v7b7=71¥ 76— 3
(1990 12 4)

WA T U MEMEER A-MODEL/PLOERET £ KB

HRER" FRER-'"
“EKPIRREIRET BB AYIE T A TR

A-MODEL/PLISRAY 7 b7 = 7% OBIRD 1= B (CHEH L 23514 T ¥ 2 7 MERERTH 5, SHEY
B LOBAD BIRGPIESRIC S 154 TS 17 b & ZOBIFEBRICEFIMET 5 EDOMEEE T2 5
EHENRBIBZIETHB, ZD=HIT, ®E S ILA-MODEL/PL%E

—AT T2 FHUTIED DY F Y A & 18D,

—IFAFT o b= —REFNEICEETHS.

—AT Y17 MEBRIEGFRE L THRMAEEHD,
FOBROHIEWE LTHELL, £, KEEYT I 1 TERRT AV OBEORANEZRL
T. |

— R G OMIREBA L.

—ATTI I MDY FUFBEUA TS 17 NADBERFREME LR ETE I &I LAy

Design and Implementation
of
the Object-Oriented Concurrent Programming Language
A-MODEL/PL

Masami Noro* (Masami@niq0.nanzan-u.ac.jp) Ken'ichi Harada** (harada@cs.keio.ac.jp)

* Department of Information Systems and Quantitative Sciences, Nanzan University
18 Yamazato-Cho, Showa-Ku, Nagoya, 466 JAPAN '

** Department of Instrumentation Engineering, Facuity of Science and Technology, Keio Unnversuty
4-1-1, Hiyoshi, Kohoku-Ku, Yokohama, 211 JAPAN

A-MODEL/PL is an object-oriented concurrent programming language for the development of
production quality software. To naturally model objects and their relationships in the problem space
within the software solution space, we interpret an object as an entity with its own scenario. We adopt
the client-server model as the underlying computational model and a broadcasting mechanism as one
of the inter-object communication methods. A-MODEL/PL employs a procedure-oriented description
within objects and a strong typing facility is incorporated as much as possible.

(1)



1. Introduction

The most attractive feature inherent to object-oriented
programming languages is that they support the modeling of
objects and their relationships in the problem space within the
software solution space very naturaily [BOO86]. We call this
concept natural modeling. Taking advantage of this feature,
we circumvent the troublesome task of structurally
transforming the problem to the solution as is necessary in
traditional imperative programming languages.

The introdyction of concurrency into the language is
indispensable for natural modeling because the problem space
contains paralielism. An absence of concurrency would lead

us to less natural designs. Indeed, the major problem found-

inpractical object-oriented languages such as Objective-C
[COX86}, Class C [DENB4], Object Pascal [SCH86), C++
[STR86] and so forth, which are extension of procedure-
oriented languages, is that they lack concurrency.

Although several languages have introduced concurrency
[ISH86, YOK87, YONB86], they still have drawbacks with
respect to natural modeling:

1. They do not distinguish active objects from passive
objects while both exist in the problem space.

2. An object's autonomy is not complete; objects do not
have their own scenarios making it necessary to write
additional driver objects.

3. They do not provide an inter-object broadcasting
mechanism useful, for instance, in error message
propagation.

A-MODEL/PL (Ada' -based MOdular DEscription Language/
. Programming Language) [NOR88] is an object-oriented
concurrent programming language designed for the
development of basic software such as compilers, editors,
debuggers. lts basis is an Ada-like procedure-oriented
language. The main goal of A-MODEL/PL is to facilitate to a
great extent natural modeling by addressing the drawbacks of
previous languages. S :

This ‘paper discusses the design and implementation issues

ofA-MODEL/PL. In particular, how the designaddresses the
shortcomings outlined above.

2. Design Issues of A-MODEL/PL -

In designing A-MODEL/PL, the features needed for natural
modeling were considered first. Then language features were-

added to address the goals of understandability and
modifiability of software and language practicality.

2.1 Issues of Natural Modeling

To eliminate the drawbacks of previous object-oriented
concurrent programming languages, we first examined their
underlying computational models and now they effect the
languages.

