JI7 MY 2 T7IH 88— 6
(1992. 11. 10)

REREHAIS X F L - VT MY 2 TOEEMIL.
EDINTEALICE->THEIND »?

EREEFLEDEL. [FHERLT TV o MEREOERE] O
72 MEE - S & BB THET 3,

SH B . U0 8L . Givargis A. DANIALY**

()7 BN F X MUBEFZERR (**)Advansoft Research Corporation
T989—31 4301 Great America Parkway
WEMSEX LB FFIAE4L 8% 2 Santa Clara, CA 95054, USA

b o F L

v7hﬁ:?ﬂﬁws5%@:2&@%%LM&##@E&?550?u\xﬁﬁwkﬁﬁv7b717®ﬁ
%-ﬁ?-&%ﬁm&ﬁztiuuﬁ%miﬁ%ﬂfmﬁas>7ﬁ%?mu®?565#?

ﬁﬁ\7D75A®§ﬂﬁ®§%?W#7917hﬁﬁHWJﬁ%§énT%Twéﬁ\ﬁﬁ%t%ﬁﬁwﬂ
%<\iEWQWMﬁénrwauo:@tm\Eﬁﬁ{?w%%ﬁm\f%ﬁ%ﬂt#j517hﬁmﬁwﬁ
ﬁEJW;ZFﬁ@'ﬁﬁﬁﬁﬁ?ﬂﬁbto:@ﬁ%\#7§I7Fﬁmﬂu$ﬁgﬂﬁk&\$“#jyl
7hﬁmﬁﬁE;UEﬁE%ﬂtéﬁizbﬁ%&ﬁﬁ?%é:tﬁbﬁatwvﬁ%Téo

X F—7—F EREETIL. FHEBINISIF ATV 17 MERRTOIS53I LY

Which Paradigm Can Improve the Reliability
of Next-Generation Measurement System Software ?

Reliability in Procedural and Object-Oriented Programming

Satoshi IMAI* Takahiro YAMAGUCH!* Givargis A. DANIALY**

(*YADVANTEST Sendai Laboratories, Ltd. (*")Advansoft Research Corporation
48-2 Matsubara, Kamiayashi, Aoba-ku 4301 Great America Parkway
Sendai, Miyagi, Zip 989-31, JAPAN Santa Clara, CA 95054, USA

Abstract

The cost of software, which has become an important element in measurement system, is on the increase. Experi-
ence has shown that with traditional procedural programming, 85% of software development cost is incurred in
implementation. Object-oriented programming (OOP) , by enabling reuse of program modules and using natural
expressions, offers hope of reduced costs. The authors used reliability models to evaluate the potential of OOP in
the development of new measurement systems, the results indicating with proper object-oriented analysis (OOA)
the OOP techniques can improve software reliability and shorten software testing times.

X key words reliability models, procedural programming,object-oriented programming

Introduction

Measurement system software is becoming increasingly important as digital processors become more
powerful and high-speed, multifunction measurement systems become more complex. The cost of software, therefore,
is likely to be an increasing proportion of the overall system cost. Experience has shown that, using traditional
procedural programming method, 85 percent of the cost of the software development is incurred during implementation
(design, coding, and testing)"". Should we continue to use procedural programming methods with which we are
very familiar for next generation systems, or is there a better, more efficient way to develop and maintain software?

In recent years, object-oriented programming (OOP) has atiracted attention, primarily because it offers the
advantage of reusing program modules. Using natural expressions that are intuitively easy to understand, the
technique has been successful in small-scale systems. However, OOP lacks mathematical formalism and its quality
has not been evaluated. There is also the disadvantage that programmers need time to learn new object-oriented
techniques.

This paper reports an investigation in which we used reliability models, to evaluate the possible use of OOP
in the development of new measurement systems. The results indicate that OOP techniques can improve software
reliability and can shorten the time required to test software.

The Object-Oriented Concept
The object-oriented concept has two basic features:
@ Abstract Data Type
Abstraction distinguishes external behavior from internal implementation by separating data, procedures, and
message-passing functions.
@ inheritance
The idea of inheritance is that an abstract data type can be considered as a specialized form of some more
general data types, and that the more specialized type should perform all the operations performed by the more
general types.
The concept can be stated as:
Object-oriented concept = Abstract data type +Inheritance
The advantages of abstract data type are information hiding and encapsulation.

