2M-01

相乗りを考慮した Min-Max 型タクシー配車問題*

黒住涼帆[†] 江守礼[‡] 榎原博之[‡]

関西大学大学院理工学研究科システム理工学専攻†

関西大学システム理工学部電気電子情報工学科[‡]

1 はじめに

近年、タクシー事業が縮小傾向にある中、タクシー車両を有効活用するために相乗りタクシーが注目されている。相乗りすることにより交通渋滞の緩和、燃料の節約など社会、環境にとって多くのメリットがある。相乗りを考慮したタクシー配車問題における従来の研究では、タクシーの総移動距離を最小化することを目的としていた[3]が、最も長い距離を走ったタクシーの距離(最長経路)を最小化する問題についてはあまり研究されていない。

そのため本研究では、最長経路を最小化するために、目的関数に車両距離の標準偏差を導入し、問題を解く手法としてタブー探索法に新たな近傍操作を組み合わせた手法を提案する。ダイアルアライド問題 (Dial-A-Ride Problem,DARP)[1] のベンチマーク問題を用いて従来手法と提案手法を比較することで、提案手法の有効性を確認する。

2 相乗りを考慮したタクシー配車問題

相乗りタクシー配車問題は出発地と目的地を持つn人の顧客をm台のタクシーが顧客の相乗りを考慮しつつ分担して配送する。従来の研究では、この問題をタクシーの総移動距離を最小化する問題として定式化を行っている。 $\mathbb{S}=\{x_1,x_2,\cdots\}$ を解空間とする。全ての解 $x_i\in\mathbb{S}$ は以下の基本制約を満たす必要がある。

- タクシーk の経路は depot から出発し depot に帰還する。
- 顧客iの出発地 v_i と目的地 v_{i+n} は同じタクシーkの 経路に属する。
- 目的地 v_{i+n} は出発地 v_i の後に訪問されなければならない。

これらの基本的な制約に違反する解は実行不可能である。 さらに相乗りを考慮したタクシー配車問題には、次の制 約が存在する。

- q(x):タクシーの乗客数の容量制約
- *d*(*x*):タクシーの移動距離制約
- t(x):顧客の移動距離制約

これらの制約は評価関数に入れることで、より柔軟な解の探索を行う。本研究で扱う Min-Max 型タクシー配車

問題は、最も長い距離を進んだタクシーの移動距離の最 小化を目的としている。目的関数を式 (1) に示す。

minimize
$$\underset{k}{\text{Max}} l(x_k)$$
 (1)

 $l(x_k)$ はタクシー k の移動距離である。

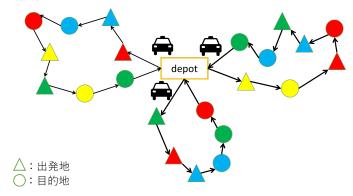


図1 相乗りタクシー配車問題

3 関連研究

Cordeau 氏らの研究 [2] では、branch-and-cut の厳密な手法を提案しているが、大規模な問題では計算時間が長くなってしまう。そのため、多くの研究ではヒューリスティックやメタヒューリスティクアルゴリズムを解法として用いている。Cordeau 氏らの研究 [1] や Ho 氏らの研究 [3] では、解法としてタブー探索法を用いている。また Ho 氏らの研究 [4] では解法として焼きなまし法が用いられている。これらの研究では、タクシーの総移動距離の最小化を目的としている。

4 提案手法

本研究では、最長経路を最小化するためにトランスファー操作を取り入れたタブー探索法を提案する。アルゴリズムを以下に示す。

4.1 評価関数

評価関数を式 (2) に示す。最長経路を削減するため、評価関数に標準偏差 h(x) を導入する。c(x) は、タクシーの総移動距離、punish(x) は、各制約違反の合計、 α,β,γ は各違反の係数である。

minimize
$$c(x) + punish(x) + h(x)$$
 (2)

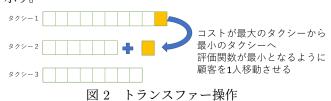
$$punish(x) = \alpha \cdot q(x) + \beta \cdot d(x) + \gamma \cdot t(x)$$
 (3)

