
Chain-Aware Scheduling for Mixed Timer-Driven and
Event-Driven DAG Tasks

Daichi Yamazaki1,a) Takuya Azumi1

Abstract: Embedded systems, such as self-driving systems, periodically execute tasks to accurately recognize an
external environment. To meet the deadline of embedded systems, the directed acyclic graph (DAG) is used for
scheduling in existing studies. However, the DAG of the self-driving system is complex because the DAG is comprised
of timer-driven tasks, triggered by period and event-driven tasks triggered by arriving input data. Because of periodic
output, timer-driven tasks exist not only at the beginning of the end-to-end path but also in the middle. The existing
studies have not considered the scheduling of the DAG that has multiple timer-driven tasks in the middle of the end-
to-end path. To solve this problem, we propose DAG scheduling using chains. A chain is a sequence of tasks with
data dependencies, and chains are triggered periodically. By dividing a DAG into chains and scheduling by chains, the
proposed method can statically consider the scheduling order. Moreover, if the period of a task is larger than that of
the predecessor task, the output of the predecessor task may not be used. Tasks whose output is not used are excluded
from scheduling to execute other tasks. As a result of deleting tasks that do not contribute to the exit chains in the
system, the schedulability is improved compared with a method based on an existing algorithm without deletion.

Keywords: DAG, node-reduction, multi-rate, schedulability

1. Introduction
Recently, embedded systems are active in various fields such

as self-driving systems. These embedded systems have to exe-
cute tasks by deadlines. If a task misses the deadline, the pro-
cess is delayed, and an accident happens. Studies of scheduling
have been conducted for meeting the deadline, and response time
becomes shorter [1]. However, scheduling becomes difficult be-
cause modern real-time systems have become larger and more
complex [2, 3]. One approach to deal with such a problem is to
model the system as a directed acyclic graph (DAG). A DAG rep-
resents tasks as nodes, with data dependencies replaced by edges.
A data dependency is a relationship in which a node is triggered
after all inputs have been received. By using DAG, the complex
data dependencies can be mitigated, and the end-to-end latency
can be shortened by assigning priorities to nodes [4–6]. However,
the scheduling of a self-driving system, such as Autoware [7], is
difficult because of multiple sensor nodes [8].

The self-driving system has multiple sensors, such as LiDAR
and a camera for localization and perception. These sensor nodes
are triggered at different periods. A node triggered by a period
is called a timer node, and the successor node triggered by arriv-
ing input data is called an event node. A successor node is a node
connected behind the edge of DAG. Sensor nodes are timer nodes
because sensors are triggered periodically. A self-driving system
has to execute timer nodes and successor event nodes having data
dependencies periodically. The different periods make scheduling
difficult because the triggering timing of each task is shifted. One
of the solutions to this problem is using the hyper-period which

1 Saitama University, Saitama-shi, Saitama-ken 338–8570, Japan
a) d.yamazaki.554@ms.saitama-u.ac.jp

is the least common multiple of the periods [9–11]. However, in
order to periodically output data even if no input data come in,
timer nodes exist in the middle of the end-to-end [7, 12]. The
existing studies have not been considered in timer nodes in the
middle of end-to-end.

Considering scheduling for a self-driving system, which has
timer nodes in the middle of the end-to-end path of the system,
this study proposes a scheduling method based on chains. A chain
is a sequence of nodes in a row, following successor data depen-
dencies. This proposed method decides a scheduling order for
each chain to satisfy period constraints and data dependencies.
Moreover, if the period of one node is larger than the predecessor
node, the output of the predecessor node may not be used by not
executing the successor node. By not executing the number of
times the output is not used, the number of nodes to be consid-
ered in scheduling is decreased. This paper proposes a method
of identifying the index whose output of a node is not used. The
contributions of this study are as follows.
• The scheduling algorithm for a mixed timer and event-driven

DAG with timer nodes in an end-to-end node sequence is
considered.

• The reduction of execution of nodes that handle data not used
as input to the execution of the exit node is considered.

• The improvement in schedulability and reduction in com-
putation time by eliminating output not used for successor
nodes is shown experimentally.

The remainder of this study is structured as follows. Section 2
describes the system model. Section 3 defines how to divide a
DAG into chains. Section 4 explains the worst start time and node
reduction. Section 5 discusses the evaluation. Section 6 presents
related work. Section 7 describes the conclusion.

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 42

2. System Model
The system model considered in the proposed method is shown

in this section. A set of nodes with parameters and modeling of
DAG are also defined. Moreover, this section defined a chain that
is required to simplify the DAG mixed timer and event nodes.

2.1 Node Set
This section defines the system’s nodes used in the derivation

of scheduling. Nodes have two types of triggering. The first is the
triggering by a period that the node has, and the node execution is
periodically completed. A sensor node corresponds to this. Such
nodes are called timer nodes, and the set of timer nodes is called
Vtm. The assumption of this study is that the timers in timer nodes
are synchronized. The second is a type of triggering by arriving
at the input data. Such nodes are called event nodes, and the set of
event nodes is represented as Vev. The event node does not have
a period. Event nodes that require multiple inputs are triggered
when both inputs are received. For multiple inputs, an input with
a smaller period can reach the node before an input with a larger
period reaches it. Therefore, the node can be considered to be
triggered when the input with a larger period arrives.

A set of all nodes in the system is represented as V . Exe-
cutable nodes are contained in V , and V is expressed as V =
{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11} in Fig. 1. Each node has pa-
rameters such as (T (vi), wc(vi)) where T (vi) is a period. Nodes
such as sensor nodes are launched in a period. wc(vi) is the worst-
case execution time (WCET) of vi. The node execution time is
varied by the runtime environment because cache usage and data
dependencies will affect the execution time. The execution time
of a node does not exceed WCET. In this study, the nodes’ exe-
cution time is fixed at WCET to simplify the study target.

