

Path Finding and Traffic Simulation with Zumo Robot

LE-GAO CHEN†1 CHEN FENG†1 TIPPORN LAOHAKANGVALVIT†1

PEERAYA SRIPIAN†1 MIDORI SUGAYA†1

Abstract: Autonomous robots and path finding algorithms have been used to progress autonomous vehicle studies. Being able to

determine the shortest path from one point to another and to execute the given path is the core of the future of autonomous

transportation. In this study, we employed an Arduino-controlled Zumo robot to simulate the path finding and traffic based on

Dijkstra’s algorithm for finding the shortest path between two points on a given map while considering traffic according to the

paths generated by the algorithm. In addition, we employed PID control and compass to enable line-tracing feature so that the robot

can move along a predefined path. Combining those features, we succeeded in developing a simple simulation of path finding and

traffic using Zumo robot.

Keywords: Path finding algorithm, Line tracing, PID control, Zumo robot

1. Introduction

 With advancements in autonomous driving as well as IoT

systems, it is not unimaginable for future vehicles to be able to

drive from point A to point B taking the fastest route while

considering the location and destination of other vehicles for

accurate traffic predictions.

 Path finding algorithms works in many different areas, most

notably in applications such as Google Maps where a shortest

path from point A to point B is required. Path finding algorithms

can be used in any situations where the structure of the system

is that of a graph.

 There are currently many path finding algorithms all with

different benefits as well as downsides and the use of them are

widespread. Google Maps uses an algorithm called A*, which is

an algorithm with the fastest average run time [1]. It is an

algorithm that is based off the algorithm being used in this study

called Dijkstra’s.

 Our goal in this study is to simulate the shortest path finding

algorithm while considering traffic from multiple vehicles and

to project the algorithm onto a robot as a prototype. This paper

presents our implementation for path finding and traffic

simulation visualized on a Zumo robot, which was run in a

physical map using the combination of our implemented

simulation and the PID-controlled line tracing.

2. Simulation of Autonomous Vehicles

2.1 Hardware

 To simulate an autonomous vehicle, we used an Arduino-

controlled Zumo robot (Fig. 1a). The robot has various optional

components, in which we used three components for our

simulation as follows:

⚫ Motors with caterpillar: Allows the robot to move

⚫ Reflectance sensor array(Fig. 1b): Allows the robot to

trace lines which simulate roads

⚫ Compass: Allows the robot to know which direction to

turn on crossroads.

 †1 Shibaura Institute of Technology

 (a) (b)

Fig. 1. (a) Zumo robot with Arduino board on top. (b) Reflectance

sensor arrays (6 IR sensors) attached to the front of the Zumo robot.

2.2 Tracing Lines using PID controller

 PID controller is a mechanism used for precise robot controls

consisting of proportional (P), integral (I), and derivative (D)

terms. This study only employed the proportional (P) part of PID

because it is accurate enough for this use case. The proportional

part takes the current error to tell how drastic the robot’s actions

need to be to fix the error: The bigger the error, the faster the

motor runs to correct the error, and vice versa [2].

2.3 Turning

 As we aim to simulate the real traffic, the robot should also turn

according to cardinal directions: north, south, west, and east. We

used a compass to implement this feature so that the robot can

figure out and make a right turn at each crossroad. Particularly,

at each crossroad, the compass measures the specific direction

each road connected to the crossroad was at. Then, when the

robot was fed the information of which road it should take next,

it uses the compass to know which road it was pointed towards,

then rotated till it finds the correct one.

3. Storage of the Map

3.1 Representation of map

 A map was constructed based on the area near Toyosu campus

of Shibaura Institute of Technology. It was represented with (1)

black lines for roads and (2) squares for crossroads. This is for

the robot to know when it is at a crossroad, and for the ease of

navigating through the map.

3.2 Implementation of the map

 Graphs is a type of data structure that consists of two main

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 50

components, vertices, and edges. It is mostly used to represent

networks such as telephone networks, circuit networks, or for

the purpose of this paper, maps. Vertices are points that are

connected to other vertices. Edges are the connections between

vertices. In this experiment, we assume that vertices are

crossroads and edges are roads. The properties that a vertex

needs are unique IDs, and locations connected to it. The

properties edges needs are weights. Weights in this experiment

represents physical distance plus the number of vehicles on it.