Study of the Reliability of Procedural and Object-Oriented Programming
Software reliability is defined as:
The probability that software, or a constituent element thereof, will operate without the occurrence
of software failures in the prescribed environment for the intended period of time.
We assume that software failures are caused by software errors.
Assume a program flow as shown in Figure 1.

N H=Hs {31
ﬁ
-} : Module Execution
Figure 1: System under evaluation
If the reliability of the i™ module is R;, the total reliability of the system Rr,,,; can be determined by Equation 1.

N
Rrotal = R ® Rye..eRye...Ry = ~H1Ri (1)
1=

We used this concept to investigate and compare the reliability and testing time of a procedure-based
system and an object-based system for the case in which the £ module (class) is modified.

Reliability of Procedure-Based Systems

When the £ module is modified, the system reliability is given by Equation 2. In this equation, Ry ; is the
reliability of module i when the £ module is modified.

N
Rrotallk = Ri,1 ® Rg2 %Ry koo Ri N = TIRy @
1=
It is not possible in a procedural system to specify the range of the side effects and error propagation felt by
other modules when the k™ module is modified. Therefore, the testing time increases faster than the total number
of modules'®’.

Reliability of Object-Based Systems

In an object-based system, the system is implemented using the principles of encapsulation and inheritance.
Classes are organized into an inheritance tree, as shown in Figure 2.

Figure 2: An inheritance tree

Let the number of descendants of the k™'class be L (where L= N). When the k' class is modified, the
system reliability Ry, is given by Equation 3.

Rrotallk = (Ri1 ® R 2% Ric k1) ® (R ket L+1 ® Ri o L+2%+-*Rk N) ® {RE & ® Ric 19 9Ri ki 1} (3)

In this equation, {Ry ; ® Ry i+19...*Ry r+.1} are the descendent classes of Ry k, which are the children and
grandchildren of the k™ class in the inheritance tree. In OOP, only the descendent classes are subjected to side
effects due to modifications of class 4. For this reason, classes that are not descendants of class k have the
reliability they had before that class was modified. Therefore, Equation 3 becomes:

Rrotallk

=(Rp® Ryo oRp_1)* (RkL+1® R L+2%--*RN) *{Ri ® Ri 41 *Rp o 1}
k-1 N L
=TIIR;e TIR; of IR ki)
i=1 i=k+L+1 =0 (4)
It is apparent, therefore, that when reusing software, if class k is modified, the classes affected are limited
to the descendent classes of the modified class. Testing time is proportional, not to the total number of classes, but

only to the number of descendent classes.

Summary of Theoretical Results

Table 1 shows a comparison of the reliability and test time for procedural programmihg and object-oriented
programming.

Immediately after completion of a programming project, it's reliability is likely to be the same whether
object-oriented or procedural programming techniques are used”'. Because it is virtually certain that even
small software systems contain bugs even after extensive testing and debugging. The reliability of an object-based
system immediately after development is also given by Equation 2.

Table 1 Reliability and Test Time for Procedural and Object-Oriented Programming
(N ... total number of modules, L ...the number of descendants)

Procedural Programming Object-Oriented
Programming

Reliability HRk i

i=

Test Time HT(R"”)

Proportional to the total number of modules, N

Immediately after
development

Tested Unit test and integration test: Rij,Ri2 ..., Ry
Modules Number of tested modules: N
o N k=1 N L
Reliability TR, i R e TIR; o{I1Rgk+i}
i=1 =l i=ktL+l i=0

a Proportlonal to the total
2 | TestTime l'[T(Rk pProportional to the totalf HT(Rk k+)) number of descendants, L
DO:J number of modules, N i=0 LN
T g Unit test Rk.x Unit test R 4
este I
Modules | Side-effects test Ry ;(i= k) Desc%rk\iim ,%kisfze,sn te,?,t oL
Number of tested modules: N Number of tested classes: L+1

When software is reused in an object-based system, it is necessary to make the number of descendants (L)
very small compared to the total number of modules (N), in order to achieve an advantage over procedural
programming. Essentially, it is important at the OOP analysis stage to achieve modeling with a
clean, well-balanced inheritance tree which makes L as small as possible with respect to N.

Case Study

We looked at a simulated example of a medium-scale system having 100 modules, assuming the reliability
of the individual modules to be 99.99 percent. The overall system reliability is (.9999)100, or 99.00 percent.

After modification of module &, we assumed a unit test of the module showed a reliability of 99.99 percent.
We also assumed that the average reliability of the modules affected by the modification of module & is 99.90
percent. With these assumptions, we proceeded to determine the reliability of the overall system after modification
of module & for a procedure-based system and an object-oriented system.

