‘/7]“7:71? 99— 1
(1994. 7. 1)

LOTOS R SZDRBEKRER & T DICH
BE W Mz
BB ER R R NIRRT

AFH T, BE program & TN AL DERS 7 5 A % 52 5. BE program D H1E LOTOS D AEXL
EBLTH Y, BE program OERIE, HFREOL VR ¥ L FREOIEFR VO Ny 775 b D457 % BE
interpreter & I-.R) DR & U TEHK 2115, BE interpreter DRI ARIE R T 7 112 35 LRI ATET
RRENTEY, CEEETRESICERTAZ LY TEL. T4, AT, MET O VO BRELE, B
SN B9HR: %, BE program TEHT A FHEICOWTHHRNL, ZHICE Y, HREREHD 5 EIT TR S
O7 T ANO—E LB RDP e 2 5.

An Algebraic Definition of a LOTOS-Like Language and Its Application

Yasunori ISHIHARA Hiroyuki SEKI Tadao KASAMI

Graduate School of Information Science
Nara Institute of Science and Technology

This paper proposes a subclass of algebraic specifications called BE programs. The syntax of BE programs re-
sembles the syntax of LOTOS, and the semantics of BE programs is defined as a behavior of an interpreter, called a
BE interpreter, which has a finite number of registers and unbounded 1/O buffers. BE interpreters can be easily im-
plemented by C. This paper also proposes a method of implementing a subclass of algebraic specifications, which are
derived from natural language specifications of communication protocols, by BE programs. Thus, one can translate a

natural language specification of communication protocols into an executable program.

1 Introduction

To raise effectiveness of software development pro-
cesses and reliability of programs, various formal speci-
fication methods have been proposed and studied. Alge-
braic specification methods [1], [2] are useful and power-
ful because of the following reasons:

1. Abstract data types can be defined simply in algebraic
specifications;

2. Formal semantics of a specification is simply provided
by axioms (equations); and

3. One can write a specification which has arbitrary struc-
ture and arbitrary degree of abstraction.

Using algebraic specification methods, we define a
class of interpreters (machines), called BE interpreters,
each of which has a finite number of registers and un-
bounded I/O buffers. A BE interpreter performs three
kind of atomic actions: input from a buffer, output to a
buffer, and calculation using its registers. An input pro-
gram for a BE interpreter, called a BE program, specifies
the order of actions by means of such operators as action-
prefix, choice, conditional, and so on. The syntax of BE
programs is also defined within the framework of alge-
braic specification. And the semantics of BE programs,
i.e., the behavior of BE interpreters, is defined by axioms
based on a state transition model. Therefore, each BE in-
terpreter can be easily implemented.

In Refs. [3] and [6], we proposed a translation method
from natural language specifications of communication
protocols into algebraic specifications. A specification
such as a protocol specification defines valid sequences of
actions performed by a protocol machine. In the method,
the valid sequences of actions are represented by an axiom
whose left-hand side is a formula in first-order predicate
logic. In this paper, we present a method of implementing
such axioms by BE programs.

2 Algebraic Specification Language ASL

In this paper, we adopt ASL [5] as an algebraic specifi-
cation language. A specification in ASL is a pair SPEC =
(G, AX) of a context-free grammar G and a set AX of
axioms. G specifies the set of expressions and their syn-
tax, and AX specifies their semantics. Let G = (N, T, P)
where N, T and P are sets of nonterminals, terminals and
productions, respectively. For a nonterminal D € N, let
L[D] denote the set of terminal strings derived from D
in G, andlet Lg = Upey La[D]. Anelement in Lg is
called an expression (in the specification SPEC). N cor-
responds to the set of sorts (data types); A nonterminal D
is sometimes called “data type D” and an expression in
Lg[D] may be called “an expression of type D.”

An axiom is a pair | == r of expressions with vari-
ables. A variable of an axiom is denoted by a symbol with
the upper bar (e.g.,). With each variable Z in an axiom
a nonterminal D; is associated (declared by “Z : Dz” in
the specification), and an arbitrary expression in Lg[D]
can be substituted into Z. The least congruence relation
that satisfies all the axioms in AX is denoted by =spec.
See Ref. [5] for details.

