
Sudden-death prediction using Deep Convolutional Neural

Network in Connect6

Jung-Kuei Yang†1, Shi-Jim Yen†2, Yu-Yu Yang†2

Abstract: This paper describes using Deep Convolutional Neural Network (DCNN) to predict the positions of sudden-death

in Connect6. In sudden-death game, if one side cannot identify sudden-death positions, the other side will win the game at next

move. Therefore, the prediction of sudden-death positions is of great significance for pruning the branch degree of the search

tree. This study proposes many deep CNN model based on the features of Connect6 and trains it by lots of sudden-death

positions established from our previous study. Then the best DCNN model is selected from the experimental results. The

experimental results show that the depth of stacking multiple convolutional layers is the key influencing factor of deep CNN to

predict sudden-death positions in Connect6. The results of this study can improve the search performance of Kavalan, which is

an AI program we design to play Connect6 game.

Keywords: Connect6, sudden-death position, Deep Convolutional Neural Network.

1. Introduction

1.1 Connect6

 Since 2005, when Prof. Wu [11] proposed the k-in-a-row

game or Connect(m,n,k,p,q), the Connect6 has become a very

popular research topic. Two players, Black and White,

alternately place two stones of their own colour, Black and

White respectively, on empty intersections (or cells) of a

Go-like board, except that Black (the first player) places one

stone only for the first move. The one who gets six or more

stones in a row (horizontally, vertically or diagonally) first wins

the game. Most often, Connect6 is played on a 19x19 Go board.

 Connect6 is a sudden-death game. In sudden-death game, if

one side cannot identify sudden-death positions, the other side

will win the game at next move. In view of this, identifying the

sudden-death position is a very critical point for developing

sudden-death games (such as Connect6). In order to avoid

falling into the sudden-death positions at the opening of the

game, the program must have a relevant algorithm to judge

these states.

 Some simple sudden-death positions can be obtained by a

search algorithm, but complex sudden-death positions cannot be

easily found. At present, these complex sudden-death positions

are stored in opening database when dealing with sudden-death

positions. Although this can solve most of the sudden-death

problems, it has two disadvantages. First, there are lots of

sudden-death positions; therefore, we have to spend a lot of

storage space. Second, sudden-death positions are to use threat

space search (TSS) [11][14] and relevance zone search (RZS)

[12][13] to determine whether the board state is a sudden-death

position. Therefore, determining whether a board state is a

sudden-death depends on the program's search capabilities. In

addition to spending a lot of computing resources, there is

currently no complete algorithm that can find all the

sudden-death positions.

1.2 Sudden-death positions in Connect6

 Many sudden-death positions require enormous computing

resources to identify the sudden-death positions. Fig. 1 is an

 †1 School Of Information Science and Technology, Huizhou University,

Huicheng District, Huizhou, Guangdong, China

 †2 Dept. Of Computer Science and Information Engineering, National Dong

Hwa University, Taiwan

example of sudden-death position. Under the position of (a), if

White cannot identify the sudden-death position of M4 as shown

in (b), White chooses to play the move of M4. Black will win

the game after it plays the move of M5 as shown in (c). In the

state of Fig. 1 (c), White cannot block Black wins; therefore, (c)

is a win-position of Black. If a certain position is called a

win-position, it represents the move in that position, no matter

how the opponent blocks, the side can finally find the winning

move order.

3

1

3

2

24

4

3

1

3

2

2

3

1

3

2

24

4

55

(a) (b) (c)

Fig. 1. Example of sudden-death position. (b) is the sudden-death

position, and (c) is a win-position. This example diagram shows a

section of the board, and the numbers representing the order of moves.

 In general, lots of search time could be saved if the search

algorithm could predict sudden-death moves from candidate

moves at the beginning of the search. These features and the fact

that the game has not yet been solved makes Connect6 an

interesting test bed for computational intelligence methods.

Motivated by the success in computer Go [7], this study

investigates how to use deep CNN to represent and learn

knowledge in sudden-death positions of Connect6 game.

2. sudden-death prediction with CNN

 Convolutional neural networks (CNNs) are one of the best

learning algorithms for understanding image content and have

shown excellent performance in many fields of application

[2][4][6][7][8]. In this section, we first introduce deep

convolutional neural network (deep CNN), then our deep CNN

architecture, final design input channels and output neurons for

deep CNN of Connect6. After that our architecture of deep

convolutional layers will be presented.

