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Abstract

This paper surveys graph models that have been used to
support static analysis of Ada tasking programs, namely
Task Flowgraps by Taylor, Task Interaction Graps by
Clarke and Long, and Petri Nets. All the models are
claimed to be equivalent in this context by displaying
their relationship to finite state automata. This equiva-
lence gives an opportunity to use the best of the results
of any of the formalisms in any of the others.

1 Introduction

Static analysis of software aims at finding erroneous or
unwanted behavioral properties based on the description
of the software, as opposed to the ezxecution of it. it tries
to state that evidence of an error is (not) present. This
difference is not entirely clear cut, however, since some
of the static analysis methods do entail at least a kind of
execution: symbolic execution and state space generation
are two examples of these borderline cases.

Taylor [13] initiated the research on static analysis of
Adal tasking programs, which has since then grown con-
siderably, see e.g. (2,6,7,9,12,15). The problem addressed
by the research is coping with the nondeterminism in-
troduced by the Ada tasking constructs. Most of the
approaches utilize a form of state space generation to
verify the proper behavior of the tasking program. Very
simiply, the possible future behavior of the program, its
state space, is made explicit. The explicit representa-
tion usually takes the form of a graph that has the set
of possibly reachable states as nodes and an arc between
two states when the other can be reached from the first
without other intervening reachable states. The graph
is sometimes called a reachability grapk since a state of
the program is reachable exactly when there is a path in
the reachability graph to that state.

The reachability graph is attractive since it is a rela-
tively complete characterization of the behavior of the
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model as long as the state space is finite. Therefore,
many of the interesting questions about the behavior can
be decided based on the graph. The practical difficulty
involved is that the state space of a system, even if finite,
can be much larger than can be generated in a reason-
able time. A theoretical problem is that a program can
conceivably have an infinite number of reachable states,
which makes the reachability analysis inapplicable. As
we shall see in Section 2 the latter problem can—to an
extent—be solved with the age-old method of abstract-
ing from, that is, ignoring some aspects of the program.
We shall discuss the graph models for static analysis
of Ada tasking programs as follows: first we shall briefly
discuss ‘abstractions employed in the static analysis of
Ada, tasking programs in Section 2. Section 3 describes
the simple example that is next used to portray each
of the models. Section 7 will then present finite state
automata (FSA) as a model is that unifies the other
models. The FSA provide a bridge that allows the best
of the results obtained by using each of the models to
be transferred to benefit the others. We shall omit most
of the formal details involved with the models, aiming
here simply to give a taste of the models. We refer the
reader interested in the more formal side to [14].

2 Abstraction

In static analysis the models do not attempt to keep
track of the values of the variables even if these are rel-
evant to the flow of control of the program. For Ada
tasking programs, the shared variables, the input queues
of entries, the count attribute of entries, and most of the
other statements, too, are ignored. Any statement ex-
cept the synchronization actions (e.g. entry calls, select
and accept), or choice actions {e.g. case and if state-
ments that contain statements of the former group) is
abstracted away. That is, the other statements are con-
sidered carriers of the flow of control, mere “padding”
between the statements relevant to the static analysis.
This entails among other things that any ignored state-
ments must terminate in finite time and be correct in the
sense of not- disrupting the flow of control in any task.
Without tracking variables there will be no chance to
keep tabs on families of entries or dynamic creation of
tasks. Furthermore, it is assumed that there are no sub-
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programs containing synchronizing actions, since static
analysis is not necessarily able to usefully track the be-
havior of|, say, a collection of mutually recursive subpro-
grams.

Any choices in either kind of actions are usually mod-
eled as nondeterministic. In state space generation this
forces all the alternatives being explored. A typical case
where this might lead to spurious errors being reported
occurs when an if statement is used to determine which
of two entry calls to make. The actual choice of path
based on the variable values might exclude any erro-
neous behavior in all the relevant situations. )

In essence, these abstractions attempt to include all
possible behaviors at the cost of adding some that are
not possible in the original program. Any tasks are usu-
ally also assumed to be activated simultaneously, though
a later activation can be simulated using suitable new
entries and calls to these (see [6]).