Table 1: Specification of sequences.

e Production schemata:
Seq.D — A,
Seq.D — Seq.D- D,
D — head(Seq.D),
Seq.D — tail(Seq_D),
Bool — member(D, Seq_D).
e Axioms:
Esoq : 5€q-D, £,8' : D
head(Zseq -) == if &seq = Athen z
else head(Zseq),
tail(\) == A,
tail(Zseq -) == if Fsoq = A then A
else tail(Zseq) - Z,
member(z, \) == false,
Member(z, Zseq - &') == if & = &' then true
else member(z, Zseq)-

In this paper, we presuppose a fixed specification
SPECy = (Gy, AXy), Go = (No, To, Po) of primitive data
types (e.g., integer, Boolean, set, and so on), which de-
fines the data types of the contents of the registers and
I/O buffers of a BE interpreter. We assume that SPECy
supports the following data types:

1. Boolean; Let Bool be a nonterminal which generates
Boolean expressions.

2. Sequence; Let Seq- be a constructor on data types to
support sequences of a given data type, i.e., for any
data type D, Seq.D generates sequences of expres-
sions of type D. Formally, SPECy has the produc-
tion schemata and axioms shown in Table 1, where
A, -, head, tail, member € T;. Constant function A
denotes the empty sequence and function *“-” denotes
the concatenation operation. For a given sequence,
head returns the first element and tail returns the se-
quence obtained by eliminating the first element. Pred-
icate member is true if and only if the first parameter
is an element of the second parameter.

3 BE Programs

As stated in Sect. 1, a BE interpreter has registers and
1/O buffers, and performs three kind of atomic actions.
The syntax and semantics of a BE program are defined to
meet the following requirements:

(a) One can describe all the registers and I/O buffers of a

BE interpreter;

(b) One can use primitive data types as ones of contents
of the registers and 1/0 buffers;

(c) One can describe all the actions performed by a BE
interpreter; and

(d) One can specify the order of performance of actions.

In this section, we restate these requirements for-

mally, ie., we describe the conditions which a BE

program SPECprc = (Gprg, AXprG),

(Nprs, Tera, Ppra) has to meet.

First, for the requirement (a), we introduce two data
types Reg and Buf as follows:

Gprc =

-9 —

1. Reg € Nprg generates names of registers of a BE
interpreter. Each element of Lg,,,[Reg] is a terminal
symbol. We mean Lg,,.[Reg] by REG.

2. Buf € Nppg generates names of I/O buffers. Each
element of Lg,,,[Buf] is also a terminal symbol. We
mean Lg,,,[Buf] by BUF.

We assume that REG N BUF = 0.
Secondly, for the requirement (b), SPECprg must sat-
isfy the following condition:

3. SPECppg D SPEC, (pair-wise containment).

4. For each reg € REG, there is a unique nonterminal
symbol D,., € Np such that Dy — reg € Pprg.
D, is denoted by type[reg].

5. For each buf € BUF, there is a unique nonterminal
symbol Dy € No such that Seq_Dy,s — buf €
Prrg. Dbuf is denoted by type[buf].

Thirdly, for the requirement (c), we introduce the fol-
lowing data type:

6. Action € Npyg generates actions. For each buf €
BUF and reg € REG, the following productions are
in PpRGZ

Action — in(buf, reg),
Action — out(buf, reg),
Action — set(reg — D),
where in, out, set, — € Tpg, type[buf] = type[reg],
and D,.; = type[reg]. in(buf, reg) denotes that a BE
interpreter receives a data from buffer buf and the
data is stored in register reg. out(buf, reg) denotes
an action that a BE interpreter transmits a data stored
in register reg to buffer buf. set(reg « t) denotes
an assignment of the value of a term ¢ to register reg
(the value of a term is formally defined in Sect. 4).
Lastly, for the requirement (d), we introduce behavior
expressions, which specifies the order of performance of
actions. Some behavior expressions are associated with
behavior identifiers so that a behavior expression can refer
(call) another behavior expression, i.e., a behavior identi-
fier corresponds to a procedure name. The syntax of be-
havior expressions is defined as follows:
7. B.id € Npgg generates behavior identifiers. There
are productions of the following form:
B.id — =,
where © € Tpgg is a behavior identifier.
8. B_exp € Nprg generates behavior expressions. The
following productions are in Ppgg:
B.exp — stop,
B_exp — B.id,
B.exp — Action; B.exp,
B_exp — (B_expOB_exp),
B.exp — (B_exp|Seq_Action|B_exp),
B_exp — [Bool] —> B.exp,
B.exp — (B_exp>> Seq_Action 3> B_exp),
B_exp — (B_exp [> Seq.Action [> B_exp),

where Stop: 3y Dy ,7 [7]y _>y (1): >>7 [> € TPRG~

Table 2: Meanings of operators.

o stop means that no actions are performed, i.e., a BE inter-

preter which executes it comes to a deadlock.

