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Abstract: This paper describes using Deep Convolutional Neural Network (DCNN) to predict the positions of sudden-death 

in Connect6. In sudden-death game, if one side cannot identify sudden-death positions, the other side will win the game at next 

move. Therefore, the prediction of sudden-death positions is of great significance for pruning the branch degree of the search 

tree. This study proposes many deep CNN model based on the features of Connect6 and trains it by lots of sudden-death 

positions established from our previous study. Then the best DCNN model is selected from the experimental results. The 

experimental results show that the depth of stacking multiple convolutional layers is the key influencing factor of deep CNN to 

predict sudden-death positions in Connect6. The results of this study can improve the search performance of Kavalan, which is 

an AI program we design to play Connect6 game. 
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1. Introduction  

1.1 Connect6  

  Since 2005, when Prof. Wu [11] proposed the k-in-a-row 

game or Connect(m,n,k,p,q), the Connect6 has become a very 

popular research topic. Two players, Black and White, 

alternately place two stones of their own colour, Black and 

White respectively, on empty intersections (or cells) of a 

Go-like board, except that Black (the first player) places one 

stone only for the first move. The one who gets six or more 

stones in a row (horizontally, vertically or diagonally) first wins 

the game. Most often, Connect6 is played on a 19x19 Go board.  

  Connect6 is a sudden-death game. In sudden-death game, if 

one side cannot identify sudden-death positions, the other side 

will win the game at next move. In view of this, identifying the 

sudden-death position is a very critical point for developing 

sudden-death games (such as Connect6). In order to avoid 

falling into the sudden-death positions at the opening of the 

game, the program must have a relevant algorithm to judge 

these states.  

  Some simple sudden-death positions can be obtained by a 

search algorithm, but complex sudden-death positions cannot be 

easily found. At present, these complex sudden-death positions 

are stored in opening database when dealing with sudden-death 

positions. Although this can solve most of the sudden-death 

problems, it has two disadvantages. First, there are lots of 

sudden-death positions; therefore, we have to spend a lot of 

storage space. Second, sudden-death positions are to use threat 

space search (TSS) [11][14] and relevance zone search (RZS) 

[12][13] to determine whether the board state is a sudden-death 

position. Therefore, determining whether a board state is a 

sudden-death depends on the program's search capabilities. In 

addition to spending a lot of computing resources, there is 

currently no complete algorithm that can find all the 

sudden-death positions.  

1.2 Sudden-death positions in Connect6 

  Many sudden-death positions require enormous computing 

resources to identify the sudden-death positions. Fig. 1 is an 
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example of sudden-death position. Under the position of (a), if 

White cannot identify the sudden-death position of M4 as shown 

in (b), White chooses to play the move of M4. Black will win 

the game after it plays the move of M5 as shown in (c). In the 

state of Fig. 1 (c), White cannot block Black wins; therefore, (c) 

is a win-position of Black. If a certain position is called a 

win-position, it represents the move in that position, no matter 

how the opponent blocks, the side can finally find the winning 

move order.  
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(a)              (b)              (c) 

Fig. 1. Example of sudden-death position. (b) is the sudden-death 

position, and (c) is a win-position. This example diagram shows a 

section of the board, and the numbers representing the order of moves.  

  In general, lots of search time could be saved if the search 

algorithm could predict sudden-death moves from candidate 

moves at the beginning of the search. These features and the fact 

that the game has not yet been solved makes Connect6 an 

interesting test bed for computational intelligence methods. 

Motivated by the success in computer Go [7], this study 

investigates how to use deep CNN to represent and learn 

knowledge in sudden-death positions of Connect6 game.  

2. sudden-death prediction with CNN 

  Convolutional neural networks (CNNs) are one of the best 

learning algorithms for understanding image content and have 

shown excellent performance in many fields of application 

[2][4][6][7][8]. In this section, we first introduce deep 

convolutional neural network (deep CNN), then our deep CNN 

architecture, final design input channels and output neurons for 

deep CNN of Connect6. After that our architecture of deep 

convolutional layers will be presented.  

2.1 deep convolutional neural networks 

  CNN is a new type of neural network [5] that combines 

neural network with convolutional layers. In addition to 

retaining the advantages of automatic learning features of neural 

network, the computing time can be greatly reduced without 

sacrificing the accuracy rate, and with the generalization of the 

graphics processing unit (GPU), better recognition results can be 

achieved in feasible time.  
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  The event of AlphaGo [7][8] defeating the human 

grandmaster have a great impact on the board game. The newest 

techniques that Google used in AlphaGo attract pervasive 

focuses and interest, which include different deep neural 

networks. AlphaGo employs deep convolutional neural 

networks (DCNNs) in deep learning (DL) to identify chess 

patterns and predict the moves of grandmasters, thereby greatly 

reducing the search width [7][8].  