2.1 deep convolutional neural networks

 CNN is a new type of neural network [5] that combines

neural network with convolutional layers. In addition to

retaining the advantages of automatic learning features of neural

network, the computing time can be greatly reduced without

sacrificing the accuracy rate, and with the generalization of the

graphics processing unit (GPU), better recognition results can be

achieved in feasible time.

The 27th Game Programming Workshop 2022

©2022 Information Processing Society of Japan -243-

 The event of AlphaGo [7][8] defeating the human

grandmaster have a great impact on the board game. The newest

techniques that Google used in AlphaGo attract pervasive

focuses and interest, which include different deep neural

networks. AlphaGo employs deep convolutional neural

networks (DCNNs) in deep learning (DL) to identify chess

patterns and predict the moves of grandmasters, thereby greatly

reducing the search width [7][8].

 The topology of CNN is divided into multiple learning stages

composed of a set of the convolutional layers, non-linear

processing units, and subsampling layers [5]. The powerful

learning ability of deep CNN is primarily due to the use of

multiple feature extraction stages that can automatically learn

features from the data [5]. In the next part, we will introduce the

convolutional layers of Connect6 and the overall deep CNN

architecture.

2.2 Deep CNN architecture of Connect6

 The architecture of a convolutional network typically consists

of four types of layers: convolution, pooling, activation, and

fully connected [5]. This study stacks multiple convolutional

layers to fulfill deep CNN, and it contains d (d ≧ 3) k x k

convolutional layers with different number of filters, and k is the

size of kernel. The kernel size selected for this study is 3, which

is 3x3 convolutional layers. Fig. 2 shows the stacking multiple

convolutional layers architecture of this study.

Convolution
Feature

maps

17 x 17 x 24
14 X 14

=196 States17 x 17

17 x 17 x 24
14 X 14

=196 States15 x 15
Input 19x19x3
(Board State)

(3x3,c)
Kernel

(3x3,c)
Kernel

 .

Convolution
Feature

maps
Convolution

Feature
maps

(3x3,c)
Kernel

Pad=0 Pad=0 Pad=1

17 x 17 x 24
14 X 14

=196 States15 x 15

17 x 17 x 24
14 X 14

=196 States15 x 15

1x1

(1x1,1)
Kernel

15 x 15 Flatten

Multiple
convolution

layers

Fig. 2. Stacking multiple convolutional layers in deep CNN architecture.
In the figure, the 3x3 kernel with different number of filter (3x3, c) and

c is the number of filters. In the DCNN model, the first two

convolutional layers have no padding from the border, and the
subsequent convolutional layers pad it with zero.

...

2 Output

Neurons

Black
Win

White
Win

92 Neurons

Fully Connected Layer

St
ac

ki
n

g
M

u
lt

ip
le

co

n
vo

lu
ti

o
n

al

la
ye

rs ...

225 Neurons

Fully Connected Layer

In
p

u
t

la
ye

r

Flattening

Fig. 3. Fully connected layers in deep CNN architecture. There are three

fully connected layers including the output layer. The neurons of the
fully connected layer are 225, 92 and 2, respectively.

 This study mainly focuses on the prediction of the

sudden-death positions at the opening of Connect6 game.

Therefore, the first two convolutional layers have no padding

from the border. Since the data in the training set, the first-move

of Black (only one stone) is placed on the center of the board,

and the index number is 180. Therefore, at the opening of the

game, the stones in the board will only be concentrated in the

central part, so the size of the feature maps after the convolution

operation is reduced to 17x17 and 15x15 and will not affect the

correctness of feature extraction.

 At the end of the convolutional layer, we add a 1x1 kernel

with the number of filter is 1 (1x1, 1) for reducing dimensions.

Then we flatten the single feature map and transform it into a

one-dimensional vector (15x15=225 neurons), followed by the

fully connected layers. After stacking multiple convolutional

layers, this study uses two fully connected layers and one output

layer as shown in Fig. 3.

2.3 Details of each stage in CNN
 In this section, we will further explain the details of the

implementation of Connect6's deep CNN model.

2.3.1 Input layer

 There are three channels (or classes) in the input layer. The

structural analogy between bitmap images and board states in

games is natural [6]; therefore, this study treats a board state as

an image, and it has three channels representing Black, White

and Empty respectively. Because each cell in the board has three

states, the input of three channels can just be used to represent

three different states for each cell of board. They represent the

black, white stones occupied in the 19x19 board respectively

and the third empty cells.