3 Example

We shall apply each of the models to the well-known
program of Helmbold and Luckham describing an auto-
mated gas station {4] (ellipses denote omissions):

“An automated gas station consists of an
operator with a computer, a set of pumps, and
a set of customers. ... The operator handles
payments, and schedules the use of pumps with
the aid of the computer. ...

Each customer arrives at the gas station
wanting a random amount of gas from a ran-
dom pump. The customer first goes to the op-
erator and prepays for the pump he wants to
use. Then the customer goes to the pump and
starts it. When the customer is finished, he
turns the pump off and collects his change from
the operator.

The pumps have to be activated by the
operator before they can be used by the cus-
tomers. Each time a pump is activated, it is
given a limit (the prepayment) on the amount
of gas that can be pumped. When the pump is
shut off, it reports the amount of gas dispensed
to the operator. The pump then waits until it
is activated again.

Whenever he is ready, the operator may
either accept a prepayment from a customer
or receive a report from a pump. ... If the
pump is not already in use, it is activated
with the proper limit. When a pump reports
a completed transaction, the current prepay-
ment record for that pump is retrieved from
the computer. The charges are computed and
any overpayment is refunded to the customer.

task body Customer is —-- statement 1
begin
loop
Operator.Prepay
Pump.Start.
Pump.Finish
accept Change
end loop
end Customer

Figure 1: Abstract gas station program: Customer [12].

task body Pump is -- statement 10
begin
loop
accept Activate
accept Start
accept’ Finish do
Operator.Charge
end Finish
end loop
end Pump

Figure 2: Abstract gas station program: Pump [12].

task body Operator is -- statement 20
begin
loop
select
accept Prepay do
Pump.Activate
end Prepay
or
accept Charge do
Customer.Change
end Charge
end select
end- loop
end Operator

Figure 3: Abstract gas station program: Operator [12).

If another customer is waiting for the pump, it
is reactivated with that customer’s prepayment
(retrieved from the computer).”

To make the Ada program more compact and perhaps
easier to grasp we shall use the abstract version pre-
sented in [12], given in Figures 1-3. This consists of the
relevant tasking commands only, and is further simpli-
fied by dropping the computer of the operator and as-
suming there is only one pump and one customer. Nat-
urally, these simplifications make also the analysis task
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much easier. As we shall see, this program has a very
benign kind of deadlock, since it is unavoidable: a fairly
short simulation of the program will also find the dead-
lock. Since the example is so simple, it does not display
all the relevant aspects of the models. Any comparison
among the models should be done more carefully than
simply based on their performance on this particular ex-
ample.

4 Task Flowgraphs

The task flowgraph model by Taylor [13] was the first
to be suggested for the purpose of static analysis of Ada
tasking programs. In essence, it consists of the graphs
describing the possible flow of control in each of a fixed
collection of tasks (the task flowgraphs), and of a method
of combining these to obtain a graph giving the pos-
sible flow of control of the whole set, the concurrency
graph. A task flowgraph is obtained e.g. by abstraction
from the full flowgraph of the task produced by an Ada
compiler. In some cases there is a need to represent a
statement by more than one node, for example, accept
statements and entry call statements, since these involve
waiting for rendezvous and then its completion. More
specifically, an accept statement is represented by three
nodes called awaiting-call, accept-engaged and accept-
end, and an entry call by two nodes called call-pending
and call-engaged in [13].

The task flowgraphs are then combined to get the con-
currency graph. A node of the concurrency graph is la-
beled with the tuple containing the current state of each
task. There is an arc between two nodes exactly when
the Ada semantics allows one task alone or two tasks in
unison to change there state to effect the corresponding
change in the node labels. Initially, all the tasks are in-
active: only states that can be reached from the initial
node are included.

The flowgraphs of the tasks of the example are given
in Figures 4, 5, and 6, and the concurrency graph is in
Figure 7. This application of the model to the exam-
ple is slightly better than a straightforward application
would be. We have avoided generating additional states
in the flowgraphs for the loop constructs. Also, we have
merged the awaiting-call states with the select state for
the accept statements immediately following the select
or the or statements.

