V7 =7 IT% 90-10
(1993 2. 4)

SRS 7 Y =T - 77) ORDOBREF A
'\'4")5"“&‘)/\.‘1’\:/ VAZKEEL

FOESASE TE WRTE
B2 R AT

B‘;<oﬁxﬁmn%@ﬁ@%%ﬁﬁmgbﬁwﬁ&z&ﬂa/ul—ymﬁofm
5070¢Rmv47uynt/vﬁ@mx5ﬁmm%ﬁéntu% i bfBAHL = v
Ea—%« YRAFAAGOY 7 MV 2 T CREREESNE DN, REREDS . DX
W, ThbY 7 MY T7ORFLEREL BELCEE=— X~ — FY T HifioB/ic
BHLTWS CEREETH D, 2 CEABTH, HARRABa Yy Ea-s v 2700 B
77 IVRENRE LY 7 VY THRARERET 2. coFRTE, 77 IV
E?@kwﬂmﬁwﬁwﬁ%ﬁwk%%ﬁbk/7%717@% ETAAEETR S, ¥ D

. ARWCRBHEER 7 7 3 J«@ﬁ%ﬂ%ﬁbtﬁ%ﬁﬁoﬁﬁ&%ﬁsao

CONCEPTUAL MODELING OF FAMILIES OF REAL-TIME
EMBEDDED SOFTWARE SYSTEMS

~ Veikko ShPPANEN1 " Yoshihiro MATSUMOTO

Kyoto University, Department of Information Science -
Sakyo, Kyoto 606-01;, Japan

Real-time embedded computer systems have become essential controlling parts of modern
industrial products. Since the seventies, when the first microprocessor-controlled producs
were introduced, considerable developments have taken place in the production of software
for embedded computer systems. Several generations of such systems already exist and
need to be maintained and re-engineered by the manufacturers, in order to respond to
the global competition, the rapid changes of the available computer technology and the
changing customer needs. The methods and tools used for the production of embedded
software must be able to:capture and utilize the similarities among and the differences
between the concepts of families of embedded systems, rather than individual systems
only. This paper discusses an ongoing real-life case study on the modeling of such system
families.

10n leave from the Computer Technology Laboratory of thc I‘echmca] Research Centre of leand
(VTT), P.O. Box 201, SF-90571 Oulu, FINLAND.

1. Conceptual models of computer system families

This short paper discusses conceptual analysis and modeling of families of real-time,
embedded computer systems. In particular, we address both the reusability and traceabil-
ity of concepts in different modeling viewpoints, such as static system structures, dynamic
behaviour, data transformation functions and performance characteristics that have been
found useful for describing real-time systems.

Most existing real-time system development methods do not fully integrate different
modeling viewpoints together, to the degree that all concepts in different viewpoints and
levels of detail or abstraction would be traceable to other relevant concepts. This may, in
practice, prevent a person interested in some particular aspects of a system from focusing
on a consistent and complete set of information about those aspects. End-users and
software designers are typical examples of persons interested in quite specific aspects of
computer-based systems. The respective aspects, when modeled, should share the same
semantics as parts of the same system, although they must usually be presented using
very different syntactical forms. Moreover, most current methodologies fail in supporting
reusability in families of similar types of systems, although many real-time embedded
computer systems version due to varying standards, implementation technologies and
usage environments of the products in which they are incorporated. Cellular mobile
telephone control systems that we use as a real-life case study example illustrate very well
such versioning.

Therefore, it is at present difficult to reuse even minor parts or trace the consequences
of even the simplest modifications of a real-time computer system. The.end-user reference
manual of digital GSM mobile telephones we have analyzed and the corresponding techni-
cal documentation of the real-time control system of the phones support our claim. There
are only a few traceable links between system specifications, designs and implementations
- not to speak of the users reference manual. We believe that one of the main reasons for
this state of the matters is that real-time computer system engineers at present only im-
plicitly maintain a common conceptual model of the kinds of systems they are developing.
We propose that such a model is made explicit for a family of similar systems and reused
as the source of projections that describe particular systems from different perspectives,
for the needs of the people by whom the systems are developed and used.