 As shown in Fig. 2 as an example, if the road between A and B

have the physical distance of 3, then the default value of the

edge between A and B is 3. When there are two vehicles on this

road, the value of the edge becomes 5, which is, 3 (physical

distance) + 2 (number of vehicles on the road).

Fig. 2. Example of weight calculation with (upper) and without

(lower) vehicles on the road.

Fig. 3. This is a part of the map that I have constructed. Each

vertex is assigned location and unique ID.

4. Path Finding Algorithm

 There are many different shortest path algorithms such as

Bellman-Ford algorithm, Floyd-Warshall, Dijkstra’s shortest

path, and more. In this study, we chose Dijkstra’s algorithm

because it is one of the most efficient path finding algorithms. It

has a runtime complexity of O(E + VlogV), which means it is

very efficient when scaling with the size of the map compared

to most other algorithms [3]. Similar algorithms had been used

by applications such as Google Maps.

 Dijkstra’s algorithm is a type of greedy algorithm that makes

the best choice at every small stage. It uses a priority queue

which the closest vertex where the edges it is connected to is not

explored yet always have the highest priority. While exploring

the edges, the distance of the other vertices is updated to their

shortest possible values. If those other vertices’ new values are

shorter, then the previous vertex of the current vertex is altered.

The algorithm ends when it reaches the destined vertex. The

shortest path is simply produced by tracing back what vertex is

the previous ones of the current ones until it reaches the starting

point [3].

5. Traffic Simulation Algorithm

 Due to the need to simulate an actual map, the algorithm stops

when it reaches a specific destination instead of a specific vertex.

Also, due to the need to simulate traffic, while backtracking for

the results of the shortest path, the algorithm also adds 1 to the

edges connected in the resulted path. This algorithm results in

the cars that comes after selecting different paths with lower

weights to avoid traffic.

6. Experiment and Discussion

 The path finding and traffic simulation algorithms were

implemented and then fed to the Arduino board for controlling

the Zumo robot. Then, we can observe the simulation of the

robot following the shortest path while considering virtual

traffic.

 As a result, the simulation can always find the shortest path

while considering the traffic in case more than one vehicle was

running on the same path.

 However, the calculation for traffic representation in weights

was not perfect because accurate traffic cannot simply be

calculated by distance plus the number of vehicles on it. To

create a simulation closer to reality, more variables must be

included such as the type of road, weather, and more.

 Moreover, this simulation has limitation that we have not

included the weight calculation in case the vehicle reaches the

destination or is not on the road, in which the weight is supposed

to return to the initial weight.

 The main challenges while conducting the experiments are the

inconsistencies of the robot sensors. A main part of how our

robot was able to follow the path given by our algorithm is to

use the compass to know which road it is pointed to, but due to

heavy influence of magnets, depending on where the map was

placed, there had been extreme inconsistencies during testing

and demonstrations.

7. Conclusion

 In this study, we employed a Zumo robot as an autonomous

vehicle for the goal to illustrate the shortest path and traffic

simulation algorithms in real world. We implemented an altered

version of Dijkstra’s shortest path algorithm for the calculation

of the shortest path while considering and adding traffic. For the

robot’s simulation, we implemented the proportional part of PID

control as well as the compass for the navigation of map made

of black lines and squares.

 As a result, we were able to simulate a basic shortest path

finding, taking simulated traffic into account and represent it in

the physical world with Zumo robot.

 This is still the first step in this study; however, we have

encountered several limitations for more-complexed simulation

comparing to a real-life situation which will be useful for our

future study.

References
[1] Crovari, P. (2019, September 18). Google maps and graph theory.

Impactscool Magazine. Retrieved September 20, 2022, from

https://magazine.impactscool.com/en/speciali/google-maps-e-la-

teoria-dei-grafi/

[2] Franklin, G. F., Powell, J. D., & Emami-Naeini, A. (2018).

Feedback Control of Dynamic Systems (8th Edition) (What’s

New in Engineering). Pearson.

[3] Dijkstra, E. W. (1959). A note on two problems in connexion with

graphs. Numerische Mathematik, 1(1), 269–271.

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 51