For the procedure-based system, because it is not possible to specify a limit to the side effects, Equation 2
gives the overall reliability as:

Regratje = (:9990)° ¢ (.9999)! = 90.56%.

For the object-oriented system, the classes subject to side effects when class k is modified are only the
descendants of that class. Figure 3 shows the relationship of reliability to the total number of descendants for a
system having a total of 100 classes.

90 b
2 80r 1
S
2 70t

60+ :

50)) ,

1¢ 10" 10°
Number of Descendants

Figure 3: Reliability versus number of descendants
Assuming there are 30 descendent classes, the overall system reliability is:
Rrouatfe = (:9999)70 ¢ (.9990)0 = 96.37%
Whereas the reliability dropped 8.4 4 percent for the procedure-based system, it dropped only 2.63 percent

for the object-oriented system .

Ancther case study

Software development is an incremental process. Most of the software cost is not in the initial implementation
but in the enhancements that will be made during its life cycle. As they say, "software never dies; it evolves.”

Figure 4: Directed Acyclic Graph

Let us look at the Directed Acyclic Graph (DAG) above. It can be a call graph in procedural programming
and an inheritance hierarchy in object-oriented system. There is a big difference between an inheritance hierarchy
and a call graph. An arrow in a call graph implies a call ("USE-A" relation), while in inheritance it implies an "IS-A"
relation.

Assume that we wish to add some data to A and we need to have that data visible to H.

In the procedural method we have to change modules B and E in order to propagate data to H. But
changing B implies changing C and D, and then F. Also changing E implies changing G as well. As a result we had
to change all modules just because of the small enhancement that we wanted to make. Therefore, all of the
modules have to be tested.

In an object-oriented system all we need to do is to add data (member data or member function) to A, and it
will be readily available for H to use because our DAG is an inheritance relationship. Therefore, we have only
changed two classes, and as a result, only those need to be tested.

Object-oriented programming not only protects the programmers from themselves, but it also makes upgrading
and enhancement of the software (the biggest cost in software development) much easier and more reliable, and
that is the beauty of it.

Conclusion

This is the preliminary report of a quantitative comparison of the test scope and testing
time required for procedural and object-oriented programming. The results show that, with proper
analysis, OOP can provide an improvement in reliability and shortened test time compared with
procedural programming.' It seems, therefore, that OOP is appropriate for implementing large-scale systems.

To apply OOP to the development of new measurement systems, it is necessary as a first step to apply
object-oriented analysis to current measurement system hardware and sofware.

Unfortunately, OOP lacks a procedure to verify the optimum modeling method for measurement systems.
Applying OOP to measurement systems requires re-engineering those systems. Object-oriented programming
alone cannot provide all the answers.

Acknowledgements

We would like to thank the people of ADVANTEST Sendai Laboratories Ltd., and Hiroshi Ohura, president
of ADVANTEST Corp., for his encouragement.

Technical discussions with Mr. Hira Ranga and Mr. Gordon Padwick are gratefully acknowledged. Special
thanks go to Ms. Alice Salpeter and Ms. Anne Faveur for their kind checking of the technical translation.

References

1. Robert B. Grady and Deborah L. Caswell, Software Metrics: Establishing a Company-Wide Program, Prentice-Hall

Inc.,1987.

Hajime Makabe, RELIABILITY DATA ANALYSIS, Iwanami Shoten, 1987 (in Japanese).

Shigeru Yamada, SOFTWARE RELIABILITY EVALUATION TECHNIQUES, HBJ Publishing, 1989 (in Japanese).

- Jun Aoki, "Object-Oriented Software Development’, FXIS, 1990 (in Japanese).

. Peter Coad and Edward Yourdon, OBJECT-ORIENTED ANALYSIS, Prentice-Hall inc.,1991.

- Software testing can be assumed to exercise possible combinations - argumenti, argument2 and argument3;
module1, module2 and module3; pathi .1, path2.1 and path3.1 (ex. if...else...). Then it becomes a problem of
combination. How long does it take to complete the test ? If it is combination of two (three,),
it takes time(N %) (time(N %), time(N’))

7. John A. Lewis, Sallie M. Henry, Dennis G. Kafura and Robert S. Schulman, "An Empirical Study of the Object-

Oriented Paradigm and Software Reuse,"

<3S I N AR Y