2.2 Directed Acyclic Graph
To consider a system easily, the proposed method models it

with a DAG. A DAG comprises nodes and edges to focus on data
dependencies between the nodes. An example of a DAG model
is shown in Fig. 1. A DAG is denoted G = (V, E), where V is the
set of nodes, and E is the set of edges between the nodes, which
can be expressed as E = {ei, j|vi, v j∈V}. The worst-case communi-
cation time of the data dependency ei, j is expressed comm(ei, j).

Data dependencies E represent the relationship of sending data
to successor nodes, and an event node is executed after the exe-
cution of the predecessor node is finished. Nodes in front of the
data dependency are called predecessor nodes, and nodes behind
are called successor nodes. However, event nodes that have mul-
tiple predecessor nodes in a multi-period system work as follows.
Arriving data from the predecessor nodes launched for shorter pe-
riods are used only to update data but not to trigger the successor
nodes. However, arriving data from the predecessor node with
the longest period is used for triggering the successor nodes.

2.3 Chain
A chain is a node sequence. A chain starts with a timer or an

event node that branches off from another chain. Further, a chain
ends before it hits a node defined in another chain. This prevents
that the same node is included in multiple chains. The i-th chain
is defined by Γi = {vc1, vc2, ..., vc(n−1), vcn}, where vc1 is the node at
the beginning of the chain, vicn is the node at the end of the chain,
and each node is connected before and after nodes by data depen-

𝑣1
𝑇(𝑣1) = 100
𝑤𝑐(𝑣1) = 23

𝑣2
𝑇(𝑣2) = 50
𝑤𝑐(𝑣2) = 8

𝑣4
𝑤𝑐(𝑣4) = 7

𝑣3
𝑇(𝑣3) = 33
𝑤𝑐(𝑣3) = 11

𝑣6
𝑤𝑐(𝑣6) = 10

4

5 3

5

2
𝑣7

𝑤𝑐(𝑣7) = 13

𝑣8
𝑤𝑐(𝑣8) = 9

𝑣9
𝑤𝑐(𝑣9) = 11

𝑣5
𝑤𝑐(𝑣5) = 20

𝑣10
𝑇(𝑣10) = 30
𝑤𝑐(𝑣10) = 10

𝑣11
𝑇(𝑣11) = 50
𝑤𝑐(𝑣11) = 36

3

7

1

5

2

9

□ : timer node
〇 : event node

Fig. 1 Directed acyclic graph

dencies. Moreover, the chain Γi has parameters such as (E(Γi),
T (Γi), WC(Γi), ϕ(Γi)). E(Γi) represents the edge set of the node
sequence comprising a chain Γi, which can be expressed by the
equation E(Γi) = {ei

c1,c2, e
i
c2,c3, ..., ec(n−1),cn}. T (Γi) is a period to

trigger the chain Γi execution. WC(Γi) is the WCET of the chain
Γi, which can be derived by the following equation.

WC(Γi) =
∑
v j∈Γi

wc(v j) +
∑

ek,l∈E(Γi)

comm(ek,l) (1)

ϕ(Γi) is an offset of the chain Γi. The offset is a value to shift the
trigger time of the chain Γi. The trigger time of the chain is the
time when the first node in the chain is triggered. If the offset is
not zero, the trigger time of the chain is shifted by ϕ(Γi).

If an edge exists from a node in one chain Γi to the first node
in another chain Γ j, Γi is called the predecessor chain of Γ j, and
Γ j is called the successor chain of Γi. The communication time
between chains is represented by COMM(Γi,Γ j), that is the com-
munication time between the node of Γi and the first node of suc-
cessor chain Γ j.

Job parameters are required to analyze scheduling using timer
nodes [13]. A chain job is each execution of the chain repeated
in the period, and the chain job is similar to a job of a node. The
chain job is created for the x-th time in the chain Γi is denoted as
Γi,x. The chain job Γi,x is assumed to trigger at T (Γi) ∗ (x − 1).

3. Generating Chain
This paper uses a chain that is a node sequence following

data dependencies. Using a chain as the scheduling unit re-
duces the number of scheduling units compared to using a node
as the scheduling, and that avoids the complex scheduling order
of multi-period systems. Therefore, this paper proposes how to
divide a DAG into chains in this section.

3.1 Start Point and End Point of Chain
The chain starts with two types of nodes. The first type is

a timer node. The second type is an event node that was not
selected as the branch destination of the chain when the chain
branched. All nodes in a chain are executed by the timer node’s
period. The reason for this is that the timer node is the start point
of the chain, and the other nodes in the chain are triggered at fin-
ishing the execution of the predecessor node. The end point of
the chain is the predecessor node of another timer node because
the chain is limited to a single period.

3.2 Confluence
A confluence node is an event node that has multiple data de-

pendencies from predecessor nodes. In Fig. 1, a confluence node
v6 has multiple predecessor nodes such as v3, v4, and v5. If a DAG

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 43

Table 1 Parameters and functions in Algorithms 1 and 2

classi f y(DAG) A function to classify timer nodes from DAG
Vtm A List of timer nodes
Divide(DAG,Vtm) A function to generate chains from DAG
chainList A list of chains generated from DAG
calcWS T (chainList) A function to find the trigger indexes that

contribute to the exit chain for each chain in
chainList and to calculate the worst start time
for that chain jobs

S imulate(WS T List) A function to simulate core allocation and
preemption in order of decreasing worst start
time and return scheduling result

result Scheduling results of chain jobs
timerNodes A list of timer nodes that are not included in

any chains
maxPeriod(V) A function to return the node with the largest

period from the node set V as input
LongS eq(v) A function to return the node sequence with

the longest WCET starting from node v and
ending at the next timer node or exit

long Output of the function LongS eq(v)
OtherS eq(long) A function to return node sequences that are

not chosen successors of junction nodes of
long

is divided as described in Section 3.1, the same confluence node
is defined in multiple chains. If chains define the scheduling unit
doubly, the scheduling order is decided considering the extra ex-
ecution of a confluence node.

