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In this paper, we examine “program adjustment”, a pract,icé.l approach to the automatic programming
and program synthesis for concurrent programs, which automatically reforms a roughly-made program to-
satisfy given constraints. The model of‘concurrent programs used is the finite state process,ﬂand program
adjustment to satisfy temporal logic constraints is formalized as synthesis of an arbiter process which
controls a target process (a foughly-madé pfbgram). Compositional adjustment is also. proposed for
large-scale compound target processes, using process equivalence theory. We have developed a computer-
aided programming environment on Multi—PSI, called MENDELS ZONE, that adopts this .compositional
adjustment. Adjusted programs can be compiled into KL1 prégrams and executed in MENDELS ZONE.
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1. INTRODUCTION

As practical paraltel and distributed computer
systems gradually spread in the industry, there is
an increasing demand for programmers who
design concurrent programs. Since it is not easy
for ordinary programmers to produce correct and
efficient concurrent programs, several kinds of
computer-aided concurrent programming envi-
ronments are necessary, including tools for verifi-
cation, debugging, performance evaluation, and
synthesis of correct and efficient programs.
MENDELS ZONE [Uchihira87, Honiden89,
Uchihira90a] is a computer-aided concurrent pro-
gramming environment that has been developed
to make the difficult task of concurrent program-
ming easier, especially for the Parallel Inference
Machine Multi-PSI and its kernel language KL1.
This paper focuses on the program synthesis
feature of MENDELS ZONE.

Automatic program synthesis from some formal
specification is not practical for the following
reasons:

« It is not easy for ordinary programmers to write
complete formal specifications.

» Automatic synthesis requires huge computing
costs to produce large-scale programs.

« Synthesized programs may be inefficient.

For example, some works [Manna&Wolper84,
Clarke&Emerson82] about concurrent program
synthesis from temporal logic specification are
very suggestive, but they can not go beyond toy
program synthesis. More promising approach is
the stepwise refinement which constructs
(efficiently) executable programs from formal
specifications through a number of provable
correct development steps [de Bakker89].
However, it still has difficulties to specify a com-
plete formal specification, and has a great gap
from actual programming.

Therefore, we propose another approach
"program adjustment” in place of automatic
synthesis and refinement. Program adjustment
means to reform a roughly-made program auto-
matically to satisfy given constraints. Here, we
consider only timing constraints for concurrent
programs that can be specified by temporal logic.
in this context, "a roughly-made program” is
defined as a program which may be incomplete in
its timing. The main idea of program adjustment is
that a concurrent program may eventually satisfy
some kinds of timing constraints by eliminating
harmful nondeterministic alternatives (i.e., partialty
serializing a concurrent program). This program
adjustment is practical for the following reasons:

« |t is not very difficult for ordinary programmers to
produce a roughly-made concurrent program,
which satisfies at least functional requirements. A
more difficult task is to design and debug the
timing of programs.

* Many bugs derive from harmful nondeterministic
alternatives.

o It is easy for ordinary programmers to write timing
constraints, such as deadlock-free and-starvation-
free constraints.

* A roughly-made program can be mtended to be
efficient by a programmer.

In this paper, a concurrent program is modeled
with the finite state process, which resembles the
transition system in CCS and the finite automaton.
A program is compositionally constructed from
finite state processes with the composition
operator. In the case of a finite state process,
program adjustment means to adjust a roughly-
made process to satisfy given constraints by
adding an arbiter process which is synchronized
with and controls the roughly-made process.
When a target program becomes large, the arbiter
synthesis may cause computing cost explosion.
Therefore, we propose compositional
adjustment, in which local arbiters are synthesized
in each composition step. In each step, the
reduction of the finite state process, based on
process equivalence theory, can gase computing
cost explosion. Here, we introduce a new process
equivalence relation to manipulate liveness
properties, because a traditional bisimulation
equivalence of CCS can not. This compositional
adjustment has been implemented in MENDELS
ZONE.

The remainder of the paper is organized as
follows. Section 2 defines Finite State Processes
(FSP) and their equivalence relation and
composition operator. Compositional adjustment
of FSP is described in Section 3. An overview of
MENDELS ZONE is briefly shown and its
compositional adjustment is explained in Section
4. Finally, Section 5 shows a simple and nontrivial
example of program adjustment, followed by the
conclusion in Section 6.