2. Viewpoints in conceptual modeling

We have done conceptual modeling for a family of real-time, embedded computer
systems by following the Kyoto Development Method [MAT92] and viewing an embedded
system in the larger context illustrated in Figure 1. One of the essential concerns in
this' context, as opposed to most existing real-time system development methodologies,
is the environment in which the computer system is incorporated. The environment
usually includes several dimensions, such as the management of the usage of the product
controlled by the embedded system (for example, a cellular network operator), the usage
of the product (for example, a person making a mobile phone call), the non-computerized

electromechanical parts of the product (such as a keyboard) and the computer system
interface (such as a serial interface controller), in addition to the embedded computer
system itself that consists of both hardware and software. The concepts of this complex
whole should be mutually consistent and traceable, on the basis of a common conceptual
model. For example- end-users may, however, see only a limited set of aspects of the whole,
included in “user’s projections”.

‘Within the limits of this paper, we now summarize the fundamental concerns involved
in the construction of conceptual models, and then discuss the projections of such mod-
els. Our approach to conceptual modeling is based on the integration of static, dynamic,
functional and performance-related viewpoints and model execution scenarios. They de-
termine together the semantics of the conceptual model of a family of real-time embedded
systems, incorporated in electromechanical products being used and managed by people
or other systems.

2.1 Static modeling

The static object-based modeling viewpoint is used for organizing concepts in the
dynamic, functional and performance-related viewpoints of real-time systems. One of the
main reasons is to obtain a stable enough and reusable framework for describing system
families, using specialization-generalization and aggregation for managing the whole of a
real-time embedded computer system and the environment in which it is incorporated.

Several types of object-based and object-oriented formalisms are available for mod-
eling static system concepts, and some of them are supported by the existing real-time
CASE tools. We have applied, combined and extended some of the object-based mod-
eling notations proposed in [RUM91, SHL92]. We use both object-attribute-relationship
models and specific kinds of object communication models for describing static system
structures. The former are essential for showing is @ and part of types of specialization
and aggregation associations in a model of a family of similar types of real-time systems.
They thus lay out a foundation for the reusability of a conceptual model. We explicitly
associate dynamic, functional and performance characteristics to static system entities.
This makes it is possible to identify reusable patterns of the dynamic behaviour of objects
at different levels of abstraction, as well as to reuse functions needed by several objects.
Object communication models are needed, in practice, for modeling various ways of re-
alizing the relationships between system entities. They make explicit the often complex
exchange of data and control by messages, shared data, call parameters, interrupts, etc.
mechanisms.

In the case of our example system family, we organize its atomlc objects into the more
abstract concepts of layers, subsystems and system units. Figure 2 shows as an example a
set of static concepts of a family of digital GSM mobile telephone control systems (“OHS5.
HC Handset Control Unit”), including one layered subsystem (“OHC1. CS Cellular Ser-
vices Subsystem”). In the case of mobile telephone control systems, we found out that
the architecture of units and subsystems is quite well-established, but very seldom explic-
itly documented and reused as the architecture of a problem domain [SEP92]. Moreover,

although layering is nowadays often used for specifying and implementing telecommunica-
tion protocols, such routinely used real-time system development methodologies as RTSA
[WARSS5] completely ignore it. Obviously, they cannot be very well-tuned for modeling
layered system architectures. We describe the objects of a real-time embedded system
as parts or aggregates of parts of certain types of products (as “OGP4. HS Handset”
in Figure 2). System objects may be interfaced with parts of the same aggregate (for
example, the “OHC2. UF User Interface Subsystem” in Figure 2 is connected via “OHIS5.
K1 Keyboard Interface” with “OHKBO. KE Key”) or with other parts of the product (for
example, “OHC1. CS Cellular Services Subsystem” is associated with “QGP2. SC Smart
Card” via “OHI4. SN Smart Card Interface” in Figure 2).

2.2 Dynamic, functional and performance modeling

We use statecharts-style structured state transition diagrams for describing the dy-
namics of objects along the lines of [RUM91] and action dataflow diagrams according to
[SHL92] for describing their data transformation functions. In the case of real-time, em-
bedded computer systems, the performance constraints that need to be taken into account
are most often related to timing requirements and restrictions of the physical implemen-
tation resources. We usually associate such constraints with the concepts of the dynamic
and functional modeling viewpoints. For example, the key “OCK2. PW Power Switch” is
an instance of the “OHKBO. KE Key” object shown in Figure 2. There is a requirement
for pressing that key for at least 300 milliseconds to switch the power off, if the power
has been turned on. This requirement is associated with the object “OUF2. PR Power
Switch Controller” (not shown in Figure 2) that belongs to the object “OHC2. UF User
Interface Subsystem”. If it is met at some point, the object “ODMI1. PS Power Supply”
of “OHC3. DM Device Monitor Subsystem” is informed, so that it can gracefully switch
off “OGP2. 'SC Smart Card”, “OHS4. HI Handset Control Unit Interface”, “QHS5. HC
HAndset Control Unit”, and finally the physical power source ‘OGP4. PO Power Source”.