  The topology of CNN is divided into multiple learning stages 

composed of a set of the convolutional layers, non-linear 

processing units, and subsampling layers [5]. The powerful 

learning ability of deep CNN is primarily due to the use of 

multiple feature extraction stages that can automatically learn 

features from the data [5]. In the next part, we will introduce the 

convolutional layers of Connect6 and the overall deep CNN 

architecture.  

2.2 Deep CNN architecture of Connect6 

  The architecture of a convolutional network typically consists 

of four types of layers: convolution, pooling, activation, and 

fully connected [5]. This study stacks multiple convolutional 

layers to fulfill deep CNN, and it contains d (d ≧ 3) k x k 

convolutional layers with different number of filters, and k is the 

size of kernel. The kernel size selected for this study is 3, which 

is 3x3 convolutional layers. Fig. 2 shows the stacking multiple 

convolutional layers architecture of this study.  
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Fig. 2. Stacking multiple convolutional layers in deep CNN architecture. 
In the figure, the 3x3 kernel with different number of filter (3x3, c) and 

c is the number of filters. In the DCNN model, the first two 

convolutional layers have no padding from the border, and the 
subsequent convolutional layers pad it with zero.  
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Fig. 3. Fully connected layers in deep CNN architecture. There are three 

fully connected layers including the output layer. The neurons of the 
fully connected layer are 225, 92 and 2, respectively.  

  This study mainly focuses on the prediction of the 

sudden-death positions at the opening of Connect6 game. 

Therefore, the first two convolutional layers have no padding 

from the border. Since the data in the training set, the first-move 

of Black (only one stone) is placed on the center of the board, 

and the index number is 180. Therefore, at the opening of the 

game, the stones in the board will only be concentrated in the 

central part, so the size of the feature maps after the convolution 

operation is reduced to 17x17 and 15x15 and will not affect the 

correctness of feature extraction.  

  At the end of the convolutional layer, we add a 1x1 kernel 

with the number of filter is 1 (1x1, 1) for reducing dimensions. 

Then we flatten the single feature map and transform it into a 

one-dimensional vector (15x15=225 neurons), followed by the 

fully connected layers. After stacking multiple convolutional 

layers, this study uses two fully connected layers and one output 

layer as shown in Fig. 3.  

2.3 Details of each stage in CNN  
  In this section, we will further explain the details of the 

implementation of Connect6's deep CNN model.  

2.3.1  Input layer 

  There are three channels (or classes) in the input layer. The 

structural analogy between bitmap images and board states in 

games is natural [6]; therefore, this study treats a board state as 

an image, and it has three channels representing Black, White 

and Empty respectively. Because each cell in the board has three 

states, the input of three channels can just be used to represent 

three different states for each cell of board. They represent the 

black, white stones occupied in the 19x19 board respectively 

and the third empty cells.  

  Each board state is preprocessed to extract three feature 

channels, which are fed into the CNN. There are 19x19 cells in a 

board, and the following channels are being extracted: 

1. Black: Cell with 1 for black pieces and 0 otherwise. 

2. White: Cell with 1 for white pieces and 0 otherwise. 

3. Empty: Cell with 1 for empty spaces and 0 otherwise. 

  In our previous study, the position is stored as a 361-character 

string in knowledge base, so when the sudden-death position is 

used as the input of the neural network, it can be converted 

naturally. For the sudden-death positions in the knowledge base, 

the first-move of Black is placed on the center of the board, and 

the index number is 180. We will describe these training data in 

more detail later.  

2.3.2  Convolutional Layers 

  Convolutional layers use kernels to extract certain features 

from an input board state or the feature maps. The kernel size is 

(3x3, c), and c is the number of filters. The stride set to one. We 

create many feature maps to obtain the features of Board state, 

and the first two convolutional layers have no padding. Because 

this study focus on the sudden-death positions of Connect6 

opening, the first two convolutional layers has no padding to 

reduce computing resources. 

  In addition, the subsequent convolutional layers pad it with 

zeros on the border, so the size of feature maps will not become 

smaller after the convolution operation. We use padding from 

the third convolutional layer, which avoids the problem that the 

size of the feature maps become too small after the data passes 

through multiple convolutional layers.  

  In this study, two kind of the numbers of filters were used 

with DCNNs to determine their effect on accuracy and learning 

efficiency of predicting sudden-death positions for Connect6. 

