
 xtUML-COP: xtUML modeling tool with COP extensions

SHINTARO TAKENA†1 , KENJI HISAZUMI†1

Abstract: Recent Embedded System like IoT product development requires behavior that responds to changing environments.
The changing environment is called context, and it cross-cutting concerns multiple classes when implemented. This cross-cutting
concern makes development difficult because it is not grouped together as a module. Context-oriented programming (COP) uses
COP-specific modules called layers to modularize cross-cutting concerns. However, the design of COP behavior is difficult because
of the lack of models and modeling tools supporting the behavior. Authors proposed models of behaviors, which extend UML state
machine diagrams. In this paper, we propose modeling tools that extend the previously proposed UML state machine diagrams
with COP. The tool can handle state machine diagrams separately for normal and layered states to separate two types of states.
Also, it is possible to show or hide states within layers according to the activation status of each layer. Therefore, state machine
diagrams can be displayed according to layer activation status. We implemented this tool using Sirius, which can develop original
domain-specific modeling language tools. As a result, the tool can deal with layers in COP on UML state machine diagrams. We
were also able to represent layer activation by implementing a layer hiding function. Future issues are further improvement of
usability, relationship with UML class diagrams, and code generation.

Keywords: Context-oriented programming, Layer, UML state machine, xtUML

1. Introduction

 Embedded systems, as typified by the Internet of Things (IoT)

and Industry 4.0, require the ability to change their overall

behavior in response to ever-changing external or internal

environments. The environment in which such systems are placed

is called the context. Context-Oriented Programming (COP)[1] is

a method for constructing software that behaves according to

context. A layer consists of a set of partial methods whose

context-specific behavior is described. The layer has two states,

activated or deactivated, and the partial methods are executed

when the layer is activated.

 This paper proposes an xtUML-COP tool that supports COP

extended eXecutable Translatable UML(xtUML). As a feature,

the entire flow, which changes according to conditions, can be

shared while switching in a single diagram. Also, the tool is easy

to extend so that anyone can try out new concept of executable

model.

 The paper structured as follows. Section 2 describes the details

of the proposed method, Section 3 introduces the features of the

modeling tool and future issues, and Section 4 summarizes the

paper.

2. Layer Hierarchical State Machine Diagram

In this section, we describe our previously proposed layer

hierarchical state machine diagram[2]. In the proposed method,

the state in which all layers are deactivated is represented as a

base layer to represent the basic behavior. Then, the behavior

when a layer is activated is represented as tracing paper

superimposed on the diagram described in the base layer. In

addition, since multiple layers may be activated at the same time,

the difference in behavior is necessary.

 Figure 1 shows the state machine diagram before adapting the

proposed method. Examples of the proposed method are shown

in Figures 2 and 3. Figure 1 represents the movements of a person

 †1 Shibaura Institute of Technology.

depending on the weather. The basic behavior of a person is to

stand still, run when it is sunny, and walk and hold up an umbrella

when it is raining. Figure 2 shows the representation of a sunny

day using the proposed method. In the figure, the sunny layer is

superimposed on the state machine diagram of the base layer. In

this way, it represents the addition and modification of behaviors.

Figure. 1 Layers defined usingexisting state machine

diagrams

Figure. 2 Sunny Layer

3. Modeling Tools

This section describes the modeling tool. The tool features a

state machine diagram that is extended by multiplying the layers

of a COP with reference to the layer function used in illustration

tools. In addition, it is possible to place states related to multiple

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 54

modules that change according to conditions in a single diagram.

In existing tools, there was a problem of difficulty in

understanding the flow between the state machine diagram, in

which the flow is shared by the team by looking at the entire

diagram, and the COP, in which the overall behavior changes

depending on the activation conditions. This tool allows users to

share the flow of overall changes that vary according to

conditions, switching from one layer to another. And although the

layer function is a function that does not exist in existing state

machine diagrams, it is a function that is well known by users

because it has been introduced in many general tools. Therefore,

users can use this extended function without any sense of unease.

Figure 3 shows the meta-model of the tool. The upper side is a

metamodel related to class diagrams. The lower part is a

metamodel related to the state machine diagram, which also

includes classes of layers that are extensions. Figure 4 is a screen

shot of the Sirius[3] development tool. On the right side, the

developed modeling tool is displayed. Figure 5 shows the layer

when it is activated. The black frame indicates the layer, and the

states within the layer are displayed in red. Since the layer is a

transparent image with a black border, the state is visible even

when the layers are superimposed. Figure 6 shows all layers.

Internally, as shown in Figure 6, layers exist, but they are hidden

on the screen. Although this is a prototype, it is possible to

generate code from the state machine diagram created with this

tool.

Figure. 3 Metamodel

Figure. 4 Tool Development Screenshot

Figure. 5 Screen with Sunny Layer Overlaid

Figure. 6 Screen with all layers displayed

3.1 Modeling Tool Goals

 Programs that solve cross-cutting concerns such as COP are

more complex than existing programs because they create new

modules between modules. Therefore, the benefits of generating

source code from models are even greater. The goal of this tool is

to generate source code from models that make complex

configurations easy to understand.

4. Conclusion

 This paper introduces a previously proposed modeling tool for

extended state machine diagrams. It is characterized by the use of

transparent images for layers and the ability to simultaneously

display states inside and outside of a layer when layers are

stacked. The challenges are that it is not possible to manipulate

states outside of a layer when layers are stacked, and it is difficult

to prioritize layers. Future work includes improving the usability

of the states and implementing code generation.

Reference
[1] Robert Hirschfeld, Pascal Costanza, Oscar Nierstrasz: "Context-

oriented Programming", in Journal of Object Technology, vol.7,
no.3, pp.125-151, 2008.

[2] Shintaro Takenaka, Kenji Hisazumi:” Context-oriented Design
Method for UML State Machine Diagram” APRIS2021,2021

[3] ”Sirius Homepage” https://www．eclipse．org/sirius/

(accessed 2022-9-18)．

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 55