2. FINITE STATE PROCESSES

The basic model for concurrent programs is the
finite state process [Kanellakis & Smolka90],
which can specify the finite state transition system
with liveness conditions. First, we define a Finite

* State Process (FSP) and an equivalence relation

for FSPs. Then, several operators (composition,
relabelling, and reduction) on FSPs are
introduced and their properties are shown.

2.1 FINITE STATE PROCESSES

[Definition 1] (Finite State Process)

A Finite State Process (FSP) is a seventuple
P=(S,A,L,8,r,s0,F), where:

« S is a finite set of states,

¢ A is a finite set of actions,

« | is a finite set of synchronization labels,

5. Sx A— S u{l} is a deterministic transition
function (here, 8(s,t)=L means actionte Ais
disabled in state s € S),

en: A - (Lu {1}) is a labelling function, (here, ©
means an invisible internal action), )
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* sg € Sis aninitial state, and
« FC Sis a set of designated states. M

[Example]
P= ({s0,51,52,83}, {t1,12,13}, {a,b}, &, =, 50, {s3})
where §(s0,t1) = s1, §(s0, 12) = s2, 8(s1,12)
=83, §(s2,t1)= s3, 8(s3,13)= s0, n(t1)=a, n(t2)=b,
n(t3)=t. W

v

NOTE: actiorvlabel,
a double circle means a designated state.

Fig.1 Finite State Process

To begin with, several notations are introduced.
Let X be a set. The set of all finite sequences over
X, with an empty sequence ¢ (without ), is
denoted by X* (X+, respectively), and the set of ali
infinite sequences over X is denoted by X®. w
means "infinitely many"”. X is defined by X*° = X*
U X0 For6 e X, 6(i) means the i-th element in
sequence 6, 8]k means the subsequence 8(1)

(2)...8(k) of 8, and |6| is the length of 6. Let
P=(S,A,L,8,%n,50,F) be an FSP. A transition
function can be extended such that 8 : S x A* —»
Su{l}, ie., 8(s,6a) = 5(5(s,0),a). Note, 3(s.e)
=8. Since a transition function is deterministic, a
current state can be uniquely determined from an
initial state and an action sequence. We call an
action sequence a behavior. Similarly, we can
extend a labelling function such that. ni: A* — (Lu
{t})*. In addition, n*(8) is defined as the
sequence gained by deleting all occurrences of ©
from n(6). A set of reachable states from state s
in P is defined as Rp(s) ={ s' | 36e A*. s' = §(s,0)
} and Rp+(s) ={s'| 36eA+. s' = §(s,0) }. Also,
a set of all possible action sequences (label
sequences) of P is defined as L{P)={ 6e A* |
8(50.0)2L } (Ln(P)={ n"(8)e L* | 6 L(P)},
respectively). Since interest is in the infinite
behavior of FSP, we introduce a set of infinite

action sequences Lg(P)< (ARPUA*{A}O)
where A means deadlock:

Le(P) ={68e AV | 1<Vk.8(sp,0lk)zL }u {Be
A*{A}® | 3k.1<Vi<k.8(sp,0]j)#L and VaeA.
8(8(s0,81k),a)=L and 6(j)=A for Vj>k}

Note that if 6 e L(P) is a deadlock sequence (i.e.,
an inevitably finite sequence), then 6 is

represented as 8A% L (P). Finally, Ly faif(p) <

L(P) is defined as wa‘a'r(P) ={08l 8 e Ly(P)
under the fairness condition } where the fairness
condition means whenever a behavior  infinitely
often passes through some state s, every action a
enabled at s must appear infinitely often on 0
(i.e., if s = 8(s0.0lj) for infinitely many i and
5(s,a)=L, then s = 3(sp,6lj} and 6(j+1)=a for
infinitely many j). Finally, L(P)/L is introduced by
definition: L(P)/L ={6'|30eL(P).Vi.(6'(i)=¢ if
0(i)e L, otherwise 6'(i)=8(i))} Intuitively,
L(P)/L consists of a set of behaviors of P in which
all elements of L are deleted.