4.2 初期解生成

初期解は、各タクシーの顧客数が均等になるようにランダムに顧客を割り当てる。

 $^{^*}$ Min-Max typed taxi dispatch problem considering ridesharing

 $^{^\}dagger \mbox{Kurozumi Ryoho} \cdot \mbox{Graduate School of Science and Engineering, Kansai University}$


[‡]Emori Rei,Ebara Hiroyuki • Faculty of Engineering Science, Kansai University

4.3 近傍解生成

タクシーkの顧客iを異なるタクシーk'に移動させる。このとき移動させた顧客iの出発地 v_i と目的地 v_{i+n} は、車両k'のルートのコストが最小となるよう挿入する。コストとは、タクシー1台の走行距離と制約違反の合計である。この近傍解の評価関数が既知の評価関数よりも良くなった場合、この移動を行い、タブーリストに登録する。

4.4 トランスファー操作

提案手法では近傍解の生成後に、最もコストの大きいタクシーから最もコストの小さいタクシーへ顧客を1人移動させる。移動させる顧客は評価関数が最小となるように選ぶ。また、この移動はタブーリストを参照し、登録も行う。車両数3台でのトランスファー操作を図2に示す。

4.5 制約の各係数について

制約の各係数 α , β , γ は探索ごとに重みを更新する。1 回の探索での解について、各係数ごとに対応した制約が違反した場合、 $1+\delta$ で乗算し、違反しない場合は $1+\delta$ で除算する。

4.6 終了条件

探索回数は一定にせず、解がN回更新されない場合に探索終了とする。

5 評価実験

5.1 実験概要

提案手法を評価するため、相乗りタクシー配車問題において最長経路と計算時間を従来法と比較する。従来法は、評価関数に標準偏差が無く、解法にトランスファー操作が無い手法である。ベンチマーク問題として Cordeau 氏の DARP の問題例 [1] を使用した。使用した問題例の車両台数と顧客数を表 1 に示す。結果は 10 回の平均である。制約の各係数と標準偏差の係数は予備実験により、 $\alpha=3,\beta=1,\gamma=3$ とした。また δ の値は 0.5 とした。

表 1 問題例

問題例	車両台数(台)	顧客数 (人)
darp01	3	24
darp02	5	48
darp03	7	72
darp04	9	96
darp05	11	120

5.2 実験結果

実験結果を表2に示す。すべての問題例で、最長経路 が削減されることが分かった。また、計算時間は顧客数 が多くなる問題ほど短縮できていることが分かった。

表 2 問題例

問題例	最長経路 (km)		計算時間 (s)	
	従来手法	提案手法	従来手法	提案手法
darp01	79.4	45.4	37.3	31.9
darp02	89.5	47.2	690.6	225.8
darp03	102.7	60.3	2456.0	403.1
darp04	105.3	53.5	2943.9	998.8
darp05	124.4	48.4	3652.8	1388.5

6 まとめ

相乗りを考慮したタクシー配車問題において、最長経路を削減するため目的関数に標準偏差を、解法にトランスファー操作を導入する手法を提案した。提案手法により最長経路が削減され、さらに計算時間を短縮することが分かった。今後の課題として、顧客の出発時間と到着時間のような時間窓制約の考慮や、実際の道路情報を用いた問題例への適用が考えられる。

铭樵

本研究の一部は、関西大学大学院理工学研究科高度化 推進研究費、関西大学先端科学技術推進機構「緊急救命 避難支援のための災害情報通信ネットワークに関する研 究開発」研究グループの助成を受けている。

参考文献

- Jean-Francois Cordeau, Gilbert Laporte, "A tabu search heuristic for the static multi-vehicle dial-aride problem" Transportation Research, PartB 37, pp.579-594 (2003).
- [2] Jean-Francois Cordeau, "A Branch-and-Cut Algorithm for the Dial-A-Ride Problem" Operations Research, vol.54, no.3, pp.573-586 (2006).
- [3] Song guang Ho, Sarat Chandra Nagabarapu, Ramesh Ramasamy Pandi, Justin Dauwels, "An Improve Tabu Search Heuristic for Static Dial-A-Ride Problem" Artificial Intelligence (2018).
- [4] Song guang Ho, Sarat Chandra Nagabarapu, Ramesh Ramasamy Pandi, Justin Dauwels, "Multiatomic Annealing Heuristic for the Dial-a-ride Problem" IEEE International Confe (2018).