' ;') =¢. Therefore,

we can eliminate 8 out of 9 change categories.

Through similar applications to other cases, we can
furthermore eliminate 48 change categories, Therefore,
we can conclude that our theoretical analysis makes it
possible to eliminate 944 out of 1,024 change categories,
5. Conclusions

From our practical experiences, we have pointed out,
that a theoretical framework of software configuration
management is indispensable to manage a family of
evolving software systems. As a step toward such a
framework, we have theoretically analyzed architectural
changes of software configurations from both an
elemental and a structural aspect. It provides a
penetrating framework and leads to a better position, to
have an insight into software architectural changes.
Indeed, we have applied our theoretical analysis to a
taxonomical study of software architectural changes, and
have shown that combinatorial complexity of change
categories can be drastically reduced,

In the future, it is necessary to explicitly study
family-wide architectural changes of software
configurations through an extension of our present
framework., Furthermore, it is also important to study
quality aspects of software family evolution in terms of
configuration. These studies will lead to an integrated
framework of SCM and software quality management [
Aoya8s, Ohmo89] .

References

[Aoya88] M. Aoyama, Y. Hanai and M. Suzuki(1988):"An
Integrated Software maintenance Environment”, Proc. IEEE
Conf. on Software Maintenance, Oct., Phoenix, pp.40-44.

[Baze85] R. Bazelmans(1985): "Bvolution of
Configuration Management”, ACM SIGSOFT Software
Engineering Notes, Vol.10, No.5, (Oct., pp.37-46,

[Bers80] E. H. Bersoff, V. D. Henderson and S. G.
Siegel(1980): Software Configuration Management,
Prentice-Hall.

{McCa75] R. McCarthy(1975): "Applying the Technique of
Configuration Management to Software”, Quality Progress,

Oct.

[Nara87] K. Narayanaswamy and W, Scacchi(1987): ”
Maintaining Configurations of Evolving Software Systems”,
[EEE Trans. on Software Engineering, Vol.SE-13, No.3, pp,
324-334.

[Ohmo89] A, Ohmori(1989):"Quality Deployment Method in
Software Development”, Engineers, Nikka-Giren, No, 485,
Feb., pp. 6-10.

[Yau 87] S. S. Yau and J. J. Tsai(1987): "Knowledge
Representation of Software Component Interconnection
Information for Large-Scale Software Modifications”,
IEEE Trans. on Software Engineering, Vol.SE-13, No.3,
pp. 355-361.

Appendix

Proof of -Proposition 1 : From the conditions of 'a

single body for the same name’ and 'a single name for
the same body’ for a system configuration, we can show
that a bijection between NAME(SC(s;t)) and E(s;t) exists,
Similarly, we can also show that a bijection between
BODY(SC(s;t)) and E(s;t) exists, []

Proof of Proposition 2 : We have USE/E(s;t) =¢ from
the antireflexive-use assumption for a USE relation.
This implies that N-struct(SC(s;t))=¢ and B-
struct(SC(s;t)) =¢. O

Proof of Proposition 3 : We have USE/E(s;t) #¢ from

the condition of ’no isolated entity’- for a system
configuration, This implies that N-struct(SC(s;t)) #¢
and B-struct(SC(s;t))#¢. (O

Proof of Proposition 4 : (a) can be proved by

Proposition 2. (b) and (c) can be proved by Proposition
2 and Proposition 3. For (d), from the condition E(s;t)
#E(s’ ;t"), we can show at first that there exists an
entity e<E(s;t) which is not included in E(s’;t’), Then,
from the condition of 'no isolated entity’ for a system
configuration, we have an entity ¢ €E(s;t) such that
(e,e’) €USE/E(s:t). Since e &E(s’;t"), we can
conclude that (e, e’) EUSE/E(s";t"). [

Proof of Proposition 5 : Assume that Card(E(s;t)) =1

and Card(E(s’;t’))=1 do not hold. From Proposition 4,
this assumption implies that USE/E(s;t)# USE/E(s’:t’).