We integrate and trace together concepts within the modeling viewpoints at different
levels of abstraction. In its simplest form this can be done graphically, by the appropriate
naming of specialized or aggregated concepts and by adding elementary trace information.
In Figure 2, for example, the name of the relationship “RUL7. Commands” indicates the
target entity, the layer “OCS1. UL Upper Layer”. This layer is modeled as a part of the
subsystem “OHC1. CS Cellular Services Subsystem”, which in turn belongs to system unit
“OHS5. HC Handset Control Unit”. For example, “OHC1.” in the name of the subsystem
indicates that it is a numbered part of another object whose code is “HC”. In the object
communication model (not shown in Figure 2), the name “SUL4. [RUL7.] Command
received” of a message-based communication item would tie one of the stimuli of the
subsystem to the relationship RUL7. In the same way, the name “SSE4. [RSEL] [SUL4.]
Seaich for neworks” would be used for a'stimulus from the user interface subsystem to one
of the objects belonging to “OCS1. UL Upper Layer”. This helps tracing the stimulus to
the layer-level stimulus SUL4., but also to the corresponding relationship RSE1L. at the
object level. : - ' ‘

As a more advanced form of integration and traceability, we construct execution sce-
narios in which the execution principles of the modeled embedded computer systems are
made- explicit and not hidden inside a CASE tool. We have been experimenting both
with graphical and textual execution scenarios, starting from the kinds of descriptions
discussed for example in [SHL9)] (thlead of control modelq) and in [R UMQ]] (scenanos
and event tlaces)

3. Projections of a conceptual model

A projection is a limited perspective to a conceptual model. Its purpose is to describe
a specific system (as opposed to a family of systems) for the needs of particular persons
dealing in certain roles with that system. A projection may be described using specific
syntactic notations, but so that the semantics of the conceptual model are preserved.
Therefore, different projections are made traceable to each other only via the common
conceptual model. This principle fundamentally differs from the traditional approach to
trying to ensure traceability from embedded system specifications to their implementa-
tions. As indicated by our case study, such an approach is often doomed to fail due
to several conceptual gaps within the system development process, in addition to gaps
between user documents and design’ descriptions:

With regard to the dynamic modeling viewpoint, one of the key principles needed for
deriving user’s projections is to make a clear difference between the stimuli and responses
processed by the embedded computer system and the corresponding usage events and
effects in the external environment of the computer system. As illustrated in Figure
1, this means that the dynamics of the conceptual model are projected to the usage
em,nonmcnt and to parts of the unintelligent electromecham(‘al product environment of
the product being controlled by the computer system. '

The former, as we have modeled it, includes the model of the dynamic state behaviour
of the user blmself or herself, in addmon to the description of usage events and effects. The
latter includes dynamic models of the input and output devices accessible by the user,
as well as of the software-based entities managed by the user. Moreover, information
provided by the user or for the user via the input/output devices must be depicted. Since
it would be cumbersome to deal with the physical user interface entities (such as “a key
that has the label C”) we define the logical counterparts of each device (for examiple,
“Cancel Key”) and use the latter when modeling the dynamic behaviour of each entity. A
simple way for associating the two together is visual correspondence between the physical
and logical entities of the user interface. A usage scenario corresponds to the execution
scenario of the conceptual model, from which the user’s projection has been derived.
In usage scenarios we, however, show only the intended use of the computer-controlled
product, the exceptional situations being included. ’

4. Summary

In this paper we claim that the state-of-the-practice in modeling real-time embedded
software systems lacks effective means for ensuring traceability within the whole of a com-
puter system and its environment, as well as for promoting the reuse of system structures,
patterns of dynamic behaviour and data processing functions similar to several members
of the same system family. The paper briefly demonstrates how the construction of con-
ceptual models of families of real-time systems and the generation of end-user projections
from such models support both traceability and reusability. A .more compmhenblve dis-
cussion of the research, with an extensive set of examples taken from the concept tial model
of a family of digital mobile telephone control systems is provided in [SEP93].