A solution to this problem is defining that a confluence node
is included only by the chain with the maximum trigger period in
chains connecting the confluence node. The reason for not trig-
gering on the smaller period is that data from a larger period chain
cannot be in time for a confluence node. If a confluence node trig-
gered each smaller chain period, data from a larger period chain
are unchanged in the next trigger time. The output of a confluence
node is not completely updated. Therefore, a confluence node is
triggered by the maximum period.
3.3 Junction

A junction node is defined as a node that has multiple succes-
sor event nodes. In Fig. 1, v6 is a junction node and has successor
nodes v7 and v8. If chains are generated by following the succes-
sor node from the start node of the chain, one branch destination
must be selected at a junction node to prevent a double definition
of the chain. To avoid this case, a junction node connects node se-
quences to make a chain with the longest WCET. A junction node
v6 has two branch destinations, v7, v9 node sequence and v8 node
sequence. The branch destination of v6 is selected v7, v9 node se-
quence. The reason for making a chain to be the longest WCET is
to create a chain with a critical path. A critical path is the longest
execution time path to protect node dependencies. Making the
critical path chain and prioritizing the execution of the chain, the
proposed method tries to reduce the scheduling makespan. In the
evaluation section, it was found that the method of selecting the
branch with the longest WCET had a lower deadline miss rate
than the “min branch” method of selecting the branch with the
shortest WCET at the branch end of the chain.

Branches that are not chosen successors of junction nodes be-
come the start nodes to make new chains. The period of a newly
generated chain is the same as the period of the predecessor chain.
This reason is that an event node of the branch destination that
starts when the data arrive will also have the same period as that
of the entry node. The new chain is triggered by that period, but

Algorithm 1: The overview of proposed method
input : DAG
output: Scheduling result
// Classifying timer nodes from DAG

1 Vtm = classi f y(DAG)
// Generating chains from DAG

2 chainList = Divide(DAG,Vtm)
// Calculating the chain jobs contributing to
the exit chain and their worst start time

3 WS T List = calcWS T (chainList)
// Simulating scheduling and assigning chain
jobs to core

4 result = Simulate(WSTList)
5 return result

when the chain starts is not decided. The lack of deciding start
time leads to not delivering data between the junction node and
the start node of the new chain as the node dependencies. Adding
a new parameter offset to have a start time to chain, the offset is
equal to the WCET of the chain containing the junction node.

3.4 Setting Chain Parameter
The parameters of a chain are defined after the DAG is divided

into chains. The WCET of a chain is obtained by Eq.(1). A pe-
riod is determined by the start node of a chain. If the start node
is a timer node, the period of the timer node becomes the period
of the chain. If the start node is an event node, the predecessor
chain of the start node is considered. The largest period of the
predecessor chain is used as the period of the chain because all
inputs of the start node will be updated every period.

The derivation of the offset is determined by the predecessor
chain of the start node of a chain. When the start node is a timer
node, it triggers according to its period, and the offset is zero.
When the start node is an event node, the chain triggers every
maximum period of the predecessor chain. The chain must be
executed when the predecessor node has finished execution and
the data have been updated. Assuming that the predecessor chain
is Γ j, an offset of Γi is derived by a following equation:

ϕ(Γi) = ϕ(Γ j) +WC(Γ j) (2)

3.5 Dividing Order
Dividing a DAG into chains is the first step of the proposed

method. The overall flow of the proposed method is presented
in Algorithm 1. The parameters using in Algorithm 1 are shown
in Table 1. Algorithm 1 takes a DAG as input and finds core
allocation and scheduling results for each chain job. First, Algo-
rithm 1 classifies timer nodes from a DAG for dividing chains.
Next, Divide function divides the DAG into chains. Each chain
generates multiple chain jobs depending on the period. The func-
tion calcWS T identifies chain jobs with output that is used to pro-
cess the exit chain and gives priority for scheduling to chain jobs.
Finally, the function Simulate simulates scheduling and gives the
scheduling results and core allocations.

The procedure of the function Divide is explained in Algo-
rithm 2 and Table 1. Rules of dividing a DAG are based on
Sections 3.1, 3.2, and 3.3. First, Algorithm 2 enumerates the
timer nodes as the entry nodes of a chain. Then, one of the timer
nodes with the maximum period is selected from the candidate
timerNodes for the entry. The chain with the longest WCET is
created from the selected node (lines 4-5 in Algorithm 2). The
reason for choosing the timer node with the maximum period is

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 44

Algorithm 2: Divide : Generating chains from DAG
input : DAG, Vtm
output: chainList

1 chainList ← []
2 timerNodes← Vtm
// make node sequences

3 while timerNodes , ∅ do
4 maxPeriodNode← maxPeriod(timerNodes)
5 long← LongS eq(maxPeriodNode)
6 others← OtherS eq(long)
7 add long and others to chainList
8 remove maxPeriodNode from timerNodes
9 end

10 return chainList

to consider the confluence described in Section 3.2. By creating
from the chain with the largest period, a chain with a larger period
can include the confluence node in the chain earlier.

When a junction node exists in a chain, the execution time of
each branching destination is compared, and the longer one is de-
fined to continue the chain (line 5 in Algorithm 2). All unchosen
branching nodes are treated as the starting point of a new chain
(line 6 in Algorithm 2). Finally, the created chains are added to
the chain list, and the entry node of the chain removes from the
timerNodes. (lines 7-9 in Algorithm 2). At the end of all loops,
the definition of all chains is complete. In Fig. 1, DAG can be sep-
arated to Γ1 = {v1, v4, v6, v7, v9}, Γ2 = {v2, v5}, Γ3 = {v3}, Γ4 = {v8},
Γ5 = {v10}, and Γ6 = {v11}.