2.1.1 Computational Model
~ The underlying computation model for A MODEL/PL

P PR
Ada is a registered trademark of U.S. Government

prescribing object discrimination can be summarized as
follows:
1. There exist two types of object: active and passive called
clients and servers, respectively.
2. Clients and servers run concurrently and communicate
with one another.
3. In the computational model, a client triggers a server to
. perform a task and to receive the results when needed.

Previous object oriented languages [GOL83, ISH86, MOO8S6,
YONS8S6] do not discriminate between the active and passive
objects that can be thought to exist in problem space. The
reason they do not discriminate between them originated from
a desire for simplicity in their underlying computational
models. However, since we can identify two types of objects
in problem space, we can recognize this discrimination. Thus,
we employ these two types of objects in A-MODEL/PL.

Objects and Their States 7

An object. in A-MODEL/PL is an entity which can be created
dynamically. It consists of a private memory and the
operations on it. A server owns a set of operations (called
visible operations) that access-the contents of its memory.
Only clients may access the visible operations of servers.
Servers cannot access the visible operations of other
servers. Clients have . no visible operations. This
differentiation provides some type checking capability.

Although-there are these two types of objects: clients and
servers. However, hybrid objects having features of both, are
introduced for programming ease. Sometimes it is too
restrictive to insist that each object be either a client or server
and the developer may forfeit the type-checking benefit of
distinct types.

Objects in A-MODEL/PL start in an active state immediately
after being created whereas, in other languages objects
become active only when they receive a message [GOL83,
YONB86). We call an object's activities the behavior of that
object. It is-natural tothink of objects as autonomous entities
which have independent behaviors because true objects in
problem space usually do. Without behavior for objects, we
would be forced to implement a driver object to supervise. This
is not desirable in terms of natural modeling.

Besides being active, objects can be waiting. Waiting occurs
when: I
1. A client is forced to wait when a server is not ready in
synchronized communication.
- 2.'A client waits for the termination of a operation during
synchronized communication.
3. A server waits for one of its operations to be invoked by a
client.

Inter-Object Communication
In_general, there are two kinds.of inter-object communication

. methods: one-to-one and one-to-many. Many types of one-to-

one communication methods have been devised and
employed in previous languages [DOD83, GOL83, INM84,
ISH86, YOK87, YONS6]. These can be categorized into one of
four types: synchronous and asynchronous data passing, and
synchronous and asynchronous data communication. Data
passing is one-way while data communication is two-way.
Obijects may be forced to wait in synchronous type

(2)



communication but not in the asynchronous type. These four
types of methods have been implemented in previous
languages but few languages provide all four. For the sake of
natural modeling, all four are adopted in our computational
model.

Meanwhile, one-to-many communication has never been
explicitly realized in previous languages. However, it is
sometimes needed, for instance, to deliver an error message
to multiple objects. Our problem space requires such
communication. Hence, one-to-many communication is
necessary for natural modeling. We employ broadcasting as
our one-to-many communication method.

In addition to the above, interrupts are also crucial for natural
modeling as seen in the express mode message passing in
ABCL/1. We use interrupt mode data communication as well.

2.1.2 Language Features Supporting Natural
Modeling

To group objects having similar properties, A-MODEL/PL
provides classes as templates of objects. Hence, all features
dealing with objects are class features.

Object Discrimination

To discriminate between active and passive objects, A-
MODEL/PL provides client and server classes. A hybrid class
is provided for hybrid objects.

Fig.1(a), (b), (c) and (d) dipict outiines of the class definitions.
Each class has a specification and an implementation part.
The specification presents the interface of the class. That is,
1. the classes used are ennumerated in the client's
specification;
2. the visible operations are listed in a server's
specification, and
3. both are listed for a hybrid specification.
Implementation parts define the realization of the
specifications.

Object Autonomy

As in Fig.1, the implementation part of each class has a
behavior. The client's behavior includes the order of
invocation of the visible operations of the servers it uses. The
server's behavior specifies the order in which invocations are
accepted. Orderings can be structured by concatenation,
selection, and iteration. Mutual exclusion among objects is
achieved in server by a (conditional) selective wait as in Ada
tasks.