5 Task Interaction Graphs

A Task Interaction Graph (TIG) aims at reducing the
size of concurrency graph by reducing the number of
nodes of the constituent task flowgraphs. The code of a
task is partitioned into regions that will then become
the nodes of the TIG. The arcs between regions are

labeled with a beginning or an end of a possible syn-
chronization action. A region is a subgraph of the full
flowgraph from a statement immediately following the
task begin, an accept statement, or an entry call state-
ment, up to and including the accept statement, entry
call statement, or task end, whichever is first encoun-
tered along the flow of control. The region that starts
after the task begin is called the initial region; a region
that ends with the task end is called a final region. Note
that a task region can have many exiting statements
due to the non-determinism introduced by e.g. select
statements. Also, a pseudocode is associated with each
region: this is the Ada code of the region together with
ENTER(z) and EXIT(z,y) pseudo-statements that act
as place holders for the arcs to other regions y through
relevant synchronization actions z.

The Task Interaction Concurrency Graph (TICG), of
a program is .then obtained much as with flowgraphs:
the explicit reference to Ada semantics is replaced by a
simpler rule, however. The tasks can make a move ex-
actly when the arc labels of the TIGs out of the current
regions of the tasks match. Obviously, the labels match
if and only if one is an entry call to the accept of the
other and both represent either the start or end of the
statements, or, otherwise, both labels are equal. The
last case can be used to model the delayed activation
of some task or termination of some or all the tasks.
The initial node is labeled with the tuple of the initial
regions.

The above definition has a subtle error that causes
it to miss deadlocks under certain circumstances. The
choice actions have not been treated properly, since the
model ignores a distinction between so-called internal
and ezternal choice. Internal choice refers to decisions
that a task internally makes that affect its communi-
cation behavior, external choice refers to the joint de-
cision between tasks determining which communication
takes place of those possible.? If a task executes, say,
exactly one of a pair of accept statements based on
an internal decision, say, the value of a local variable,
the TICG would allow either of these communications
to take place, which might lead to missing a deadlock
where there is no task calling the only available entry.
It is not only up to the calling tasks to choose among
the accept statements. In effect, the called task can
appear to refuse to accept the call. Obviously, all the
choices should appear as properly labeled arcs out of
a region to other regions: these arc labels should not
match any other ones, so as not to force them to syn-
chronize. Please note that the choice involved in select
statements with accept statements only is handled ap-
propriately, since any one of the branches actually can
be chosen.

2This is one of the problems that process algebras, starting
with CCS by Robin Milner [8] have addressed in detail.
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Figure 7: Concurrency graph of the example. The concurrency states consist of the states of Customer, Pump, and
Operator, respectively.
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Figure 10: TIG of Operator.
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Figure 11: TICG of the example. The TICSs comprise the states of Customer, Pump, and Operator, respectively.

The TIGs of the tasks of the example are given in
Figures 8, 9, and 10, and the TICG is in Figure 11. Since
there are no internal choices involved in this example, its
model is accurate up to the usual abstractions.

6 Petri Nets

Due to space limitations, we shall simply assume the
reader to be familiar with the basic concepts and defini-
tions of Petri nets. The necessary understanding can be
obtained e.g. from [10].

An approach to the translation of Ada tasking pro-
grams to Petri nets for the static analysis is described in
depth in {12]. The translation rules are defined so that
the resulting Petri net is safe, that is, there is at most
one toke in any place in any reachable marking. The
Petri net model of the example is given in Figure 12.
We shall not present the reachability graph of the Petri
net in Figure 12 because of its size: it has 96 nodes. It
should be apparent that the Petri net reachability graph
so large contains redundancies. One source of redun-
dancy are the many intermediate states in the Petri net
model, states not relevant for the tasking behavior. For
example, the translation of the select statements has
three steps: first the select transition fires, then the ap-
propriate accept is selected, and only as a separate step
is the accept executed. When the reachability graph is
then generated the effect of the intermediate states is
multiplied, since all the interleavings of the transitions
of each task with those of the other tasks must be con-

sidered. Basically, the problem here is that of too fine
atomicily of the transitions: something that intuitively
is a single action, atomic, is broken up into consequtive
transitions.