FSP is a transition system with liveness
conditions. In FSP, liveness conditions are
represented by designated nodes that indicate
satisfiable behavior of FSP as follows:

[Definition 2] (Satisfiable Behavior)
Let P=(S,A,L,8,x,50,F) be an FSP. 6 € A® s a
satisfiable behavior, if &(sg,8|k)e F for

infinitely many k- 2 1. Lp(P)& A® is a set of
all satisfiable behaviors on P. | | :

Note that a satisfiable behavior corresponds
to an accepting run of w-automaton.

[Definition 3] (Completeness of FSP). .
Let P=(S,A,L,8,%x,s0,F) be an FSP. P is complete

if Vs € Rp(sp). 3s' e Rp*(s) and s'e F. |

A state se Rp(sg), having no path to designated
nodes from s, is called an unsatisfiable state. A
behavior reaching to' an unsatisfiable state is
c¢alled an inevitably unsatisfiable behavior.

[Lemma 1]
If FSP P is complete,

then L,faif(p) < Lb(P) .

This lemma means that if P is complete then a
random transition over P leads to a satisfiable
behavior.

2.2 EQUIVALENCE OF FINITE STATE
PROCESSES

We now introduce the notion of ntw-bisimulation
equivalence. that is an extension of Milner's weak
bisimulation’ equivalence [Milner89}. ntw-
bisimulation equivalence has been originally
developed for compositional verification
[Uchihira90b]. In this paper, it is used to reduce a
FSP to a smaller and equivalent one in
compositional adjustment.

[Definition 4] (tw-divergence)

Let P=(S,A,L,8,n,50,F) be an FSP.s € S is tw—
divergent (sT) if Yn>0. 3s'e S. 30e A*. |6l =
n{(0)=¢ and s'= &(s,6). |
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[Definition 5] (rtw-bisimulation
Equivalence)

Let P1=(S1,A1,L1,81,n1,501,F1) and P2 =
(S2,A2,L.2,82,72,502,F2) be FSPs. P1 and P2 are
rmtw-bisimulation equivalent (Pl1=gre P2),

if there is a binary relation R < S1xS2, such that
(sp1.s02)e R, and Vsi € S1. Vs2 € S2.
(s1,52)eR &

(1) s1 € Fliff sp e F2,

(2) s17 iff s2T, , :
(3) Vi1 € Aq.Vsqy' e Sq. (if s1' = 81(s{.11)
then 36 € Ap* .3s2' e So . wlr(t1)=n2"(8), s2'
= 82(s2,0), and (s1',s2"eR,

(4) Vi2 € A2.Vs2'e So. (if s2' = 82(s2,12)
then 36 € A1*.3s1'e 81 . n2*(12)=r1"(9), 81’
= 81(s1,8), and (s1',s2"eR. | |

rto-bisimulation is extended so that it can
discriminate designated states and divergence,
which can not be discriminated by the weak
bisimulation. The following lemma is derived from
these discrimination abilities.

[Lemma 2]
If P1is complete and P1=gqP2, then P2 is also
complete. L ‘

[Definition 6] (Reduction)

For a given FSP P = (S,A,L,8,r,50,F), a reduction
of P, red(P) = (Sr,Ar,Lr,8r,nr,srg,Fr), is an FSP
such that P =g, red(P) and [Sri<|S]. |

The smallest red(P) is constructed effectively by
the relational coarsest partitioning algorithm
[Paige & Tarjan87, Kanellakis & Smolkag0] such
that all states of P that are ntw-bisimilar to each
other are brought together into a smgle state of
red(P).

2.3 OPERATORS ON FINITE STATE
PROCESSES

Concurrent programs are constructed as a com-
position of several FSPs that are synchronized
with each other. The composition and relabelling
operators for FSPs are introduced and their im-
portant properties (substitutivity and reflectivity)
are shown.