Inter-Object Communication )
Since A-MODEL/PL was designed under the client-server
model, ali communication is limited to between clients and

saervers. To realize all the communication methods in our -

computational model, A-MODEL/PL provides the following
primitives:

1. Synchronous operation calls: A client tries to
synchronizes with a server by calling one of the server's
operations. The client waits until the server is ready and
for the server to reply. As

ac2->p2(...) ignore
in Fig.1(a), the client can ignore replies using the {\bf
ignore} option.

2. Asynchronous operation calls: A client need not wait until
the server replies. It may obtain the reply later via the
receive statement. If the server still has not replied by
this time, the client is forced to wait.' A pair of Issue and
receive statement,

issue ac1->f...);
and
x:=recelve act->f,
is an example of the asynchronous operation calls. The
ignore option can be used here as well.

3. Broadcasting: A client can broadcast to send data to all
designated objects at the same time. The description
broadcasting(...) act, ac2;
in Fig.1(a) specifies an example of broadcasting to two
objects. The default designation is to broadcast to all
instantiatedobjects.

Thus, one-to-one communication methods can be realized as:

1.8Synchronous data passing is realized as a synchronous
operation call while ignoring the server's reply.

2. Asynchronous data passing corresponds to an
asynchronous operation call ignoring the reply.

3. Synchronous data communication is the same as the
synchronous operation cail. '

4. The asynchronous operation call is used for the
asynchronous data communication.

To communicate between clients, A- MODEL/PL provides a
predefined class named pipe implemented with the above
constructs. The pipe is a data buffer which mediates between
clients. There are four types of pipe:: the various
combinations of one-way or two-way, and synchronous or
asynchronous. Synchronous data passing between clients,
for example, is implemented as communication via a one-way,
synchronous pipe.

Ows_Pipe: one_way_syn_pipe;
in Fig.1(a) is a declaration of the one-way and synchronous
pipe and

Ows_Pipe->Put{(...);

is an example of its usage.

An object may -include a description on how :to react to a
broadcast. The description starting with a set of reserved
words, broadcast is in both Fig.1(a) and (b) defines an
action to a broadcast. In the absence of a description, the
object ignores the broadcast.

The exception handling facility is used to realize interrupts.
For interrupts, only synchronous data communication is
possible. While the interrupt is being processed, no other
interrupts can occur. A procedure, e in Fig.1(b) is an
example of an exception operation. A broadcast operation
can be stated as an exceptlon as in Fig.1(b) broadcast(...)
is exception;.

2.2 Writing Understandable and Modifiable
Software

To achieve the goal of understandability and modifiability of
software, A-MODEL/PL offers constructs for data abstraction
and modularity, the software engineering principles underlying
these goals [BOO8S].

{3)



-- specification part
class c is client
use cl, c2, one_way._syn._pipe;
broadcast is exception;
end c;

-- implementation part
class body c is
-- variables, procedures and functions
-- local to ¢
Ows._ Pipe : accessone_way._syn.pipe;
-- pipe declaration
z : integer;

-- initialization procedure
initialization(al : access cl;a2 : access c2) is
begin
acl := al;ac2:=a2;...;
end initialization;

-- finalization procedure . .
finalization is begin ...end finalization;

-- action taken if interrupted and broadcasted
broadcast(...) is exception ...end broadcast;

begin -- behavior part
issue acl — f(...); -- asynchronous operation call
loop
ac2 — pi{...); - - synchronous operation call
broadcasting(...) acl,ac2; -- broadcasting
ac2 — p2(...) ignore; :
-~ synchronous operation call with
~ -- ignore option
Ows_Pipe — Put(...);
-- pipe usage
end loop;
z = receive acl — f; -- get the reply
raise ac2 — ez(...); -- raise exception
raise broadcasting(...);
- -- broadcast to all objects
- - parameters are checked in
- - receiver’s own context,
-- the broadcasting is ignored
-~ if type crach occurs
“end ¢;

(a) The Client Class

-- specification part of a super class
class Super is server
- - visible operations
procedure pl(...) is pseudo;
-- it is-a pseudo operation
-- can be redefined in subclass

function f1(...) return z_type;
procedure €l(...) is exception pseudo;
-- it is an exception and a pseudo