 Each board state is preprocessed to extract three feature

channels, which are fed into the CNN. There are 19x19 cells in a

board, and the following channels are being extracted:

1. Black: Cell with 1 for black pieces and 0 otherwise.

2. White: Cell with 1 for white pieces and 0 otherwise.

3. Empty: Cell with 1 for empty spaces and 0 otherwise.

 In our previous study, the position is stored as a 361-character

string in knowledge base, so when the sudden-death position is

used as the input of the neural network, it can be converted

naturally. For the sudden-death positions in the knowledge base,

the first-move of Black is placed on the center of the board, and

the index number is 180. We will describe these training data in

more detail later.

2.3.2 Convolutional Layers

 Convolutional layers use kernels to extract certain features

from an input board state or the feature maps. The kernel size is

(3x3, c), and c is the number of filters. The stride set to one. We

create many feature maps to obtain the features of Board state,

and the first two convolutional layers have no padding. Because

this study focus on the sudden-death positions of Connect6

opening, the first two convolutional layers has no padding to

reduce computing resources.

 In addition, the subsequent convolutional layers pad it with

zeros on the border, so the size of feature maps will not become

smaller after the convolution operation. We use padding from

the third convolutional layer, which avoids the problem that the

size of the feature maps become too small after the data passes

through multiple convolutional layers.

 In this study, two kind of the numbers of filters were used

with DCNNs to determine their effect on accuracy and learning

efficiency of predicting sudden-death positions for Connect6.

We will describe these settings in the experimental design.

 This study uses rectified linear units (ReLUs) to process

convolution outcomes. The ReLUs activation function: f(x) =

max(0; x). The vanishing gradients problem [3][10] is one

example of unstable behavior that we may encounter when

training a deep neural network. When a deep multilayer

feed-forward network or a recurrent neural network is unable to

propagate useful gradient information from the output end of the

model back to the layers near the input end of the model.

Therefore, ReLUs are used here as the activation function.

2.3.3 Fully Connected Layers

 Pooling is a subsampling technique to reduce the

dimensionality of data [7]. In order to preserve the spatial

resolution after convolution, this study do not use any form of

The 27th Game Programming Workshop 2022

©2022 Information Processing Society of Japan -244-

pooling [2][6]. Therefore, the stack of convolutional layers is

followed by flattening operation, and then three fully connected

layers. They are two fully connected layers consist of 225

neurons and 92 neurons with ReLUs activations. The second

fully connected layer has 92 neurons, representing 92 lines [15]

in 4 directions on the 19x19 board. Connect6 is a connection

type game, so the connection formed by the four directions on

the board is an important information for the game.

2.3.4 Output Layer

 The output layer has two neurons corresponding to the win

rate of Black or White. For the output values to be interpreted as

probabilities they must sum to unity, which is achieved by the

softmax transformation. The softmax function takes as input a

vector z of K real numbers, and normalizes it into a probability

distribution consisting of K probabilities proportional to the

exponentials of the input numbers [9]. After applying softmax,

each component will be in the interval (0,1), and the

components will add up to 1, so that they can be interpreted as

probabilities.

3. Experiments

 We consider deep convolutional neural network as the

predictor of sudden-death positions, and use ConvNetSharp [1]

as the implementation and training package for Deep CNN.

 ConvNetSharp which is descended from ConvNetJs is a

library which enables us to use convolutional neural networks

in .NET without the need to call out to other languages or

services. ConvNetSharp also supports GPU [1], but you must

have CUDA version 10.0 and cuDNN v7.6.4 (September 27,

2019), for CUDA 10.0 installed. cuDNN bin path should be

referenced in the PATH environment variable. Because Kavalan

is developed under the .NET framework, this study uses

ConvNetSharp as the development and training platform for

deep CNN.

 In this section, we first design our CNN architectures used in

the experiments, then introduce training data for CNN training.

After that our experimental result will be present.

3.1 Experimental Design

 This study compares various configurations of the neural

predictors in sudden-death positions described in Section II. The

size of kernel is 3x3, and two kind of the number of filters are

used 8 and 16: (3x3, 8), (3x3, 16). The number of stacking

multiple convolutional layers: 3, 4, 5 (the depth of convolutional

layers, and it is not included kernel (1x1, 1)).

TABLE 1 CNN ARCHITECTURES USED IN THE EXPERIMENTS.