[Definition 7] (Composition Operator)
For P1=(S1,A1,L1,81,x1,s1g,F1) and P2=
(S2,A2,L2,52,n2,s20,F2), a composition P =
P1|P2 is defined as follows:
B=(S1x$2x{0,1}2, (Alufidie}) x (A2u
{idle}), L1UL2,8,x,(s10,520,0,0),F"), where
8 (S1x52%{0,1}2)x(A1u{idle})x(A2u{idle})
—S51x$2x{0,1}2 such that
8((s1,s2,f1,12),(a1,a2))= "
e (81(s1,a1),82(s2,a2),f1',12") where fi'=1 i
Si(si,ai)e Fi, otherwise fi'=0 (for i=1,2),

when n1(al)=r2(a2)#t, and f1=f2=1,

e (81(s1,a1),82(s2,a2),f1',f2") where fi'=1 if
Si(si,ai)e Fi v fi=1, otherwise 1i'=0 (for i=1,2),
when ri(at)=n2(a2)=t, and (f1=0v{2=0),
¢ (51(s1,a1),52,f1',0) where
1'=1 if 31(s1,a1)e F1, otherwise f1'=0, when
rni(al)e (L1nL2), a2=idle, and fi=f2=1,
e (81(s1,a1),s2,f1',f2) where f1'=1 if
81(s1,a1)eF1 v f1=1, otherwise {1'=0, when
ri(al)e (L1nL2), a2=idle, and (f1=0vi2=0),
s (s1,52(s2,a2),0,12) where
f2'=1 if 52(s2,a2)e F2, otherwise f2'=0, when
n2(a2)eL1nL2, ai=idle, and fi=f2=1,
* (51,52(s2,a2),11,f2') where f2'=1 it
82(s2,a2)e F2 v {2=1, otherwise f2'=0, when
n2(a2)¢ L1nL2, ai=idle, and (11=0vf2=0),
e otherwise 1,
n: (Afu{idle}xAauiidle}) —» L1ulL2uit} such
that
n((a1,a2))=r1(ai)=n2(az)
if a1 e A1 and age A2,
e n((al,idle))=xn1(al) if a1l € A1,
n((idle,a2))=n2(a2) .if a2 e A2,
and F'={ (s1,52,f1,f2) | f1=f2=1}. I

Remark that processes are synchronized at
actions with same labels. This composition -is
similar-to composition of CCS [Milner89] except
for its treatment of designated nodes. The
following relabelling operators is used to relabei
actions so that actions which are synchronized in
composition have same labels.

[Definition 8] (Relabelling Operator)

For P=(S,A,L,8,n,s0,F) and a relabelling
function f:L—L'u{t}, P'=P[f] is defined as
follows: .
P'=(S,A,L",8,n",50,F), where

e n'(a)=f(r(a)) if n(a)=r,

s '(a)=1 if t(a)=1 n

[Example]

« P1=({s0,s1,s2},{11,12,13,t4,t5}.{a1,b1,c}.81 .71,
s0.,{s1}) where

51(s0,t1)= s1 81(s0,t2)=s2,
51(s1,t3)=s

51(s2,14)= s1 81(51 15)= s1 n1(t1)
r1(12)=b1, =n4(13)=b1, =nq(t4)=a
n1(t5)=c

« P2=({50,51,52},{t1,12,13,14,15}, {a2,b2,d},
82,m2,50.{s2}) where
52(s0,t1)=s1, 82(s0,t2)=s2,
82(s1,t3)=582, 82(s2,t4)=s1,
52(s2,t5)=s2, no(11)=a2, w2(t2)=b
n2(t3)=b2, no(t4)=a2, w2(15)=d.
« relabelling functions: fi(ai)=a, fi(bi)=Db,
and fi(l)=l for other labels (i=1,2).

o P1[f1]|P2[f2] = ;
({s0,s1,82,83,84},{(t1,t1),(12,12),
(t13,13),(t4,t4),(15,idle),(idle,t5)},
{a,b,c,d}, 8, m, sp, {s3,54}) where
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8(s0,(11,t1))=s1, §(
8(s1,(t3,13))=s3, &(s1,(t5,idle))=s1,
8(s2,(t4,t4))=s4, §(s2,(idle,15))=s2
5(s3,(14,14))=s1, &(s3,(idle,t5))=s2,
3(s4,(13,13))=s2, &(s4,(t5,idle))=s1
n{(t1,t1))=a, =((12,12))=b,
n((13,13))=b, =((14,t4))=a,
n{(t5,idle))=c, =n((idle,t5))=d.

s0,(12,12))=5s2,

t5/c  t4/al

P1[f1] | P2[f2} : v

(t5,idle)/c

(13,13)/b

" (idle,t5)/d

Fig2. Composition

[Definition 9] (Projection)