-- this class can accept both type of broadcasting
broadcast(...) is pseudo;
-- normal mode, can be redefined
broadcast(...) is exception; '
-- interrupt mode
end Super;

-- implementation part of a super class
class body Super(...) is
-~ local declarations

procedure pl(...) is pseudo ...end pl;
procdure el(...) is exception ... end el;

broadcast(...) is ...end broadcast;
broadcast(...) is exception ...end broadcast;

initialization(...) ... end initialization;
finalization ... end finalization;

begin -- behavior part
accept broadcast;
loop )
select -- selective wait
when ... = -- selective condition

accpet f1;
or
end select; :
pseudo; --subclass’s: behavior will be expanded
-- if subclass’s instance
end loop; :
accept ;
end Super;

(b) The Server Class: Superclass

’Fig.l. Class Description in A-MODEL/PL



-- specification part of a subclass

~- inherits properties of Super

class Sub is server inherits Super
procedure pl(...); -- redfining procedure;

end Sub;

-- implementation part of a subclass
class body Sub is
begin
-~ this behavior will be replaced with
-- superclass’s pseudo statement

loop ...end loop;
end Sub;

(c) The Server Classes: Subclass

-- specification of hybrid class
class h is hybrid inherits Super

use cl,¢2, ¢3;

procdure pl(...); -- redefining procedure;
end h;

(d) The Hybrid Class

-- specification part of type class

class Type_Scheme(...) is type
procedure p(...) is pseudo;
function f(...) return integer;

-- may also eprrt variables
a : array[1..100] of character;
aType. Scheme access Type._ Scheme,

end Type Scheme;

-- body part of type class
class body Type_Scheme is
-- variable declarations
procedure p(...) is pseudo ...end p;
initialization(...) is .
-- no behavior part here
end Type.Scheme;

.end initialization;

(e) Class as Type Scheme

Fig.1. Class Description in A-MODEL/PL (Cont.)

Data abstraction is done by taking advantage of the
separation of the specification and implementation part of the
server clas. The internal data structure and details of the
operations are encapsulated in the implementation part, and
internal memory of the server may be accessed only through
the visible operations listed in the specification part.

For modularity, class hierarchies and a mechanism for single
inheritance are provided. In the hierarchy, the common
properties of several classes are grouped together as a
superclass and the different properties. distinguish
subclasses.

In addition to class hierarchy and inheritance, the virtual
resource concepts as in SIMULA-67 [BIR79)] are implemented
with pseudo operations yielding modifiability. A pseudo
operation declared in. a superclass can be redefined in a
subclass at runtime.

2.3 Language Practicality

Strong Typing

A-MODEL/PL is designed as a strongly typed language and
has primitive types as with Ada's standard packages. One
exception is the introduction of a late-binding mechanism for
MODEL/PL the intra-class description is written in a traditional
procedural way.

Class as Type Constructor
Classes can be used as type constructors as well as object
templates. The reasons are:

1. It is not practical to have only one construct for

concurrent entities and to use it to represent both types and
object templates since the granularity of objects may
sometimes be too small.

2. For the sake of simplicity, we do not want to have two
different kinds of constructs as in Ada [DOD83] or Argus
[LIS83).

Fig.1(e) sketches the class description for type constructor.
Different from an object template, it includes no behaviorat
part and can have variable declarations in the specification
part. However, it is similar to an object template and provides
hierarchies, inheritance, and the pseudo concept.

3. Implementation

A first prototype of A-MODEL/PL has been implemented .as a
pre-processor to C under Sun UNIX\footnote® . Below we
describe several of the implementation issues.

3.1 Redefinition of Pseudo Operations

We implement the redefinition of pseudo operation by taking
advantage of pointers in C. A pointer to an integer is provided
for each pseudo operation to hold the redefined function. The
pointer is assigned to the provided pointer at the time of
instance creation. It is cast to the required type. Runtime
routines take care of these setup operations and the other
operations needed for instance extinction.