Deep

CNN

Model

Architectures

Conv3
1

),33(

0

),33(

0

),33(

 p

cx

p

cx

p

cx

292225
1

)1,11(
OFCFC

p

x

Conv4

 1

),33(

1

),33(

0

),33(

0

),33(

p

cx

p

cx

p

cx

p

cx

292225
1

)1,11(
OFCFC

p

x

Conv5

 1

),33(

1

),33(

1

),33(

0

),33(

0

),33(

p

cx

p

cx

p

cx

p

cx

p

cx

292225
1

)1,11(
OFCFC

p

x

 Table 1 shows these CNN architectures. The number after the

Conv name represents the depth of the convolutional layers, and

it is not included kernel: (1x1, 1). FC stands for fully connected,

and the numbers following FC represent the number of neurons.

After the kernel (1x1, 1) is processed, followed by flattening,

then it is connected to the fully connected layer. O2 represents

the output of the two neurons. Finally, we can get the predicted

probability of each sudden-death position from the DCNN

model.

 The big data is essential for any deep learning models. From

our previous study, we establish about 12 million positions of

board state in the knowledge base, and this study uses a part of

it as training set. Table 2 shows the sudden-death positions of

Connect6 from move order 2 to 6. The data in the table has been

removed from the positions that are stored repeatedly due to the
move combination. The Connect6 board is symmetric under

horizontal, vertical and diagonal rotation; therefore, all the

sudden-death positions in the knowledge base are rotational

symmetry.

 As can be seen from the table, the proportion of sudden-death

positions is quite high. The proportion of M5 is even as high as

26%. In the process of searching, if the sudden-death positions

cannot be judged, it is quite unfavorable for the contest of

Connect6 game. In view of this, the predictor of sudden-death

positions is necessary in the development of the Connect6 game.

TABLE 2. PART OF THE SUDDEN-DEATH POSITIONS OF CONNECT6.

Move

Order
Board State Sudden-Death Percentage

2 285 46 16.14%

3 80,017 14,846 18.55%

4 780,916 187,278 23.98%

5 793,572 206,984 26.08%

6 779,788 141,649 18.17%

 In order to test the ability of the CNN network to identify the

sudden-death at the opening of the Connect6 game. This study

chooses move order 2 to 5, and there are 409,154 training sets in

total. In order to increase the training speed, we selected

100,000 sudden-death positions as the training set. After training,

we selected 100 difficult sudden-death positions to test the

accuracy in identifying sudden-death positions from different

deep CNN architectures.

3.2 Experimental result

 Table 3 shows the result of testing deep CNN model. The test

data accuracy outside parentheses is from the data of training set,

and The numbers in parentheses are additional retained test data,

not from the training set. It can be seen from the data that there

is little difference in the accuracy rate of the two numbers.

 It can be seen from the experimental results that after 4

epochs, an acceptable accuracy has been shown. It is about 80%

accuracy. Therefore, it can be seen that using the deep CNN

model to predict sudden-death positions is a feasible attempt.

Furthermore, the experimental results show that stacking

multiple convolutional layers has a greater impact on the

prediction of sudden-death positions than the number of filters.

TABLE 3 EXPERIMENTAL RESULT.

epoch
CNN Model

1 2 3 4

Conv3(c=8) 0.47(0.53) 0.52(0.53) 0.50(0.52) 0.67(0.75)

Conv4(c=8) 0.47(0.62) 0.55(0.60) 0.66(0.77) 0.72(0.79)

Conv5(c=8) 0.47(0.64) 0.54(0.77) 0.54(0.76) 0.62(0.84)

Conv3(c=16) 0.18(0.28) 0.18(0.33) 0.52(0.78) 0.86(0.78)

Conv4(c=16) 0.18(0.23) 0.76(0.83) 0.73(0.83) 0.74(0.76)

Conv5(c=16) 0.45(0.53) 0.69(0.67) 0.78(0.79) 0.85(0.82)

The 27th Game Programming Workshop 2022

©2022 Information Processing Society of Japan -245-

4. Conclusion

 This study constructs the deep CNN models to predict

sudden-death positions of Connect6 game and explores the

differences of related deep CNN models from experiments. The

construction of this model is of great significance to the design

of the Connect6 game, because if the prediction accuracy of the

model is high, the number of candidate moves during the search

can be greatly reduced, which will help improve the search

efficiency. We summarize the contributions and the conclusions

of the study as follows.

 An experimental study of different CNN-based

architectures of deep CNN models for Connect6.