Thus, we have a contradiction. [J

Proof of Proposition 6 : Assume that Card(E(s:t)) =1

and Card(E(s’;t’))=1. Then, this proposition can be
proved in a similar way to the proof of Proposition 5.
0

Proof of Proposition 7 : From Proposition 6, Card(E(s;
t)) =1 and Card(E(s:t)) =1 do not hold. Since
Card(E(s;t)) =Card(E(s’;t")}), we can conclude that
Card(E(s;t)) 22 and Card(E(s’ ;t'))=22.0

Proof of Proposition 8 : (a) is obvious from E(s;t) =

E(s’;t"). (b) can be proved by showing that any entity
name n ENAME(SC(s;t)) is included in NAME(SC(s’:t’))
and that any entity name n’ €NAME(SC(s’;t’)) is
included in NAHE(SC(s;t)), (c) can be proved in a
similar way to the proof of (b), (d) is also obvious
from E(s;t) =E(s’ ;t’), which implies that (e) and (f)
hold.(J

Proof of Proposition § : Let NAHE(SC(s:t))=NAE(SC(s" ;
t")) and BODY(SC(s;t)) =BODY(SC(s’;t")). From
Proposition 5, Card(E(s:t)) =1 and Card(E(s:t))=1.
Then, it follows that E(s:t) =E(s’:t’). This result is
contradictory to the condition E(s;t)#E(s’ ;') .[]
Proof of Proposition 10 : From the condition of 'no
isolated entity’ for a system configuration, we can show
the following.

(a) For any (n,b) €E(s;t), there is a (n',b")EE(s" ;t")
such that n=n",

(b) For any (' ,b") €E(s’;t"), there is a (n, b)EE(s;t)
such that n'=n.

From (a), we have that NAHE(SC(s:t))CNAHE(SC(s® :t")).
And from (b), we have that NAHE(SC(s’ ;t’)) CHNAME(SC(s;
t)).00
Proof of Proposition 11 : From the condition of 'no
isolated entity’ for a system conf iguration, we can show
the following.

(a) For any (n,b) €E(s;t), there is a (v’ ,b")EE(s" ;t")
such that b=b’. _

(b) For any (v,) €E(s’;t’), there is a (n,b)EE(s;t)
such that b =b.

From (a), we have that BODY(SC(s;t))CTBODY(SC(s" ;t’)).
And from (b), we have that BODY(SC(s’ ;t’)) CBODY(SC(s;
th.0
Proof of Proposition 12 : We consider the following
cases:

(a) Card(E(s;t))=1 and Card(E(s’;t’"))=1;
(b) Card(E(s;t))=1 and Card(E(s’ ;t"))=2;
(c) Card(E(s:t))=2 and Card(E(s’ ;t"))=1;
(d) Card(E(s;t))=2 and Card(E(s’ ;"))=2.

In case (a), it is obvious that Card(E(s;t))=
Card(E(s’ ;t’)). In case (b), since N-struct(SC(s;t))=¢
and N-struct(SC(s’;t"))# ¢ by Proposition 2 and
Proposition 3, we have a contradiction. In case (c), we
have also the same result. In case (d), Card(E(s;t))=
Card(E(s’ ;t')) can be proved by Proposition 1 and
Proposition 10. (3
Proof of Proposition 13 : This proposition can be proved,
in a similar way to the proof of Proposition 12, by
Propositions 2 and 3, and by Propositions 1 and 11. []
Proof of Proposition 14 : Assume that N-struct(SC(s;t))
NN-struct(SC(s’ ;t’)) =#¢..Then. there exists a pair of
entity names (n,n") such that (n.n’) EN-struct(SC(s;
t)) and (n,n")EN-struct(SC(s’ ;¢)). From this, we can
show that there exist entity bodies b and b such that
(n,b) €E(s:t) and (n, b)) €E(s’;t"). Therefore, nE
NAME(SC(s:t)) and n ENAHE(SC(s’ ;t’)), and so the
contraposition of (a) holds. This proves (a). We can
prove (b) in a similar way to the proof of (a).[J
Proof of Proposition 15 : Take any nENAKE(SC(s:t)).
Then, there exists some entity body b such that (n,d)E
E(s;t). Since Card(E(s;t))=2, from the condition of ’n6
isolated entity’ for a system configuration, we can
show that there exists some entity name n’ such that (n,
n)EN-struct(SC(s;t)). Since N-struct(SC(s;t))CN-
struct(SC(s’ ;t°)), nENAME(SC(s’ ;t*)). This proves (a).
(b) can be proved in a similar way to the proof of (a).

O

