
Exploiting the FFT Acceleration for MFCC-Speech
Recognition Using a RISC-V Microcontroller

Wu Xiaoting, Ckristian Duran and Cong-Kha Pham
University of Electro-Communications (UEC), Tokyo, Japan

Email:{xiaoting, duran}@vlsilab.ee.uec.ac.jp, phamck@uec.ac.jp

Abstract—Mel-Frequency Cepstral Coefficients (MFCC) is
a technique used to obtain a signal’s power spectrum for
recognition applications. The Mel-coefficients are used in the
different speech recognition methods, obtaining a high recog-
nition rate. However, the most processing time is used for the
Fast Fourier Transform (FFT). This work presents an FFT
accelerator implemented in Field-Programmable Gate Array
(FPGA), using a RISC-V based microcontroller. The FFT im-
plementation increases the performance by 20.7% of the Mel-
coefficients extraction compared to the software implementation.
The implementation occupies a 1987 Look-Up Tables (ALUT)
and 244 Flip-Flops (FF), and 16384 Memory Bits in 256 bits
configuration, representing a 77% smaller than the implemented
RISC-V processor.

Index Terms—RISC-V, SoC, MFCC, FFT, Speak Recognition.

I. INTRODUCTION

Automatic Speech Recognition (ASR) is used in many
applications for interacting with machines, improving comfort
and performance in society [1]. The Mel-Frequency Cep-
stral Coefficients (MFCC) is one of the most speech feature
extraction for ASR applications. However, the Fast Fourier
Transform (FFT) and the Discrete Cosine Transform (DCT)
are the most expensive steps in the process to obtain the Mel-
coefficients [2]. In this work, we present a FFT accelerator
implemented in a RISC-V environment. The processing time
of the FFT is reduced by 160× in comparison to the soft-
ware implementation in the RISC-V environment. The overall
extraction pre-processing of the feature extraction decrease
a 20.7%, using the FFT accelerator over all the samples.
The FFT accelerator implementation occupies a 2182-LUT
and 244-FF, and 65536 Memory Bits in 1024 bits flavor,
representing a 16% smaller in comparison with the RISC-V
core. Using the 256 configuration, the resources are 1987-
LUT and 244-FF, and 16384 Memory Bits, representing a 77%
smaller in comparison with the RISC-V core.

II. MFCC FLOW EXTRACTION

The MFCC is used to extract the power spectrum based on
the DCT. The power spectrum is used in the ASR system. Fig.

FFTアクセラレーションを活用したRISC -VベースのMFCC音声認識に
関する研究
†ウ　ショウティン　電気通信大学大学院　情報理工学研究科
‡ドラン　クリスティアン　電気通信大学
‡範　公可　電気通信大学

1 shows the MFCC flow to extract the Mel-coefficients. The
Signal Acquisition highlighted in red sampling the data with
a determinate sample frequency. In another way, the Digital
Signal Processing highlighted in green processes the sam-
ples to obtain the Mel-coefficients. First, a Pre-Emphasis
stage frames the data and prevents spectral leakage. The FFT
converts the data into the frequency domain. In addition,
the Mel F ilter Bank is included to extract enough energy
information in the low-frequency bands, to match the behavior
of the human ear [3]. Finally, the DCT obtain the Mel-
coefficients, transform them back to the time domain.

Voice Input
from

the Speaker

Pre-
Emphasis

Sampling
and

Windowing

Fast Fourier
Transfrom

Mel Filter
Bank

Discrete
Cosine

Transform

Output
Mel-coefficients

Pure-Software Implementation in C code

Pure-Hardware Implementation in Verilog-HDL

 // Invoke the fft double version
 // Now, a way to calculate the sqrt(n) is just iterating
 // util i*i surpass (or equals) n
 int sqrtn = 0;
 for(; sqrtn*sqrtn < n; sqrtn++);
 sqrtn += 2 - 1; // We need to quit 1, and add 2
 // Allocate here the temporal arrays this fft needs
 int* ip = (int *)malloc (sqrtn * sizeof (int));
 double* w = (double *)malloc (n / 2 * sizeof
(double));
 // Finally, call this wonderful function
 cdft(m, 1, fftd, ip, w);

int fix_fft(short fr[], short fi[], short m, short inverse)
{

int mr, nn, i, j, l, k, istep, n, scale, shift;
short qr, qi, tr, ti, wr, wi;