Let P1 and P2 be FSPs. A left projection
L(P1|P2)lleft is defined as L(P1|P2)lleft = {
01/{idie} | 30e L(P1|P2). o(i)= (61(i),
02(i)) }. Similarly, a right projection L(P1|P2)
dright is defined. In the same way, projections of
Lo Lo, and Ly are defined. m

[Lemma 3] (Reflectivity)
Let P1 and P2 be FSPs. If P=P1|P2, then Lp(P)

Ueft€ Lp(P1) and Lp(P)right S Lp(P2). ®

[Lemma 4] (Substitutivity)
nte-bisimulation equivalence is preserved
by composition and relabelling; that is, if
P=7g'[(_|)Q, then P|R=n1mOlR, and
Plfl=r10Q[f]. =

Reﬂectivity and substitutivity are used in the
following the basic adjustment and the composi-
tional adjustment, respectively.

3. PROGRAM ADJUSTMENT

This section proposes compositional adjustment
of FSP. Program adjustment means to adjust a
roughly-made process to be complete by adding
an arbiter process. First, we begin with basic
adjustment. ‘

3.1 BASIC ADJUSTMENT

[Problem]

Input:  An FSP P=(S,A,L,8,%,50,F),

Output: A maximally permissive FSP C=(S¢,A¢,
Le, 8¢,mc,80c.Fe) such that P|C is complete.
Here, "C is maximally permissive” means "vC'. if

P|C'is complete then L(C) < L(C)". W

Here, C is called an arbiter. The arbiter C restrains
the target FSP P from falling into unsatisfiable
states by eliminating harmiul observable transi-
tions. = -

[Algorithm 1] (Single Arbiter Synthesis)
(Step 0) P':=P. , ,
(Step 1) Find a set of unsatisfiable states
SuC€ S in P'=(S',A"L,8,n',s0',F'). If there are
no unsatisfiable states, go to Step 4.

(Step 2) Construct a pseudo-arbiter C' from
P' as follows:

At first, 1-closure Ct is defined as

C1(s, a) ={ s'| 36. (s'=5(s,0), n*(0)=a) } for Vse S’
and Vael'U{g},

C1(Ssub,a) = Uge Ssub C1(s,a) for YSsub< S
and Vael', ' ,

then it is defined that C' = (Sc¢', Ac', L, 8¢, ng',
Ct(sQ', €}, S¢'), where

Sc=2%', Ac'=(t, | acL}U{ ts | se S, and

for vaeL, Vs'e S¢',

e 8¢'(s',ty) = C1(s',a)e Sc' it C1(s',a)nSu=0,
*8c'(s'ty) =L if Ct(s".a)nSu=0,

* 3c'(s'tg")=s", and

ng'(tg)=a and nc'(ts')=1 for VaeL', vs'e Sc'.
Remark that "3¢'(s',ty) =L if Ct(s',a)nSu=@"
means elimination of all behaviors which can not
be distinguished from inevitably unsatisfiable
behaviors by a label observer.

(Step 3) P:=P'| C', and return to Step 1.

(Step 4) Let a final pseudo-arbiter C' generated
after applying Step 1 - Step 3 repeatedly be a
arbiter C.

If Cis empty (i.e., alt behaviors are eliminated), C is
called unrealizable, otherwise, called realizable.

[Theorem 1]

If a FSP C=(Sc,Ac,Lc,SC,nc,SOC,Fc) is realizable
for a given FSP P=(S,A,L,5,n,50,F) in the above
algorithm, then P|C is complete and C is maximally
permissive. .

(Sketch of proof) During Step 1 - Step 3, all
inevitably unsatisfiable behaviors are eliminated in
the final P'. Therefore, P' is complete. Since the
transition function of C' is deterministic about its
labels, C' restrains no satistiable behavior of P.
Therefore P|C is complete and C is maximally
permissive. | | :
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[Corollary 1]

Leof@inPic)dleftS Lp(P|C)lleftS Lp(P)
(Proof) It derives from Lemma 1 and Lemma 3 with
Theorem 1. n

This corollary assures that P, adjusted by C,
satisties its liveness constraints, whenever its
behaviors are made by random transitions over
states. Remark that an arbiter is effective in case

that Le,faiM(P) C Lp(P) does not hold.