4. Scheduling Method
This section explains the scheduling algorithm that is proposed

in this paper. The proposed method defines the worst start time
that is used as the priority for scheduling. In addition, this sec-
tion proposes how to find jobs with the number of triggering in
the chain where such output is not used. By excluding the un-
used jobs from the scheduling order, the number of nodes to be
considered in the scheduling is decreased.

4.1 Scheduling Assumptions
Scheduling assumptions are defined in this subsection. The

division of the DAG into chains and the determination of the
scheduling order are performed statically. The scheduling order
is determined in the order of earliest to latest, using the worst
start time as an index. If all cores are full, the chain with the
latest worst start time is preempted from the chain to which the
core is assigned. This study is also based on the assumption that
the system has one exit node in the DAG. For example, a self-
driving system, such as Autoware, combines steering wheel op-
eration and acceleration amount into a single topic [7].

The deadline constraint is defined to consider the proposed
method. The deadline for a multi-period system is set only for
the chain at the exit of the system, and this study assumes that the
deadline is equal to the period of the exit chain. In addition, each
chain must update its data to produce a valid output. Each chain
other than the exit chain is considered a deadline miss if the data
do not arrive before the successor chain triggers.
4.2 Worst Start Time

The worst start time is defined for each chain job to determine
the scheduling order. The scheduling order is determined in the
order of earliest to latest, using the worst start time. The worst
start time is an absolute time and is found by subtracting WCET

Γ𝑖,𝑗: 𝑗-th chain Γ𝑖
: the trigger time
: the case where the data from Γ1 is used by Γ2,2
: the case where the data from Γ1 is not used by Γ2,2

100 𝑚𝑠

0 𝑚𝑠

0 𝑚𝑠

33 𝑚𝑠 66 𝑚𝑠 99 𝑚𝑠

Γ1,1 Γ1,2 Γ1,3

Γ2,2

10 𝑚𝑠10 𝑚𝑠10 𝑚𝑠

time

time

Fig. 2 Relationship of using data from Γ1 to Γ2,2

from the next trigger time of the chain, and the worst start time
for the j-th triggering of the chain Γi is defined as follows:

WS T (Γi, j) = T (Γi) ∗ j + ϕ(Γi) −WC(Γi) (3)
Scheduling in the order of the worst start time is synonymous with
scheduling in the order of the deadlines of jobs in each chain. The
reason deadline is synonymous is that the end time of each chain
job period is used to derive the worst start time. The WCET is
subtracted from the end time of the period of each chain job to
derive the worst start time. Therefore, the worst start time of a
chain job with a long execution time will be earlier. Because
chain jobs with longer execution times are prioritized, the effect
of prioritizing the critical path can be expected. The worst start
time can be considered as an index that can consider both the
deadline and execution time.

4.3 Chain Job Index
Depending on the trigger period of a chain, the output of the

chain may not be used. Due to the fact that a chain is triggered
in each period, data may arrive two or more times before the
next trigger of the chain. If multiple data arrive, the most recent
data is used to process the most recent environmental informa-
tion [9]. Such a case occurs when the period of the successor
chain is larger than that of the current chain. An example of the
unused output of the chain job is illustrated in Fig. 2. The ex-
ample has a chain Γ1, (T (Γ1) = 33,WC(Γ1) = 21) and a chain
Γ2, (T (Γ2) = 100,WC(Γ2) = 64) exist, and a worst-case commu-
nication time is 10 ms from chain Γ1 to chain Γ2.

Because the first chain job Γ2,1 does not receive data from chain
Γ1, the data used for the second chain job Γ2,2 is considered. Be-
cause the chains receive the data at the start time of the period,
chain Γ1 must deliver the data at the trigger time of the successor
chain job. The start time of the period becomes the deadline for
receiving data, and chain Γ1 must deliver data at the trigger time
of the chain job Γ2,2. Therefore, the latest data of the chain Γ1 job
processed by the time when the communication time is subtracted
from the trigger time of the chain job Γ2,2 are used. In Fig. 2, the
data of the chain job Γ1,3 does not arrive before the trigger time
of the chain job Γ2,2, and the data of the chain job Γ1,2 are used as
the latest data. Because chain job Γ1,1 is not the latest data, chain
Γ1,1 is not used in Γ2,2.

The output is not used for the chain job on the first trigger
where no data are used. By not executing the chain job, the idle
time of the core can be increased. In addition, by knowing in
advance which chain jobs will not be executed, the number of
node executions in the chain can be decreased. This will reduce
the number of nodes that need to be considered within the hyper-

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 45

Table 2 Parameters and functions in section 4.4 and Algorithm 3

Γi i-th chain in chainList
wstList A list of the worst start time and the trigger index for chain jobs that contribute to the exit chain
hp The hyper-period for all chain periods
exitJdg(chainList) A function to find the exit chain from chainList and return the exit chain
exitNum The number of exit chain triggering in hyper-period
updateWS T (wstList,Γi) A function to update the worst start time and trigger index information wstList of the chain Γi, based on the result calculated by

Eqs.(4), (5), (7), and (8)
predChains(Γi) A function to return a list of predecessor chains of chain Γi

succReadyChains(Γi) A function to return a list of chains that are successors of chain Γi and for which the trigger index has already been calculated
calcCandidate Next candidates for the chain that can calculate the worst start time and the trigger index that do not contribute to output

period and hopefully eliminate the complexity of the scheduling
order. The above method needs to find the chain job of the trig-
ger index whose output will not be used before determining the
scheduling order.

The proposed method considers only the worst case of using
the latest data to find a chain job whose data are unused. The
worst case is when the chain job finishes execution at the end of
the period with the WCET, such as Γ1,3 in Fig. 2. In case the exe-
cution time is shorter, or the execution is finished with more time
to spare at the end of the period, a method could use newer data
than the proposed method. Moreover, the worst case may occur,
and the data cannot be supplied to the succeeding chain because
of the optimistic estimate of the trigger index of the chain job.
Finding the chain job whose data will be used in the worst case
can prevent such a situation.