FFT in
double

FFT in
integer

FFT in
integer

Signal Acquisition

Digital Signal Proccesing Feature
Extraction

t SS
M
260
3

Pre-
Em
pha
sis

Sa
mpl
ing
and
Win
do
win
g

FFT

Mel
Filte
r
Ban
k

Disc
rete
Cosi
ne
Tra
nsf
orm

Out
put
Mel
-coe
ffici
ent
s

Voice
Input by
SSM 2603

CODEC

Digital Signal Proccesing

Pre-Emphasis
Sampling and

Windowing
FFT

Mel
Filter
Bank

DCT

Fig. 1. MFCC flow implemented.

III. HARDWARE IMPLEMENTATION

A. System-on-Chip

The MFCC flow described in the section II is implemented
using a RISC-V environment [4]. Fig. 2 illustrates the block
diagram of the SoC implemented. The SoC is composed
of a rocket core with 16-KB of instruction and data cache
[5], a debug module, an SPI for external memory, a UART,
a 256-MB of Dynamic Random-Access (DDR) memory, a
system interruption, a coder/decoder (CODEC) and an FFT
accelerator. In addition. the SoC uses a TileLink for system
and peripheral buses [6].

TILELINK SYSTEM BUS

TILELINK PERIPHERAL BUS

 Rocket Core

I$ D$

FFTUART PLIC &
CLINT

SPI (as
MMC) DDR3

MBUS

CODECI2C

SSM 2603

Debug
Module JTAG To JTAG

controller

RAM

Fig. 2. Block diagram of the SoC implemented.

Copyright 2022 Information Processing Society of Japan.
All Rights Reserved.2-297

1R-08

情報処理学会第84回全国大会

The CODEC (SSM 2603) can be sample the data with 8,
22, 48, and 96-kHz, using the I2C to configure the sampling
frequency. Besides, the analog to digital converter inside the
CODEC sends data sampled with 16-bit unsigned to the
Digital Signal Processing stage.

B. FFT accelerator

Fig. 3 illustrates the architecture of the implemented FFT
accelerator. This FFT uses one Butterfly Unit for two samples
to perform the sum and multiply operations. The dual-port
RAMs contain the real and imaginary components of the signal
and its calculated spectrum. The data will be directed accord-
ing to the scrambled address from the Address Generation
Unit. This unit provides the logic for maintaining the order
of the samples by performing calculations according to the
current iteration and sample. A similar logic is used for the
Twiddle Factor ROM, which provides the rotation factors for
the Butterfly Unit according to the FFT algorithm. Finally,
the memory routing logic will make the reading and writing
interleaved between both memories to avoid overwriting.

din

addro

addri

dout

we

stage_n
doublepost
memory

stage_n_1
doublepost
memory

R P

AES

ICB
GCTR

FSM

TI
LE

LI
N

K
 P

ER
IP

H
ER

A
L

B
U

S

Register router

1b W

(8-10)b W

1b R

(8-10)b W

32b W

32b W
Address

Generation
Unit

Twiddle
Factor ROM

Dual
Port
RAM

Dual
Port
RAM

Butterfly
Unit

Data In.

Addr. In
Valid

Ready

Addr. Out

Data
Out

Addr

WR
din
A,B

Addr
A,B

WR

din A,B

Fig. 3. Block diagram of the FFT accelerator implemented.