. UNIXis a trademark of AT&T Bell Laboratory

(5)



3.2 Inter-Object Communication

Sockets [SUNB6], a monitor call in BSD UNIX, are used to
implement inter-object communication. UNIX has two types of
socket: stream sockets and datagram sockets. We select the
stream socket for our communications as the order of the
transmitted data needs to be preserved. .

Implementation of Operation Call

Fig.2(a) shows the implementation of a synchronized
operation call. For each server process, a queus called an
operation-call queue is made. Fig.2(b) presents a detailed
algorithm for a server to handle operation calls. The request
found nearest to the head of the queue is selected.

An asynchronous operation call can be implemented by
putting the code that is between the issue statement and

. receive statement, after the client's step 5 in Fig.2(a). The *

Ignore option of the operation call is imiplemented by omitting
step 8 and 9 in the client object and step 7 through 9 in the
server object.

Iimplementation .of Broadcasting

Broadcasting is implemented- as. an operation call to the
supervisor process. There is only one supervisor process at
runtime in an- A-MODEL/PL program. It manages all object
creations and terminations. This process owns the process
table which includes a list of all created objects. If the process
accepts a broadcasting inquiry, it delivers the broadcast data
to all designated objects in the order of the objects' creations.

implementation of Exception Handling
Exception handling is implemented using the kill system call
- used by a UNIX process to send a signal to another process,
and the sigvec system call which is used to set handler
routines for signals. The raise statement is translated into a
kill system call and exception routines are set by the sigvec
system call. A process aborting facility is implemented as a
kill system call to the runtime supervising process. The
supervisor takes care of aborting the desagnated process and
its propaganon

3.3 Problems in the First Prototype and Required
ifmprovement

The current prototype has an inter-object communication and
a late-binding mechanism for pseudo operations. However,
there was no consideration given for the efficiency of
produced code in the prototype. In particular, parameter and
return value type checks in an operation call are performed at
run time even though they can be done at compilation. in this
sense, a strong typing scheme

is really not implemented in the prototype as was planned in
the design.

Even if the static check were implemented, run time checking
would still be needed for a late-bound pseudo operation. We
employ a late-binding mechanism at the cost of runtime
efficiency but with a gain in the flexibility. This disadvantage,
however, can be avoided by providing a compiler option to not
include run time checking. Once we know the code is correct,
we do not have to pay the run time cost any more. This option
_ may be used to compile only completed programs. it should
not be used during development of programs. This option will

be incorporated in the next version of the implementation.

4. Conclusion

In this paper, we gave an overview of A-MODEL/PL designed
for the development of production quality basic software.
Central to our design is to enable natural modeling. Towards
this end, we interpret an object as a entity with a scenario, we
distinguish active objects from passive objects, and we
introduce a broadcasting mechanism as an inter-object
communication aid. These features have not been previously
realized in object-oriented concurrent programming
languages.

Programming with objects without scenarios requires us to
write a driver routine to a driver object. Adding such.an object
introduces a structural change when going from the problem to
the solution space. Another way to control objects without
scenarios is to provide an operation for the scenario for each
object and to invoke this operation at instance creation. This
approach is close to employing objects with built-in scenarios,
but we feel that it still does not provide a natural model.

Distinguishing between clients and servers provides additional
benefits to natural modeling. It helps static detection of invalid
communication between objects. For example, an attempt of a
server to invoke operations of another server can be detected
as an error. This can be regarded as a kind of strong typing
scheme.

From the standpoint of the reuse of objects (classes), servers
are more reusable than clients because servers are
independent of their context while clients are not. Thus, to
distinguish between clients and servers allows us to extract
reusable classes from a specific problem space. This
becomes even more important it we move to a style of
differential programming [MOQ86] where reusing exnstmg
objects is a key concern.

Broadcasting is a powerful inter-object communication method
describing system-wide data communication. For example, an
error message propagated from a parser to all other objects of
a compiler, or a network-wide message delivered to every
process in a certain region of a local area network. If we try to
write such software without broadcasting, we are forced to use
one-to-one communication. However, it is not guaranteed that
the object issuing the message knows all the other objects
receiving the message. To do this, we have to introduce an
additional object knowing about all of instantiated objects in
the system. It is, again, an unnatural model.