4.4 Derivation of Worst Start Time and Trigger Index
A method to find the worst start time and the trigger index for

each chain job is defined in this subsection. The calculation is
started from the exit chain because the proposed method finds
the trigger index of each chain whose output is used for the exit
chain. In this study, the value of the worst start time of chain Γi

that contributes to the exitIdx-th job of the exit chain Γexit is rep-
resented using WS T (Γi, exitIdx). The parameter exitIdx is the
information that this worst start time is related to the exitIdx-th
time of the exit chain. The worst start time of the exit chain Γexit

is defined as follows:

WS T (Γexit, exitIdx) = T (Γexit) ∗ exitIdx + ϕ(Γexit) −WC(Γexit)
(4)

The worst start time is used for finding the trigger index of the
chain. To ensure that the output of the system is not lost, The
exit chain of the system must have all chain jobs executed during
the hyper-period. The trigger index of the chain Γi that is used
for the exitIdx-th job in the exit chain Γexit is represented using
jobIdx(Γi, exitIdx). The jobIdx(Γexit, exitIdx) of the exit chain
Γexit is defined as follows:

jobIdx(Γexit, exitIdx) = exitIdx (5)
The following explains how to calculate the worst start time

and trigger index for chains other than the exit chain Γexit. The
worst start time is the worst value that can be reached in time for
the chain to finish processing by the triggering time of the succes-
sor chain. The successor chain of the chain Γi is necessary for this
calculation, and the successor chain Γsucc is defined as follows:

Γsucc ∈ succReadyChains(Γi) (6)

The worst start time can be obtained by subtracting the time
taken by the current chain from the start time of the successor
chain. The worst start time WS T (Γi, exitIdx) other than the exit
chain is defined as follows:

Algorithm 3: calcWS T : Calculating the worst start time of
the chain that contributes to the exit chain output

input : chainList
output: A list of the worst start time and the trigger index for

chain jobs that contribute to the exit chain
1 wstList ← [], Γexit ← exitJdg(chainList)
2 hp← hyper period of chains in chainList
3 exitNum← hp/T (Γexit)
4 for exitIdx = 1, · · · , exitNum do
5 Calculate WS T (Γexit, exitIdx) // Eq.(4)
6 Calculate jobIdx(Γexit, exitIdx) // Eq.(5)
7 wstList ← updateWS T (wstList,Γexit)
8 end
9 add predChains(Γexit) to calcCandidate

10 foreach Γi ∈ calcCandidate do
11 foreach Γsucc ∈ succReadyChains(Γi) do
12 for idx = 1, · · · , exitNum do
13 Calculate WS T (Γi, idx) // Eq.(7)
14 Calculate jobIdx(Γi, idx) // Eq.(8)
15 wstList ← updateWS T (wstList,Γi)
16 end
17 end
18 add predChains(Γi) to calcCandidate
19 remove Γi from calcCandidate
20 end
21 return wstList

WS T (Γi, exitIdx) = T (Γsucc) ∗ (jobIdx(Γsucc, exitIdx) − 1)

+ ϕ(Γsucc) −WC(Γi) −COMM(Γi,Γsucc) (7)

The trigger index can be derived by dividing the worst start
time by the period. If the chain has an offset, the start time
will be shifted. Therefore, it is necessary to perform subtraction
to eliminate the shift before the calculation. The trigger index
jobIdx(Γi, exitIdx) other than the exit chain is defined as follows:

jobIdx(Γi, exitIdx) =
⌊

WS T (Γi, exitIdx) − ϕ(Γi)
T (Γi)

⌋
+ 1 (8)

The flow of deriving the worst start time and trigger indexes
retroactively from the exit chain is shown in Algorithm 3. More-
over, parameters and functions used in Algorithm 3 are explained
in Table 2. Algorithm 3 finds the worst start time and trig-
ger indexes of the exit chain and puts their predecessor chains
in the list of candidates for the calculation (lines 4-9 in Algo-
rithm 3). After calculating the parameters of the exit chain, Al-
gorithm 3 calculates the parameters of the chains in the candidate
list calcCandidate (lines 10-17 in Algorithm 3). After the param-
eters of a chain have been calculated, its predecessor is added to
the list of candidates for the calculations, and the process is re-
peated to obtain the worst start times and trigger indexes for all
chains (lines 18-19 in Algorithm 3).

A core allocation for a chain is conducted after finishing Algo-
rithm 3. Each chain job is put in a ready queue when the chain
is triggered. Chains with a timer node are triggered by their own

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 46

period, and chains without a timer node are triggered when the
execution of the chain with the largest period in the preceding
chains finishes. The chain job in the ready queue is sorted in de-
creasing order of the worst start time. When a core is free, the
chain job at the head of the queue is assigned to the free core.
If the execution of the chain job is finished, the core that is al-
located to the chain job is released. In addition, the proposed
method treats preemption. When the worst time of the chain job
at the head of the queue is smaller than the worst time of the
chain job already allocated to the core, the allocations of those
chain jobs are exchanged. In Algorithm 1, the function S imulate
runs the simulation according to this assignment rule and returns
the scheduling results.

5. Evaluation
This section explains the evaluation of the proposed method

and the existing studies. The assumptions are explained, and an
evaluation using random DAGs is presented.
5.1 Preparation

In the evaluation, the proposed method is compared with two
existing algorithms that schedule on a node-by-node basis. The
existing algorithm is extended to accommodate the DAG that in-
cludes timer nodes and event nodes, and each node is prioritized
by laxity [5]. The laxity represents the time to deadline and can be
calculated for exit nodes by subtracting the execution time of the
exit node from the deadline. The laxity of other nodes is obtained
by subtracting their own execution time and communication time
with the successor node from the laxity of the successor node.