It is, however, a fairly simple matter to remove most
of this redundancy: the net can be transformed by re-
moving of loop places and transitions, removing of begin
places and transitions, moving the token in the initial
marking to the output place of the begin transition, re-
moving the select place and transition together with
the transition testing for a pending call, and removing
end places (end-case, end-select, end-if, end-block, end-
accept) and transitions that have one input and output
place. After any removal, the remaining net must natu-
rally be reconnnected appropriately [11].

Tu, Shatz and Murata consider in [15] using Petri net
reductions [1}, both generally applicable rules and ones
specifically chosen for the translations from Ada, to solve
the particular problem of finding deadlocks. The reduc-
tions simplify the Petri net while preserving the dead-
locks in its behavior. The application of the reductions
to the Petri net of the example produces the Petri net in
Figure 13, which has the reachability graph of Figure 14.
Since this has a deadlock, the original net has one also.

7 A Canonical Model: FSA

For the purpose of static analysis of Ada tasking pro-
grams by producing the reachability graph, the above
models turn out to be fundamentally equivalent. This
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Figure 12: The Petri net of the example. The places 1, 11, and 20 are marked with one token initially, the shaded
ones in the deadlock. Note the tokenless circuit through the postset of the deadlock places shown by the heavy
lines. This represents a circular waiting condition: Customer waiting for Pump.Finish, Pump for Operator.Charge, and
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Figure 14: The reachability graph of the reduced exam-
ple net.

is a simple consequence of the fact that all of them are
closely related to finite state automata (FSA). In order
to be able to perform state space generation, the state
space must be finite. Moreover, it turns out that (with
the exception of the flowgraph model which incorporates
the Ada semantics as such) the operations performed on
the task models to get the combined behavior as a graph
can be performed using fairly simple FSA operations:
inverse homomorphisms and computing FSA to accept
the intersection of the languages of two given FSA, as
given in e.g. [5, p. 59-60]. Specifically, combining a col-
lection of TIGs to get a TICG can be done by repeatedly
combining these pairwise as follows.

First, note that a TIG without the pseudocodes is a
FSA. Consider two TIGs (FSA), say T and 7", and an
entry e of T for which there is at least one call in 7”.
Make copies of the subgraphs of 7" corresponding to the
bodies? of each of the accept statements of T for e, one
for each of the entry calls in 77, and index (subscript)
the arc labels S(e) and E(e) in each by the name of the
state (region) that corresponding arc of the calling task
originates. {Note that for FSA the indexing above is
a form of inverse homomorphism.) Each of the copies
should have the initial arc originate from the state that
the arc of the original subgraph has the arc labeled 5(e)
originate; all the copies should end with arcs to the same

3Each accept has a subgraph of at least one state by construc-
tion of the TIGs.

state as the arc labeled with E{e) in the original ends.
The original subgraph remains in the FSA so that the
construction can be repeated if some other task calls e.
Then the arc labels of the calls.of 7/ to e are similarly
indexed by the name of the state from which the arc in
question originates. A similar but simpler splitting must
be performed on the calls, too. The common symbols
labeling the arcs will be indexed both by the call state
and the accept state. Note that for calls the arc labels
are of the form $(T.e) and E(T.e) whereas accepts have
labels of form S(e) and E(e). Therefore, in order to
achieve the effect of synchronization, the arc labels of
the accepts must be renamed to be the same as those of
the calls before indexing.

Then reflexive arcs, which do not change the state
even if taken, must be added to each state of both T and
T', one for each label of the other that is not to be syn-
chronized with, and each labeled with exactly this label.

“This allows both of the FSA perform internal actions

or synchronize with yet other FSA without interference
from the other. Then construct the FSA accepting the
intersection of the languages accepted by the two FSA.
The resulting FSA can be combined similarly with other
TIGs. Finally, all the remaining subgraphs that corre-
spond to accept statements, with or without bodies, are
usually removed from the combined FSA, since the pro-
gram is often considered closed, not open for entry calls
from unknown tasks. The result is a FSA describing the
behavior of the whole program, that is, a reachability
graph.