We will describe these settings in the experimental design.  

  This study uses rectified linear units (ReLUs) to process 

convolution outcomes. The ReLUs activation function: f(x) = 

max(0; x). The vanishing gradients problem [3][10] is one 

example of unstable behavior that we may encounter when 

training a deep neural network. When a deep multilayer 

feed-forward network or a recurrent neural network is unable to 

propagate useful gradient information from the output end of the 

model back to the layers near the input end of the model. 

Therefore, ReLUs are used here as the activation function.  

2.3.3 Fully Connected Layers 

  Pooling is a subsampling technique to reduce the 

dimensionality of data [7]. In order to preserve the spatial 

resolution after convolution, this study do not use any form of 
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pooling [2][6]. Therefore, the stack of convolutional layers is 

followed by flattening operation, and then three fully connected 

layers. They are two fully connected layers consist of 225 

neurons and 92 neurons with ReLUs activations. The second 

fully connected layer has 92 neurons, representing 92 lines [15] 

in 4 directions on the 19x19 board. Connect6 is a connection 

type game, so the connection formed by the four directions on 

the board is an important information for the game. 

2.3.4 Output Layer 

  The output layer has two neurons corresponding to the win 

rate of Black or White. For the output values to be interpreted as 

probabilities they must sum to unity, which is achieved by the 

softmax transformation. The softmax function takes as input a 

vector z of K real numbers, and normalizes it into a probability 

distribution consisting of K probabilities proportional to the 

exponentials of the input numbers [9]. After applying softmax, 

each component will be in the interval (0,1), and the 

components will add up to 1, so that they can be interpreted as 

probabilities.  

3. Experiments 

  We consider deep convolutional neural network as the 

predictor of sudden-death positions, and use ConvNetSharp [1] 

as the implementation and training package for Deep CNN.  

  ConvNetSharp which is descended from ConvNetJs is a 

library which enables us to use convolutional neural networks 

in .NET without the need to call out to other languages or 

services. ConvNetSharp also supports GPU [1], but you must 

have CUDA version 10.0 and cuDNN v7.6.4 (September 27, 

2019), for CUDA 10.0 installed. cuDNN bin path should be 

referenced in the PATH environment variable. Because Kavalan 

is developed under the .NET framework, this study uses 

ConvNetSharp as the development and training platform for 

deep CNN.  

  In this section, we first design our CNN architectures used in 

the experiments, then introduce training data for CNN training. 

After that our experimental result will be present.  

3.1 Experimental Design  

  This study compares various configurations of the neural 

predictors in sudden-death positions described in Section II. The 

size of kernel is 3x3, and two kind of the number of filters are 

used 8 and 16: (3x3, 8), (3x3, 16). The number of stacking 

multiple convolutional layers: 3, 4, 5 (the depth of convolutional 

layers, and it is not included kernel (1x1, 1)).  

TABLE 1 CNN ARCHITECTURES USED IN THE EXPERIMENTS.  

Deep 

CNN 

Model 

Architectures 

Conv3 
1

),33(

0

),33(

0

),33(







 p

cx

p

cx

p

cx  

292225
1

)1,11(
OFCFC

p

x





 

Conv4 











 1

),33(

1

),33(

0

),33(

0

),33(

p

cx

p

cx

p

cx

p

cx  

292225
1

)1,11(
OFCFC

p

x





 

Conv5 














 1

),33(

1

),33(

1

),33(

0

),33(

0

),33(

p

cx

p

cx

p

cx

p

cx

p

cx  

292225
1

)1,11(
OFCFC

p

x





 

 

  Table 1 shows these CNN architectures. The number after the 

Conv name represents the depth of the convolutional layers, and 

it is not included kernel: (1x1, 1). FC stands for fully connected, 

and the numbers following FC represent the number of neurons. 

After the kernel (1x1, 1) is processed, followed by flattening, 

then it is connected to the fully connected layer. O2 represents 

the output of the two neurons. Finally, we can get the predicted 

probability of each sudden-death position from the DCNN 

model.  

  The big data is essential for any deep learning models. From 

our previous study, we establish about 12 million positions of 

board state in the knowledge base, and this study uses a part of 

it as training set. Table 2 shows the sudden-death positions of 

Connect6 from move order 2 to 6. The data in the table has been 

removed from the positions that are stored repeatedly due to the 
move combination. The Connect6 board is symmetric under 

horizontal, vertical and diagonal rotation; therefore, all the 

sudden-death positions in the knowledge base are rotational 

symmetry.  