Since this evaluation includes the timer node, it is necessary
to determine how many times data from the job will be used, as
in Section 4.3. Two existing studies were chosen for comparison
that could determine which data from the job is used. The first
existing study decided the job dependencies between jobs with
close tentative release time [3], and it is called “Igarashi.” The
tentative release time is obtained by multiplying the node period
and the trigger index. The second existing study is based on the
value of the periods of dependent nodes to determine the depen-
dence of jobs on each other [14]. This method is called “Salah.”
The calculation method differs depending on whether the period
of the predecessor node is larger, smaller, or the same as the pe-
riod of the successor node.

Judging the deadline miss is defined for use in evaluation.
The target DAG has only one exit chain from the assumptions
in Section 4.1, and that chain has a relative deadline equal to
the period. The exit chain Γexit has the deadline that repeats
in the period. Therefore the k-th execution has a deadline of
k ∗ T (Γexit) + WC(Γexit). A deadline miss is detected when the
time that the last node in the chain has completed exceeds the
deadline. In addition, a deadline miss of a chain other than the
exit chain occurs when data is not delivered to a successor chain
with the dependencies determined in Section 4.4. The deadline
miss of a chain other than the exit chain is judged when the end
time of each chain exceeds WS T (Γi, exitIdx)+WC(Γi). If a dead-
line miss occurs even once, the DAG is treated as a deadline miss
DAG, and the evaluation is based on the rate of deadline misses
out of the total DAGs handled in the evaluation.

0.2 0.4 0.6 0.8 1.0
CPU utilization

0.0

0.2

0.4

0.6

0.8

1.0

ra
te
 o
f D

AG
s w

ith
 d
ea

dl
in
e
m
iss

es

Igarashi
Salah

min_branch
proposed

Fig. 3 Evaluating the rate of DAGs with deadline misses with varying CPU
utilization

5.2 Random DAG Evaluation
An evaluation using randomly generated DAGs was conducted

to prove the generality of the proposed method. The DAG han-
dled by the proposed method must have timer nodes. In this eval-
uation, DAGs are generated by using a random DAG generation
tool [15] that also generates nodes that are triggered in periods.
Parameters for random DAG generation used in the evaluation
are shown below. The number of nodes was varied by 20, 40,
60, 80, and 100. The number of timer nodes was also varied to
2, 4, 6, 8, or 10. The period ranges from 10 ms to 100 ms in 10
ms increments. The execution time of the chain is set not to ex-
ceed the period. The node execution time takes a random value
from the range of 2 ms to 100 ms, and the communication time
takes a random value from the range of 2 ms to 20 ms. A total of
2,550 files were generated with 80 random DAGs for each node
and each number of timer nodes.

Due to the scheduling assumption, DAGs for which the chain
execution time exceeded the period were then omitted. DAGs that
do not reach the exit node due to a low number of chain trigger
indexes are also omitted. The remaining DAGs were used in the
evaluation. The maximum number of timer nodes was decided
with reference to the number of nodes to be triggered in a period,
which was an issue at the RTSS 2021 Industry Challenge [12].

The CPU utilization was varied, and the rate of DAGs with
deadline misses was measured. The measurement results are
shown in Fig. 3. In addition to comparisons with the existing
studies, this evaluation also compares the “min branch” method,
in which a chain is created by selecting the branch destination
with the shortest WCET. The rate of DAGs with deadline misses
is the rate of deadline misses among all DAGs used in the evalu-
ation. If the percentage is lower, the schedulability is higher. For
node-by-node scheduling studies, the time when the execution of
the last node in the chain finishes is compared to the deadline.
The CPU utilization was derived by dividing the execution time
of each chain by the period and then dividing that value by the
number of cores. The CPU utilization was evaluated every 0.2
on a horizontal axis from 0.2 to 1.0. The results show that the
rate of DAGs with deadline misses of “proposed” is lower than
“Igarashi” and “Salah.” The rate of deadline misses increases for
all methods as the CPU utilization increases.

The reason the “proposed” method had a lower rate of DAGs
that missed deadlines than the “Igarashi” and “Salah” is that only
chains that contribute to the exit chain were scheduled. By not

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 47

����� ����� ����� ����� ����� 	����
� ������������������

��
��

��
��

��
�

��
�

��
�

��
��
 �
��
��
��
���

��
��

�������
�����
��������

Fig. 4 Evaluating computation time with varying the number of chain jobs

executing the nodes that do not contribute to the exit chain, the
idle time of the core increased. This allowed us to prioritize the
execution of chain jobs that contribute to the exit chain. The in-
crease in the number of missed DAGs with each increase in the
CPU utilization can be attributed to the fact that the advantage of
more free core time was lost as the execution time became longer.

A method of “proposed” had a lower deadline miss rate than
“min branch.” If the chain is created to have a longer WCET,
the worst start time is smaller and the priority of that chain will
be higher. The execution of chains with critical paths was pri-
oritized, causing a reduction in deadline misses. On the other
hand, when CPU utilization was 0.6, the deadline miss rate was
slightly higher for “proposed” than for “min branch.” When a
chain existed in which the period and WCET were almost equal
in “proposed,” deadline misses occur in “proposed” and not in
“min branch.” Because this chain dominated one core, the num-
ber of cores allocated to other chains that had to execute in paral-
lel was reduced, resulting in deadline misses. In “min branch,”
no chain with approximately equal period and WCET existed
since the chain chooses the branch destination with the shortest
WCET. “Proposed” may have a higher deadline miss rate than
“min branch” when the chain’s WCET and period are equal.