[Example]

Fig.3 shows a simple single arbiter adjustment
In the target process P, only 6 = t3t6t7 is an
inevitably unsatisfiable behavior. Since {i3t6t7,
t3t4} is a set of behaviors which can not be distin-
guished from 6 (i.e. have the same label
sequence "ab"), 14 and {7 are eliminated. From
the reminder, the arbiter C can be constructed.

Fig.3 Single Arbiter Synthesis

3.2 COMPOSITIONAL ADJUSTMENT

When a target program is composed hierarchically
with many processes and then become very
large, the arbiter synthesis may cause the
following problems: (1) the synthesis results in
computing cost explosion, (2) a single arbiter is
too restrictive to' control the whole program
precisely. Therefore, we propose compositional
adjustment, in which local arbiters are synthesized
in each composition step. The reduction of FSP
can ease its computing cost explosion in each
step.

[Theorem 2] :
If P1 =gy P2, then C is an arbiter of P1 iff
C is an arbiter of P2.

—160—

{Proof) From Lemma 2 and Lemma 4, C|{P1 is
complete iff C|P2 is complete. W

[Corollary 2]
if C is an arbiter of red(P), then C is also an arbiter
of P. |

[Algorithm 2] (Compositional Arbiter
Synthesis)

For simplicity, we explain compositional adjust-
ment for the following target program that is con-
structed by two-level composition (Fig.4). This
algorithm can be extended easily to arbitrary
target programs.

Target Program:

(P11[f11] | P12[f12))[f1] | (P21[f21] | P22[f22])[f2]
where P11, P12, P21, and P22 are FSPs, and
{11, 12, f21, 122, {1 and f2 are relabelling
functions.

The compositional arbiter synthesis is done in a
bottom-up way.

(Step 1) Low level arbiters C1 and C2 are
synthesized for subprocesses P11[f11] |
Pi12[f12] and P21[f21] | P22[f22], re-
spectively. We denote Pt1:= (C1 | P11[fi1] |
P12[f12])[f1] and P2 = (C2 | P21{f21] |
p22{f22])[f2].

(Step 2) Reduced subprocesses red(P1) and
red(P2) are made from P1 and P2.

(Step 3) A top level arbiter CO is synthe-
sized for a target process red(P1) |
red(P2).

synchronization
links

Fig.4 Compositional Adj'ustment;v

The Corollary 2 assures that reduction preserves,
all information necessary for each local arbiter
synthesis. The reduction in each step can cut
down the synthesis cost. Note that it is possible to
synthesize directly a single arbiter C' for the target
programs. However, C' is too restrictive because it
has less visible (uncontroliable) actions compared
with local arbiters, and its synthesis cost is more
expensive.

4. MENDELS ZONE

4.1 OVERVIEW



MENDELS ZONE is a programming environment
for concurrent programs. The target concurrent
programming language is MENDEL, which is
based on an extended Petri net and is then
translated into the concurrent logic programming
language KL1 and executed in Multi-PSI.
MENDEL is regarded as a user-friendly macro
language of KL1, whose purpose is similar to
A'UM [Yoshida & Chikayamas8] and AYA [Suzaki
& Chikayama91]. However, MENDEL is more
convenient for programmers to use to design a
state-transition-based distributed system.
MENDEL programs can also be translated into C
and Occam. MENDELS ZONE supports (1)
synthesis of MENDEL atomic processes, (2)
graphical process interconnection, and (3) com-
positional adjustment of interconnected MENDEL
processes based on theories described in
Section 3. This adjustment procedure, which
needs relatively much computing power, is. im-
plemented by KL1 and executed on Muli-PSI to
achieve an effective speedup.

4.2 MENDEL NET

MENDEL is a concurrent programming language
based on an extended Petri net. If a programmer
constructs a program only using by MENDELS
ZONE's graphic editor shown in Fig.5, he does
not have to learn the detailed syntax of MENDEL.
He is required only to know a graphical represen-
tation of the extended Petri net, called MENDEL
net. Therefore, we omit an explanation of
MENDEL itself. MENDEL net is extended from
Petri net.in the following aspects:

(1) Modularity is introduced. A module of
MENDEL net represents a process.

(2) Another kind of synchronization between
processes that is synchronous (i.e., hand-shake)
communication is introduced, in addition to asyn-
chronous (i.e., datafiow) communication.