  As can be seen from the table, the proportion of sudden-death 

positions is quite high. The proportion of M5 is even as high as 

26%. In the process of searching, if the sudden-death positions 

cannot be judged, it is quite unfavorable for the contest of 

Connect6 game. In view of this, the predictor of sudden-death 

positions is necessary in the development of the Connect6 game.  

TABLE 2. PART OF THE SUDDEN-DEATH POSITIONS OF CONNECT6.  

Move 

Order 
Board State Sudden-Death Percentage 

2 285 46 16.14% 

3 80,017 14,846 18.55% 

4 780,916 187,278 23.98% 

5 793,572 206,984 26.08% 

6 779,788 141,649 18.17% 

 

  In order to test the ability of the CNN network to identify the 

sudden-death at the opening of the Connect6 game. This study 

chooses move order 2 to 5, and there are 409,154 training sets in 

total. In order to increase the training speed, we selected 

100,000 sudden-death positions as the training set. After training, 

we selected 100 difficult sudden-death positions to test the 

accuracy in identifying sudden-death positions from different 

deep CNN architectures. 

3.2 Experimental result 

  Table 3 shows the result of testing deep CNN model. The test 

data accuracy outside parentheses is from the data of training set, 

and The numbers in parentheses are additional retained test data, 

not from the training set. It can be seen from the data that there 

is little difference in the accuracy rate of the two numbers. 

  It can be seen from the experimental results that after 4 

epochs, an acceptable accuracy has been shown. It is about 80% 

accuracy. Therefore, it can be seen that using the deep CNN 

model to predict sudden-death positions is a feasible attempt. 

Furthermore, the experimental results show that stacking 

multiple convolutional layers has a greater impact on the 

prediction of sudden-death positions than the number of filters. 

TABLE 3 EXPERIMENTAL RESULT.  

epoch 
CNN Model 

1 2 3 4 

Conv3(c=8) 0.47(0.53) 0.52(0.53) 0.50(0.52) 0.67(0.75) 

Conv4(c=8) 0.47(0.62) 0.55(0.60) 0.66(0.77) 0.72(0.79) 

Conv5(c=8) 0.47(0.64) 0.54(0.77) 0.54(0.76) 0.62(0.84) 

Conv3(c=16) 0.18(0.28) 0.18(0.33) 0.52(0.78) 0.86(0.78) 

Conv4(c=16) 0.18(0.23) 0.76(0.83) 0.73(0.83) 0.74(0.76) 

Conv5(c=16) 0.45(0.53) 0.69(0.67) 0.78(0.79) 0.85(0.82) 
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4. Conclusion 

  This study constructs the deep CNN models to predict 

sudden-death positions of Connect6 game and explores the 

differences of related deep CNN models from experiments. The 

construction of this model is of great significance to the design 

of the Connect6 game, because if the prediction accuracy of the 

model is high, the number of candidate moves during the search 

can be greatly reduced, which will help improve the search 

efficiency. We summarize the contributions and the conclusions 

of the study as follows.  

 An experimental study of different CNN-based 

architectures of deep CNN models for Connect6. 

 In Connect6 game, this study proposes using deep 

convolutional neural network to predict the 

sudden-death positions, and it improve the search 

performance of Kavalan, which is an AI program we 

design to play Connect6 game.  

 The experimental results show that the depth of 

stacking multiple convolutional layers has a greater 

impact on the prediction of sudden-death positions than 

the number of filters.  
  With the rise of artificial intelligence (AI), people need the 

ability to think and judge logically. Puzzle games can be used as 

a tool for training logic, which has a positive effect on the 

sustainable development of society. Connect6 is a very 

interesting puzzle game; therefore, the deep CNN model 

developed in this study is of great significance in the research of 

Connect6 game. 

5. future work 

  This study builds the sudden-death positions model of 

Connect6, and uses a large amount of data in the knowledge 

base for deep learning, in order to find the best model to predict 

the sudden-death positions of Connect6. There are still some 

unfinished parts of this study; therefore, the future works of this 

study are as follows:  

1. This study only trains the deep CNN model for the positions 

of move order 2 to 5. In the future, it can be expanded to all 

sudden-death positions in the knowledge base, so that the 

trained model will be more in line with the purpose of this study. 

Furthermore, predictions for sudden-death positions will also be 

more accurate.  

2. The kernel size selected in this study is only 3x3. In the future, 

experiments can be carried out on kernels of different sizes to 

understand the accuracy of different sizes of kernels and the 

difference in learning efficiency. This has important 

implications for building deep CNN model to predict 

sudden-death positions.  
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