The relationship between the number of chain jobs and com-
putation time is shown in Fig. 4. The number of chain jobs is the
sum of the number of chains generated during the hyper-period.
The computation time is expressed on a logarithmic scale, with
an increase of one tick representing a value 10 times greater. The
computation time is the time from determining the priority of
each method to determining the scheduling order of each node
and simulating. The number of cores was set to four, and the
computation time was measured by varying the number of chain
jobs. The computation time of “proposed” was shorter than that
of “Igarashi” and “Salah” for all numbers of chain jobs. Further,
as the number of chain jobs increased, the difference in computa-
tion time increased.

The reason the computation time of “proposed” is shorter than
that of “Igarashi” and “Salah” is that the number of decisions on
the scheduling order is reduced because chain jobs that do not
contribute to the output of the exit chain are not executed. The
condition that chain jobs that do not contribute to the output of
the exit chain are created is when the data dependency from the
chain with the smallest period to the chain with the largest period
is present. In addition, the greater the difference between the pe-
riods of the smaller and larger chains, the greater the number of

2 4 6 8 10
number of timer nodes

0.0

0.2

0.4

0.6

0.8

1.0

ra
te
 o
f D

AG
s w

ith
 d
ea

dl
in
e
m
iss

es

Igarashi
Salah
proposed

Fig. 5 Evaluating the rate of DAGs with deadline misses with varying the
number of timer nodes

Table 3 Comparison with related work

MPD MTE NDC GN AD JD
Delete chain jobs [9] ✓ ✓ ✓ ✓

ROS 2 Chain’s criticality [16] ✓ ✓ ✓ ✓
Response time analysis [17] ✓ ✓ ✓ ✓

Data age constraint [18] ✓ ✓ ✓
A single-period DAG [19] ✓ ✓

Schedulability test [20] ✓ ✓
Age latency [21] ✓ ✓

Two-level GFP [22] ✓ ✓ ✓
this study ✓ ✓ ✓ ✓ ✓ ✓

MPD: Multi-periods DAG GN: Grouping nodes
MTE: Mixed Vtm and Vev AD: Available for any DAG
NDC: Non duplicated in chain JD: Considering job dependencies

chain jobs that are not executed. In Fig. 4, the computation time
of “proposed” does not become large as the number of chain jobs
increases. The longer hyper-period is, the more chain jobs are
generated. Because the proposed method is scheduling in hyper-
period, a longer hyper-period leads to an increase in the number
of times chain jobs are deleted. Because the number of dele-
tion opportunities increases, the computation time reduces as the
number of chain jobs increases. Another factor in the lower com-
putation time is the per-chain scheduling. When scheduling per
node, the priority of each node must be compared and assigned
to a core. The longer the hyper-period, the greater the number
of jobs on a node, and the greater the number of priority com-
parisons. By grouping the nodes into chains and scheduling each
chain, the number of priority comparisons is reduced, resulting in
less computation time.

The change in the percentage of DAG deadline misses when
the number of timer nodes is varied was also experimented with,
and the results are shown in Fig. 5. The rate of DAGs that miss
deadlines for all parameters was lower for “proposed” method
than for “Igarashi” and “Salah.” The rate of misses increased
as the number of timer nodes increased. This is due to the in-
crease in the number of chains that must be executed in parallel.
Since timer nodes are triggered at each period, their activation
timings may overlap. The increase in the number of timer nodes
is thought to have caused the number of chains with overlapping
startup timings to increase, exceeding the number of chains that
can be executed in parallel, resulting in deadline misses.

6. Related Work
This section discusses differences between the proposed

method and existing studies that used DAG with multiple peri-
ods. First, the method for using a chain, which is a sequence of

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 48

nodes with dependencies as in this study, is introduced. Next,
the results of various studies for DAG with only multiple timer
nodes are presented. Finally, the research on scheduling nodes
together, as the proposed method treated the node sequence as a
chain, will be mentioned. A table comparing existing studies and
the proposed method is shown in Table 3.

Nodes with data dependencies are treated as a chain in studies.
H. Choi et al. [9] used a chain as a sequence of nodes from en-
try to exit in a DAG composed of timer nodes. They found jobs
that do not contribute to the output generation of the final chain
and aimed to minimize the end-to-end latency of the chain. In
ROS 2 [23], the conventional research cannot be applied, because
ROS 2 causes the unique scheduling behavior. H. Choi et al. [16]
further made priority decisions based on the chain’s criticality
and timing requirements under the frame of ROS 2. D. Casini
et al. [17] proposed a scheduling algorithm for ROS 2, treating
end-to-end as a processing chain, and proposed a response time
analysis of the processing chain. In existing studies, nodes may
be defined doubly in the chain due to merging and branching.
When scheduling each chain, the multiple definitions of nodes
lead to the execution of an extra large number of nodes. To pre-
vent multiple definitions of nodes, the proposed method divided
the chain by merging and branching.

Studies of DAG that consist only of timer nodes triggered by
period have been conducted. T. Klaus et al. [18] proposed a
scheduling method that satisfies the data age constraint for pe-
riodic nodes. As another scheduling method, M. Verucchi et
al. [19] proposed a method to generate a single-period DAG
that satisfies the given constraints from multi-period DAG. This
method optimized the schedulability and end-to-end latency. S.
Baruah et al. [20] introduced a method for scheduling with EDF
and determining whether all deadlines can be met. A. Kordon et
al. [21] showed how to calculate the age latency accurately. They
also proved that the calculation of age latency does not require
computation during hyper-period, which shortens the computa-
tion time. These results were applied to a DAG consisting of only
timer nodes, and the difference between these studies and the pro-
posed method is that it does not include event nodes.

Similar to this study, scheduling methods that deal with node
sets exist. DAGs are treated as nodes, and the scheduling of mul-
tiple DAG has been studied. Each DAG has a set of periods and
deadlines, and the nodes in each DAG are called subnodes. R.
Pathan et al. [22] considered the scheduling of a set of DAG
nodes. They proposed a two-level GFP scheduling algorithm and
the analysis method by assigning a fixed priority to each DAG
node and the sub-nodes within the DAG node. The proposed
method differs from existing studies in that it can split a DAG
with a mixture of arbitrary timer nodes and event nodes.