- Copying of the subgraphs can be described as an in-
verse homomorphism on FSA, as can be adding the re-
flexive arcs. We shall not go into the constructions in-
volving Petri nets due to space limitations.

The equivalence of the models gives a chance to use
the best results of each of the models in all the other
models by translating the notions through FSA from one
model to the other. It also suggest the possibility of us-
ing FSA operations for benefit in the models. The most
interesting of these is perhaps the minimization of FSA.
There is a problem, however, since the minimization typ-
ically considers two FSA equivalent exactly when these
accept the same language. There are examples of FSA
derived from Ada tasking programs such that the two
accept the same language, yet one can deadlock even
though the other cannot. This is actually closely related
to the problem of internal and external nondeterminism
discussed above. If one task can refuse to accept a cer-
tain call based on an internal decision where another
will always accept it, the languages of the two FSA rep-
resenting the tasks are the same, assuming the internal
decision is modeled using ¢-moves of the FSA. But the
first task can deadlock the system by deciding to refuse
the call if the rest of the tasks can proceed only if the call
was accepted. There has been work done using process
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algebras, such as CCS, Theoretical CSP, and LOTOS,
that directly relates to this, see e.g. [17].

8 Discussion

Whither the static analysis of Ada tasking programs?
Some effort will probably go to incorporating the best
ideas in any one model to the other models. But after
this there will be a definite push needed to extend the
scope of the analysis techniques. The natural step is
to include—at least to some extent—the variables that
have been ignored.

There have been many interesting methods to avoid
generating the full reachability graph, while still main-
taining most of the relevant properties of the system,
e.g. [3,7,16]). Exploiting some of these in a way useful
for static analysis is also a very interesting direction.

One of the simple ideas to improve the analysis meth-
ods is to admit the insertion of redundancy into the de-
scription of the program. This could involve data invari-
ants, program invariants, anything that would present a
usable description of what the program should do as op-
posed to the program text that describes what it does do.
This can then be used to restrict the search of anoma-
lies by letting the analysis program immediately notify
of any contradictions between the actual and intended
behavior. Sometimes an error in the system causes a
bulk of a reachability analysis to be spent on irrelevant
states that become reachable only as a consequence of
the error.

9 Conclusion

We have presented some of the models that have been
applied to the static analysis of Ada tasking programs.
We have also related these to the FSA, which provides a
way of using the best of each world in any of the others.
A choice among the models is then a matter of secondary
concerns like the availability of computer programs to
support the analysis, taste, background in the theory
necessary and the like. We have also discussed some of
the suggested methods of improving a reachability based
analysis of the models. :

We are, as can easily be seen from the contents of
the paper, prejudiced towards the use of Petri nets, but
not without good reasons. Petri nets are fairly easy to
grasp as long as one avoids trying to understand all the
details of all the sometimes ad hoc variations of the basic
model. If nothing else can be said for the Petri nets
then the fact that the Petri nets with finite state spaces
provide a compact and intuitive notation for FSA, each
net denoting its reachability graph. Moreover, the net
also describes the concurrency of the program or system,
something that is lost in the reachability graph alone.

The analysis programs are generally fairly easy to write
since the model as such is simple. The difficulties lie
more in the creative use of all the aspects of the simple
model to achieve a goal. It should be clear that the
Petri net models can be made both obviously correct to
anyone interested and at least as efficient in the analysis
as the other models.

Much work remains yet to be done in the field of static
analysis of Ada tasking programs. We hope that this
paper will stimulate further research and developments
into all of the models described, many new ones, and
their application to this particular problem. The work
on this subject has a strong practical motivation: to
help understand and design concurrent and distributed
software. It is encouraging to find such a unity and di-
versity among the models employed so far. The unity
displayed supports the soundness of the current research
since all the models have a common goal to aim at to di-
rect them; the diversity supports the comprehensiveness
of the research since different vantage points produce
different views, any one of which might be crucial for
further progress. ‘ :
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