(3) Each transition can have an additional enable
condition, which must be satisfied when it fires,
and an additional action, which is executed when
it fires. Both are written by KL1.

xx ampry xx

DOKEet _TVRuUT evEsT_eveut_&)

Fig.5 MENDELS ZONE

MENDEL net is graphically represented like Petri
net (Fig.6). The basic conventions are as follows:
- Each place is represented by a circle.

- Each transition is represented by a square.

- Each process is represented by enclosing
places and transitions belonging to the process
with a line. ]

- A synchronous (hand-shake) communication is
represented by a dotted line between transitions.
- An asynchronous (dataflow) communication is
represented by an arrow between a transition and
aplace.

However, our program adjustment method is only
applicable to finite state programs. When program
adjustment is applied, the target MENDEL net is
restricted to being a bounded one without asyn-
chronous communications, which is able to be
translated into FSPs. Furthermore, KL1 codes
attached to transitions are ignored.

Resist evelopment
Ygetr Arm  put ¢1 %
AY

d

\
AY

Trans Trans

Fig.6 MENDEL NET
4.3 MENDEL NET CONSTRUCTION

A programmer can construct a MENDEL net using
the graphic editor and a program library as follows:
(Step 1) Construct atomic MENDEL processes
basically by software reuse [Uchihira87]. If the
library has no suitable reusable MENDEL
processes, MENDELS ZONE can synthesize it
from a given algebraic specification [Honideng0].
It is also possible for the programmer to construct
the atomic MENDEL process by himself using the
graphic editor.

(Step 2) Interconnect MENDEL processes with
communication links using the graphic editor to
make a new compound MENDEL process. A
large-scale program can be constructed in this
compositional way.

Here, constructed programs are roughly-made
because a programmer reuses programs whose
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possible behaviors he may not fully understand,
and then communication links may be incomplete.

4.4 MENDEL NET VERIFICATION AND
ADJUSTMENT

After constructing a roughly-made MENDEL net,
the programmer specifies safety and liveness
properties that must be satisfied by MENDEL net.
Here, safety properties include admissible partial
ordering of actions (i.e., transition firing), and
liveness properties include deadlock and
starvation about actions. These constraints are
specified by temporal logic.

[Definition 10} (LPTL)

(1) Syntax

Linear time proposmonal temporal logic (LPTL)
tormulas are built from:.

» A set of all atomic propositions: Prop={p1, p2,
p3,.--,Pn}

« Boolean connectives: A,—

* Temporal operators: X{"next"), U("until")

The formation rules are:

» An atomic proposition p € Prop is a formula.

¢ I f1 and {2 are formulas, so are f1 Af2 —f1, Xf1,
f1 Uf2.

(2) Semantics

The operators intuitively have the following
meanings:

— : NOT, A : AND, Xf (read next f):f is
true for the next state, fi U f2 (read f1 until
2): f1 is true until 2 becomes true and f2 will
eventually become true. The precise semantics
are given as the Kripke structure [Manna&
Wolperg84]. R

We use Ff ("eventually {") as an abbreviation for
(true U f) and Gf ("always ") as an abbreviation for
—F~f. Also, f1v {2 and 1 o {2 represent —(—-f1A
—f2) and —f1 v {2, respectively. Here, we
assume a single event condition which provides
that only one atomic proposition is true at any
moment.

[Theorem 3]

Given an LPTL formula f under a single event
condition, one can build a FSP Pi=(S,A.L, &7, sq,
F) such that L corresponds to a set of atomic
propositions of f, and Lp(Py) is exactly the set of
behaviors whose label sequences satisfy the
formula f.

(Proof) It is a restriction of a general theorem
[Wolperg3]. ®

Remark that a label sequence of a satisfiable
behavior in Ps corresponds to a model of LPTL
formula. :

[Example] (Temporal Logic Constraints)
Let a label set be L={a1,a2}.

(1) GF (a1 v a2): Ether a1 or a2 must infinitely
often occur.
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(2) G( a1l o XG(—a?2)): Whenever a1l occurs,
then a2 must never occur. :

FSPs which are generated from (1) and (2) are
shown in Fig.7. )

Fig.8 shows the verification and adjustment
procedure: (1) The programmer can give an LPTL
formula for a MENDEL net of each compound
process. (2) MENDELS ZONE checks whether a
MENDEL net satisfies a given LPTL formula by
the model checking method for LPTL
[Vardi&Wolper86]. (3) When it does not satisfy
the LPTL formula, the adjustment method is
invoked.