7. Conclusion
In this study, we proposed a scheduling algorithm that deter-

mines the order of each chain in a DAG where timer and event
nodes are mixed. Chains are defined as a node sequence that is
divided to satisfy the period and data dependencies of each node
and can be converted into a set of nodes that are triggered by the
period. The proposed method finds chain jobs unused for the exit

chain from the chain jobs. In the evaluation, the proposed method
showed better schedulability and shorter computation time than a
method based on an existing algorithm without deletion.

The future work is considering the input timing of a chain and
adjusting the start timing. In this study, an assumption is made
that the data from the predecessor chain are received by the time
the chain period starts. The timing of when a chain needs data
will be closer to the output timing of the predecessor chain, and
newer data will be treated as input.
References
[1] Senapati, D., Sarkar, A. and Karfa, C.: HMDS : A Makespan Minimiz-

ing DAG Scheduler for Heterogeneous Distributed Systems, TECS,
Vol. 20, No. 5s, pp. 1–26 (2021).

[2] Baruah, S.: Scheduling DAGs When Processor Assignments Are
Specified, in Proc. of RTNS (2020).

[3] Igarashi, S., Kitagawa, Y., Ishigooka, T., Horiguchi, T. and Azumi, T.:
Multi-rate DAG Scheduling Considering Communication Contention
for NoC-based Embedded Many-core Processor, in Proc. of DS-RT
(2019).

[4] Bittencourt, L. F., Sakellariou, R. and Madeira, E. R.: DAG Schedul-
ing Using a Lookahead Variant of the Heterogeneous Earliest Finish
Time Algorithm, in Proc. of PDP (2010).

[5] Jiang, X., Guan, N., Long, X., Tang, Y. and He, Q.: Real-time schedul-
ing of parallel tasks with tight deadlines, Journal of Systems Architec-
ture, Vol. 108, p. 101742 (2020).

[6] Igarashi, S., Ishigooka, T., Horiguchi, T., Koike, R. and Azumi, T.:
Heuristic Contention-Free Scheduling Algorithm for Multi-core Pro-
cessor using LET Model, in Proc. of DS-RT (2020).

[7] Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M.,
Kitsukawa, Y., Monrroy, A., Ando, T., Fujii, Y. and Azumi, T.: Auto-
ware on Board: Enabling Autonomous Vehicles with Embedded sys-
tems, in Proc. of ICCPS (2018).

[8] Igarashi, S., Fukunaga, T. and Azumi, T.: Accurate Contention-aware
Scheduling Method on Clustered Many-core Platform, Journal of In-
formation Processing, Vol. 29, pp. 216–226 (2021).

[9] Choi, H., Karimi, M. and Kim, H.: Chain-Based Fixed-Priority
Scheduling of Loosely-Dependent Tasks, in Proc. of ICCD (2020).

[10] Bhuiyan, A., Guo, Z., Saifullah, A., Guan, N. and Xiong, H.: Energy-
Efficient Real-Time Scheduling of DAG Tasks, TECS, Vol. 17, No. 5,
pp. 1–25 (2018).

[11] Medina, R., Borde, E. and Pautet, L.: Scheduling Multi-periodic
Mixed-Criticality DAGs on Multi-core Architectures, in Proc. of RTSS
(2018).

[12] Liu, S., Yu, B., Guan, N., Dong, Z. and Akesson, B.: Industry Chal-
lenge, in Proc. of RTSS (2021).

[13] Becker, M., Dasari, D., Mubeen, S., Behnam, M. and Nolte, T.: End-
to-end timing analysis of cause-effect chains in automotive embed-
ded systems, Journal of Systems Architecture, Vol. 80, pp. 104–113
(2017).

[14] Saidi, S. E., Pernet, N. and Sorel, Y.: Automatic Parallelization
of Multi-rate Fmi-based Co-simulation on Multi-core, in Proc. of
TMS/DEVS (2017).

[15] Azumi-Lab: RD-Gen, https://github.com/azu-lab/RD-Gen.
[16] Choi, H., Xiang, Y. and Kim, H.: PiCAS: New Design of Priority-

Driven Chain-Aware Scheduling for ROS2, in Proc. of RTAS (2021).
[17] Casini, D., Blaß, T., Lütkebohle, I. and Brandenburg, B.: Response-

Time Analysis of ROS 2 Processing Chains under Reservation-Based
Scheduling, in Proc. of ECRTS (2019).

[18] Klaus, T., Becker, M., Schröder-Preikschat, W. and Ulbrich, P.: Con-
strained Data-Age with Job-Level Dependencies: How to Reconcile
Tight Bounds and Overheads, in Proc. of RTAS (2021).

[19] Verucchi, M., Theile, M., Caccamo, M. and Bertogna, M.: Latency-
Aware Generation of Single-Rate DAGs from Multi-Rate Task Sets, in
Proc. of RTAS (2020).

[20] Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L. and
Wiese, A.: A Generalized Parallel Task Model for Recurrent Real-
time Processes, in Proc. of RTSS (2012).

[21] Kordon, A. and Tang, N.: Evaluation of the Age Latency of a Real-
Time Communicating System using the LET paradigm, in Proc. of
ECRTS (2020).

[22] Pathan, R., Voudouris, P. and Stenström, P.: Scheduling Parallel Real-
Time Recurrent Tasks on Multicore Platforms, TPDS, Vol. 29, No. 4,
pp. 915–928 (2017).

[23] Maruyama, Y., Kato, S. and Azumi, T.: Exploring the Performance of
ROS2, in Proc. of EMSOFT (2016).

Asia Pacific Conference on Robot IoT System Development and Platform 2022 (APRIS2022)

ⓒ 2022 Information Processing Society of Japan 49