A-MODEL/PL was designed as a specialized programming
language for the software development environment STEP
[HAR86, NOR85, NOR88). A prototype STEP has been written
in C code and fully compatible with the object codes of A-
MODEL/PL. This has further supported the practicality of our
language. We are currently planning to implement an A-
MODEL/PL compiler written in A-MODEL/PL.

Based on the above discussion, A-MODEL/PL qualifies as yet
another object-oriented concurrent’ programming language.
But, based on experience, the authors believe it provides a
more complete and natural model of the problem space.

(6)



. [TeD uone1ad( 3ds0y 03 19a10g 205 wgyLIoBY (q)

*Y205" 1D A 7133 9801
{¥2057 1D A “19y YSnoIyy snpea UIN39T S3LIpN
Z.m. 19y D Susn Y0053y ) 03 205D A ™19y 999uu0n)

; INS~IP APy 0% 1 puiq pue
anfea wmjal ynd 03 YOIGM UL Y2057 A29Y Jox20s ® usdQ

‘uorjerado Surpuodser1od o) oynoaxy |

‘dooy pue
J pus
{paAtedel usaq jsnf -
aaey jey) ejep [[ed-uoryerado snanbuy
§908~199DID(T 950D
ye0g"p2pvI0q
y8noIyy eyep [ed-uoryerado oY) pesy
¥0085"uu0HY 3desdse — y30g-109v0 T
19205 "uU0,H2IY 03 UOI}IPUUO 31} $deddy
%205 7uU0HIIY 0} UOIJIPUTOD 10} UIYSIT
. . as[e
‘31x9
uoly v:osu a3} Ul aIe eje mu-nosﬂono Burpuodsa1zod J1
q q Pl P Jt
Auguusu 01 suopsado sof sbvy fo y53)onand -younag
snenb j[es-uonyersdo ayj yoress —-
doog

{NSTUU0DIOY JWIRU S} O I PUIq PUR I9AISS Y}
03 s[res uotjerado e 1de9de 03 Y208 ~uuUHIVY Jeyo0s usdQ
‘eyep [[ev-uotjerado 10f snanb e siedaig

"9NJeA UINYSI B 9419931 0} du 398 —-
JUSTO © YIIYM ‘A[2A1305dS0I ‘QUIRU ST PUE J0Y00S © ——

2q NSTIPYD PUB 00571340 W —=

[1eD woyeiad( jo uonyejuowa(dury z91g

900G M paziesy [[eD uoljeredQ (e)

S puR YD 980D 01

"4 S W01} SnjeA WInjal pesy ‘6
‘yoydeooe — Yy g

YD 0} Uor}oUUO0? Y3 jdoddY 78

4D 0} UOT}IPUTOD 10} UNSIT '8

YS #5010 01
‘S O} ON[eA WINJDI IM 6

NYD [ HD 0 Y 199uu0) '8
"NYS 03 31 pulq pue 3nfea
uInje1 9y} 10 ¥ S 19008 ® wadQ °L
‘uorjerado Jurpuodsol1od 8y} IIMISXH ‘9
. VS 38010 'S 00 380D g
‘anjeA UWINJAT 93 SAISIDI 0} YIIYM
U0 13)208 31} JO SWed 3} ‘NY D
pue ‘z ‘fi ‘z s1ejourered
‘1d Sy woryerado a3
®yep [[RI-UOIgRIad)
V'S ySnoxyy VS o1
Sew j1vo-uoywiado 9y} pedy p Dop JJvI-uonviado UM ¥
‘Y gydedoe — v g
‘V'§ uoroauuod oYy 3deody z'g .
/S 0} UOI}I2UUO0D I0] UISU] T°¢ *NVS UM 'S 01 DD 199Uuo)) °¢g
"ApAryadssl NY D
pue A/ SeUIRU 9y} 0} WY} pulg ‘g
*1d O wolj
onjea uInjal ayy 38 03 ¥ pue
: 140 182 01 DO sPyoos wadQ T
*NV S dWeu 9y} 0} 1 pulq PUR I0AISS
ST} 09 s[[e> uoiyerndo [[e
doooe 03 19208 wadQ 0
! s VMEO ydaooe (2 z)1dQ +2au3g
19AI0S LD

(7)



Acknoeledgements

We would like to thank Professor Victor R. Basili of the
University of Maryland who gave us valuable comments on
writing and organizing this paper.