IV. RESULTS

The microcontroller is implemented in ALTERA Cyclone
V 5CSXFC6D6F31 FPGA. Table I shows the resources of the
SoC implementation in FPGA. The microprocessor represents
19 % of all SoC. The DDR3 controller and the FFT accelerator
represent the majority of the resources with 59%, and 16%,
respectively. The FFT is configurable at synthesis time to three
different lengths: 1024, 512, and 256 bits. The overhead of the
RISC-V processor in comparison with accelerators are 16%,
57%, and 77%, respectively. The TileLink bus represents less
than 1% of the SoC.

Table II shows the execution times of the implemented
FFT. The application runs different lengths of sampled data,
necessary for voice recognition. The software includes the
preprocessing stages of filtering, windowing, FFT, and feature
extraction using MFCC. The major overhead is presented in
the MFCC, as the implemented processor only supports integer
operations, and the feature requires floating-point operations.
Other operations besides MFCC are implemented in software

or hardware using fixed-point operations only. By implement-
ing the hardware in FFT for 256 samples, the performance is
160 times over the software counterpart. The FFT increases the
performance by 20.7% overall implementations for the overall
extraction.

TABLE I
FPGA IMPLEMENTATION RESULTS BY MODULE.

ALUTs FFs MEM BITS
Rocket Core 7775 5034 68608
Debug Module 829 843 0
I2C 189 135 0
CODEC 151 193 16348
SPI 318 222 128
UART 155 140 128
ROM 120 180 0
DDR3 7838 7967 237084
TilelInk Bus 2643 1188 384
FFT 1024 2182 244 65536
FFT 512 2012 244 32768
FFT 256 1987 244 16384

TABLE II
EXECUTION PERFORMANCE IN CLOCK CYCLES IN FPGA.

Execution Time @50 MHz @48 KSPS
MCycles Filter Hann FFT 256 Feature

[ms] Wind. HW SW Extraction
32768 675.4 3127.2 326.1 54056.8 212567.1

Samples 13.5 62.5 6.5 1081.1 4251.3
65536 1363.4 6871.9 654.2 105750.6 468336.4

Samples 25.2 137.4 13.1 2115.0 9766.8
131072 2701.5 12267.4 1306.6 240768.4 934005.8

Samples 54.0 245.3 26.1 4815.3 18680.1

V. CONCLUSION

A Mel-Frequency Cepstral Coefficients process is optimized
using an FFT hardware accelerator. The FFT implementation
improves the performance 160× in comparison with the soft-
ware implementation, using a RISC-V rocket core with integer
operations. The implementation occupies 1987-LUT and 224-
FF and 16384 Memory Bits with a 77% smaller resources
of the RISC-V core, using the FFT 256 configuration. The
overhead of the RISC-V processor in comparison with accel-
erators are 16%, 57% and 77%, for FFT 1024, 512, and 256
bits, respectively.

REFERENCES

[1] I. López-Espejo et al., “Deep Spoken Keyword Spotting: An Overview,”
IEEE Access, pp. 1–1, 2021.

[2] H. Kou et al., “Optimized MFCC feature extraction on GPU,” in 2013
IEEE International Conference on Acoustics, Speech and Signal Process-
ing, 2013, pp. 7130–7134.

[3] A. Jain et al., “Evaluation of MFCC for speaker verification on
various windows,” in International Conference on Recent Advances and
Innovations in Engineering (ICRAIE-2014). IEEE, may 2014. [Online].
Available: https://doi.org/10.1109%2Ficraie.2014.6909144

[4] A. Waterman et al., “The RISC-V Instruction Set Manual, Volume I: User-
Level ISA, Version 2.0,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2014-54, May 2014.

[5] RISC-V Foundation, “Rocket Chip Generator,” 2019. [Online]. Available:
https://github.com/chipsalliance/rocket-chip

[6] SiFive, Inc., “SiFive TileLink Specication,” Aug. 2019. [Online].
Available: https://www.sifive.com/documentation/tilelink/tilelink-spec/

Copyright 2022 Information Processing Society of Japan.
All Rights Reserved.2-298

情報処理学会第84回全国大会