5. Referehcés

[MAT92] MAaTSuMOTO, Y. KDM: Kyoto Software Devélqpvnent Method. Working paper,
Kyoto University, Department of Information Science, 1992. 27 p. o

[RUMQl] RUMBAUGH, J;, BLAHA, M., PREMERLANIL, W., EbDY, F. AND LORENSEN,
W. Object-Oriented Modeling and Design. Englewood Cliffs, New Jersey, Prentice-Hall,
1991. 500 p.

[SHL92) SHLAER, S., MELLOR, S.J. Object‘,Lifecycl‘es: Modeling the World in States.
Englewood Cliffs, New Jersey, Prentice-Hall, 1992. 243 p.

[SEP92] SEPPANEN V. Acquzsrtwn organisation and reuse of software design knowledge.
Software Engmeermg Journal, vol. 7, no. 4, July 1992, pp. 238 - 246..

[SbP93’] SEPPANEN, V. Flezible software manufacturing: Modelmg of factory products.
Kyoto University, Department of Information Science,Technical Report KUIS-93-0001
(ISSN 0918-4163), February 1993. 49 p. + app- 53 p. (to appear) '

[WARS5] WARD P T., . MELLOR S.J. Structured Development fo1 Real—sze Systems.
New Yoxlg, Yourdon Press, 1985, Vol. L-IIL

Figure 1. The modeling context of embedded systems

IISAS Byl J0] O|7eUSIS uoReRAD

_ ’ wiodmots Buglepow swreukq

1300}
_ whodwes Supepow =g WILSAS
WNLIIONOD

J300MWIYN143ONOD IHL JONOILIIFLOYd S.HISN

1opouw femidesuco e o uoeloid s,sesn eyl jo LogeASaY
g'si0eouns” uopoelod "siesn ANSWHOMANT
: [— WolNvioIm.
| NILSAS UILNANOD NWILSAS 193
G30038M3 IMLIVIEY u31NdWOD. LNSOITIIINNN

%007 ‘kedng AR
“heyi oo peppoxd] .
orcunene 204 vopswf
. ‘veppue sony 87“
o0 yog 't weoiasp
monsieq wdino
ane yos 'z e
400t e1emjos "\ seonep e
. Indwonndy
‘edueKe 104 ~59 Joen
sapnus 208} lu reopmhyd
» -
- “pp
MU Josn yos: opoives -Mmuncs ok
107"}
El) On feues .
'] . tecunexs o3 N
v 1 -3
LY a a
L) a °
4 g o n
]
o 2L =oun)
s SNPPRS, 0 a
% 3 2
a ouny 2 v
3 Wsas soumiy i 4
- a - ?zaﬂu.u 21 oun 0 u u
a u LN M ® -
e e T
8 h perece .0,
"R 55:...& Joichurxs 103 N I3
3 eidexe J04 B]
1)
4. 3
3 1
s [
° n
\ | 3
1 \J
seuodesy v v E)
L=
1 own e w..&! N o L 2AOLUCD u“ n.
Herdup réet, Aihds 007 Py M
:oydurexe 10 ohuexe 04 ° "
. Ty 1 a
— oumy | o o

LNINNOHIANZ IOVSH

MLbL |

il
\

s00n ap jo

snopwiey

Sowe ar<rw XOOW

©

8
k] »
H

" ks

1ONAOHd 3HL 30 TICON JLVLS TYNUIIXT

Figure 2. A static model of the control system of a GSM phone = |

€ ._

. _ T . 1
mpoRUe) eN0 L] Souseny VoRR Joav00 Awdey sonpieny orpry Sospeny pieog
29404 Od "HHO wetug NS 03 90 THO GA 'tHO HO e Ll

T . — -
- 0 i

1L iy
4\ supnien y Y
< vag'
Hyckdng semog
Sd "INGO
| sekeyyomen
2800
L s Aeqng J0)UO S01AST WG EOHC
. ‘Bujarec seeunyy TINY -
woimaeiBe: mosu0) ZTWIH ..i:iv
Ao.i—l!u} o190 AousBrewse sonw0D 1NN 30
woipn eSdl ;
ﬂ okary swddgy A~
oo NS00 | > < ,SV
P ZOHY . . N
L wapnfsqng se0jAS MTWeD SO LOHO :
NUN 19AUOD WSPUVH IH 'SSHO
worpIeNy YU [07UED WSPUTH IH PSHO
- S ———espURH SH ¥dD0
{pie”sweisksqns Wun U 2 —edA§ YONPOI] SUOKd OHAON WSD IO "Lidl