 In Connect6 game, this study proposes using deep

convolutional neural network to predict the

sudden-death positions, and it improve the search

performance of Kavalan, which is an AI program we

design to play Connect6 game.

 The experimental results show that the depth of

stacking multiple convolutional layers has a greater

impact on the prediction of sudden-death positions than

the number of filters.
 With the rise of artificial intelligence (AI), people need the

ability to think and judge logically. Puzzle games can be used as

a tool for training logic, which has a positive effect on the

sustainable development of society. Connect6 is a very

interesting puzzle game; therefore, the deep CNN model

developed in this study is of great significance in the research of

Connect6 game.

5. future work

 This study builds the sudden-death positions model of

Connect6, and uses a large amount of data in the knowledge

base for deep learning, in order to find the best model to predict

the sudden-death positions of Connect6. There are still some

unfinished parts of this study; therefore, the future works of this

study are as follows:

1. This study only trains the deep CNN model for the positions

of move order 2 to 5. In the future, it can be expanded to all

sudden-death positions in the knowledge base, so that the

trained model will be more in line with the purpose of this study.

Furthermore, predictions for sudden-death positions will also be

more accurate.

2. The kernel size selected in this study is only 3x3. In the future,

experiments can be carried out on kernels of different sizes to

understand the accuracy of different sizes of kernels and the

difference in learning efficiency. This has important

implications for building deep CNN model to predict

sudden-death positions.

REFERENCES

[1] ConvNetSharp, https://github.com/cbovar/ConvNetSharp.

[2] Gao, Chao, Ryan Hayward, and Martin Müller. "Move prediction

using deep convolutional neural networks in Hex." IEEE

Transactions on Games 10.4 (2017): 336-343.

[3] Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. "Deep sparse

rectifier neural networks." Proceedings of the fourteenth

international conference on artificial intelligence and statistics.

JMLR Workshop and Conference Proceedings, 2011.

[4] Jarrett, Kevin, et al. "What is the best multi-stage architecture for

object recognition?." 2009 IEEE 12th international conference on

computer vision. IEEE, 2009.

[5] Khan, A., Sohail, A., Zahoora, U. et al. "A survey of the recent

architectures of deep convolutional neural networks," Artif Intell

Rev 53, 5455–5516 (2020).

[6] Liskowski, Paweł, Wojciech Jaśkowski, and Krzysztof Krawiec.

"Learning to play othello with deep neural networks." IEEE

Transactions on Games 10.4 (2018): 354-364.

[7] Silver, D., Huang, A., Maddison, C. et al, “Mastering the game of

Go with deep neural networks and tree search,” Nature 529,

484–489 (March, 2016).

[8] Silver, D., Schrittwieser, J., Simonyan, K. et al., “Mastering the

game of Go without human knowledge,” Nature 550, 354–359

(October, 2017).

[9] “Softmax function.” Wikipedia, Wikimedia Foundation, 5 October

2022, https://en.wikipedia.org/wiki/Softmax_function.

[10] Tan, Hong Hui, and King Hann Lim. "Vanishing gradient

mitigation with deep learning neural network optimization." 2019

7th international conference on smart computing &

communications (ICSCC). IEEE, 2019.

[11] Wu, I-Chen, Dei-Yen Huang, and Hsiu-Chen Chang. "Connect6."

ICGA Journal 28.4 (2005): 235-242.

[12] Wu, I-Chen, and Ping-Hung Lin. "Relevance-zone-oriented proof

search for connect6." IEEE Transactions on computational

intelligence and AI in games 2.3 (2010): 191-207.

[13] Yang, Jung-Kuei and Yen, Shi-Jim, "Conservative Relevance Zone

Search in Connect6," 2011 International Conference on

Technologies and Applications of Artificial Intelligence, 2011, pp.

273-279, doi: 10.1109/TAAI.2011.65.

[14] Yen, Shi-Jim, and Yang, Jung-Kuei. "Two-stage Monte Carlo tree

search for Connect6." IEEE Transactions on Computational

Intelligence and AI in Games 3.2 (2011): 100-118.

[15] Yen, Shi-Jim, and Yang, Jung-Kuei, Kao Kuo-Yuan and Yang

Tai-Ning, "Bitboard knowledge base system and elegant search

architectures for Connect6," Knowledge-based systems 34 (2012):

43-54.

The 27th Game Programming Workshop 2022

©2022 Information Processing Society of Japan -246-