The compositional adjustment method, that is
described in Section 3, can synthesize local
arbiters for every compound process. Here, Pf
representing temporal logic constraints is treated
as one of the FSP components (i.e., a target
process forms "P = Pf | P1 {...| Pn").

(1) (2)
at Qaz
at 2

Fig.7 FSPs P¢ Temporal Logic Constraints

a

Verification  }——

unsatisfi-
rable
satisfi-
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Fig.8 Verification and Adjustment

Synthesized Arbitel



4.5 COMPILATION TO KL1 AND
EXECUTION

The adjusted MENDEL program is compiled into a
KL1 program, which can be executed on Multi-
PSI. The programmer can check visually that the
adjusted program behaves to satisfy his expecta-
tion. if not, he should consider two types of bugs:
(1) Bugs of temporal logic constraints, and (2)
Bugs of KL1 codes attached to transitions (i.e., its
enable conditions and additional actions), which
are ignored in translating to FSP. .

5. EXAMPLE: THE SEQUENCE
CONTROL PROGRAM

In this example we synthesize a single arbiter
using MENDELS ZONE. The problem may be
stated informally as follows. The target program
must be designed to control machines which co-
operatively process (i.e., etch) printed circuit
boards (Fig.9a). The resist machine applies
resist to boards. The exposure machine exposes
boards to the light. The development machine
develops boards. The arm machine moves boards
from one machine to another. The target program
is composed with 6 processes (Resist, Exposure,
Development, Arm, and Trans x 2) which control
corresponding machines. Here, Trans represents
board transportation. Each process is displayed
as a MENDEL net, shown in Fig.6. With no
arbiter, this system falls into deadiock when an
action label sequence of Arm "get_r — put_e —
get_r" occurs. We give the following temporal
logic constraints:

f = GF(get_r v put_e v get_e v put_d)
which means Arm never falls into deadiock. An
arbiter C is synthesized as follows: First, FSPs
representing 6 subprocesses are relabeled by
relabelling functions fr, fe, fd, fa, ft1, and ft2, and
are reduced, and FSP Ps (Fig.9b) representing
temporal logic constraints f is generated. The
target process P (Fig.9¢) is composed from
these FSPs. Finally, the arbiter C shown in
Fig.9d is synthesized from P, according to
Algorithm 1. We can see that the adjusted
program "C | Pt | Resist[fr] | Exposure[fe] |
Development[fd] | Arm[fa] | Trans[ft1] | Trans[fi2]"
satisfies the above constraints.

Development

i g—
|
17

Exposure

Fig. 9a Machine for Processing
Printed Circuit Boards
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get_r, put_e,
get_e, put_d

Fig.9b FSP Pf for LPTL formula

Fig.9c Target Process P
(displaying only labels)



1S3
Fig.9d Synthesized Arbiter C

6. CONCLUSIONS AND RELATED
WORKS

We have approached program synthesis from the
viewpoint of program adjustment. In the proposed
framework (i.e., FSP), program adjustment is
defined as the synthesis of arbiter processes
which control a target process with synchroniza-
tion to satisfy their constraints. We have had some
experience in state-transition-based software
construction, using compositional adjustment in
MENDELS ZONE.

Our previous works [Uchihira87, Uchihira90a,
Uchihira&Honiden30] had proposed program
synthesis methods, whose basic idea is similar to
program adjustment. However, these methods
are not fully compositional, In this paper, we newly
introduce a CCS-like compositional framework to
achieve compositional adjustment. Abadi,
Lampont, and Wolper [Abadi89] proposed a com-
positional program synthesis:using the CCS-like
compositional framework, where failure equiva-
lence is adopted instead of mtw-bisimulation
equivalence. However, their approach is a top-
down program refinement, which differs from our
bottom-up program adjustment approach. On the
other view, arbiter synthesis can be regarded as a
control problem of discrete event systems which
are well surveyed by Ramadge and Wonham
[Ramadge&Wonham89]. However, these works
showed no compositional synthesis methods
satistying liveness constraints, while they mainly
consider safety properties.
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