References

[BIR79] G. M. Birtwistle et al., Simula Begin, Lund, Sweden:
Studentlitteratur, 1979.

[BOO86) G. Booch, Software Engineering with Ada, 2nd ed.
Menlo Park, CA: The Benjamin/Cummings Publishing
Company, 1987.

[COX86] B. J. Cox, Object Oriented Programming, Reading,

MA: Addison-Wesley Publishing Company, 1986.

[DEN84] R. J. DeNatale, “Class C -- Extensions to Object-
Oriented Programming,” /IBM Technical Journal,
Watson Research Center, Feb. 1984.

[DOD83] DoD, Reference Manual for the Ada Programming
Language, American National Standard Institute, Jan.
1983..

[GOL83] A. Goldberg and D. Robson, Smalltalk-80: The
Language and its Implementation, Reading, MA:
Addison-Wesley Publishing Company, 1983.

[HARS86] K. Harada and M. Noro, “An Interactive Software
Design and Implementation Support System STEP,”
Institute of Information Science, Keio University,
KiiS-85-01, Feb. 1986.

[HOA78] C. A. R. Hoare et al., “Communicating Sequential
Processes,” Commun. ACM, Vol. 21, No. 8, Aug.
1978, pp. 323-334.

[INM84] INMOS Limited, Occam Programming Manual,
Englewood Cliffs, NJ: Prentice-Hall, 1984.

[ISH86] Y. Ishikawa and M. Tokoro, “A Concurrent Object-
Oriented Knowledge Representation Language
Orient84/K: Its Feature and Implementation,”
SIGPLAN Notices, Vol. 21, No. 11, Nov. 19886, pp.
232-241.

[LIS83] B. Liskov and R. Scheifler: “Guardians and Actions:
Linguistic Support for Robust, Distributed Programs,”
ACM Transaction on Programming Languages and
Systems, Vol.5, No.3, July 1983, pp.381-404.

[MOO86] D. A. Moon, “Object-Oriented Prograrhming with
Flavors,” SIGPLAN Notices, Vol. 21, No. 11, Nov.
1986, pp. 1-8.

[NOR85] M. Noro and K. Harada, “A Design of the
Programming Environment STEP Based on Stepwise
Refinement,” in Proc. COMPSAC'85, Oct. 1985, pp.
334-341. .

[NORB88] M. Noro, Dasign and Implementation of a Process-
Oriented Software Development Environment, Ph.D.
Dissertation, Keio University, 1988.

[SCH86] K. Schmucker, “Object-Oriented Languages for the
Macintosh,” Byte, Aug. 1986, pp. 177-185.

[STR86] B. Stroustrup, The C++ Programming Language,
Reading, MA: Addison-Wesley Publishing Company,
1986.

[SUN86] Sun Microsystems Inc., “Inter-Process
Communication Primer,” in Networking on the Sun
Workstation, Feb. 1986.

[THAS85] D. Thalmann,y MODULA-2, Berlin: Springer-
Verlag,1985.

[TOU87] H. Touati, “Is Ada an Object Oriented Programming
Language?,” SIGPLAN Notices, Vol. 22, No. 5, May
1987, pp. 23-26.

[WEGS87] P. Wegner, “Dimensions of Object-Oriented
Language Design,” SIGPLAN Notices, Vol. 22, No. 11,
Nov. 1987, pp. 168-182.

[YOK87] Y. Yokote and M. Tokoro, “Concurrent Programming
in Concurrent Smalitalk in Object-Oriented
Concurrent Programming,” A. Yonezawa and M.
Tokoro Eds., Cambridge: The MIT Press, 1987, pp.
129-158.

[YONS86] A. Yonezawa et al., “Object-Oriented Concurrent
Programming in ABCL/1,"” SIGPLAN Notices, Vol. 21,
No. 11, Nov. 1986, pp. 258-267.

(8)