Execution of a behavior identifier is equivalent to execution

of the behavior expression which is associated with =,

Action-prefix: a; B specifics that a BE interpreter performs

action a, then executes behavior expression B.

Choice: (B; O B,) specifies that a BE interpreter executes

either B, or B, nondeterministically.

e Parallel composition: (Bi|A - a1 - - - an|B2) specifics that a

BE interpreter exccutes behavior expressions B and B; in a

“time sharing” manner. Here, each action a; (1 < ¢ < n)

must be simultaneously performed in executions of B; and

B,.

Conditional: [p] —> B specifies that a BE interpreter exe-

cutes behavior expression B if predicate p holds, and comes

to a deadlock otherwise.

Enabling: (B; > A - a; - -- an, > B,) specifies that a BE in-

terpreter executes behavior expression By first. When some

action a; (1 < 1 < n) is performed during execution of By,

the interpreter begins to execute behavior expression B,.

e Disabling: (B; [> A - a; - -+ an [> By) specifics that a BE in-
terpreter executes behavior expression By, and the interpreter
can nondeterministically begin to execute behavior expres-
sion B, until some action a; (1 < i < n)is performed during
execution of Bj.

.

In Table 2, we present the intuitive meanings of the oper-
ators used in behavior expressions. In Sect. 4, we define
the formal semantics as the behavior of a BE interpreter.

Now we introduce a predicate := which associates a
behavior expression with a behavior identifier.

9. There is a production
Bool — B.d := B_exp
in Pprg, and there are one or more axioms
T =B ==true

in AXprg, where = € Terg, ™ € LGWG[B_id], and

B e LGPRG [B_exp]. T:=B =spece (TUE means

that 7 is defined as B in SPECprg. We call an ex-

pression in the form of 7 := B a behavior definition
(of m).

Among the behavior expressions defined by opera-
tor :=, exactly one behavior expression must be specified
as the main (top level) behavior expression, i.e., the one
which should be executed first by a BE interpreter.

10. There is a production
Bool — main(B_id)
in Ppgg, and there is exactly one axiom
main(w) == true
in AXprg, where main € Tprg and ® €

L [BAd]. main(r) =gpec,e true means that =
is the main behavior expression.

To execute the main behavior expression, the initial
values of the registers and 1/O buffers must be specified:
11. Foreachy € REG U BUF, the following production

is in PpRc;:
Dy — initial(y),

where initial € Tprs, Dy = typely] if y € REG, and
D, = Seq.type[y] if y € BUF. Moreover, for each
y € REG U BUF, there is exactly one axiom
initial(y) == ¢y

in AXppg, where ¢y € Lgylopelyll if y €
REG and ¢y € Lgu[Seq-nypelyl] if y € BUF.
initial(y) =specae ¢y Mmeans that the initial value of
yiscy. .

4 BE Interpreters

In this section, we define the semantics of BE pro-
grams in terms of the behavior of a BE interpreter. Let
SPECnt = (G, AXmvt), Gint = (Nint, Zint, i)
be a BE interpreter specification, and SPECppg =
(Gpre, AXpra), Gpre = (Npra, Tere, Prro) a BE pro-
gram.

First, we assume that Gyt 2 Gprg (pair-wise con-
tainment). By this assumption, it can be considered that
SPECint U SPECppg (pair-wise union) specifies the be-
havior of a BE interpreter when SPECppg 1s given as its
input program. We mean Lg,[Reg] and Lg,.[Buf] by
REG and BUF, respectively.

Next, we define the semantics of the operators used in
behavior expressions. To do this, we introduce a quadru-
ple relation EXEC. Let B,B' € Lg,,[Bexpl,p €
Ly [Bool], and @ € Lg,[Action]. (B,p,a,B') €
EXEC means that “Suppose that a BE interpreter is about
to execute behavior expression B, and that the values of
the registers and I/O buffers of the BE interpreter satisfy
predicate p. Then, the BE interpreter is allowed to per-
form action a, and then executes behavior expression B’
after a.” In SPECnT, relation EXEC is represented by a
predicate exec. We introduce a production

Bool — exec(B_exp, Bool, Action, B_exp)

into P, and the axioms shown in Table 3 into AXNT.

Now, we introduce State € Ninr, whichis a data type
representing states of the BE interpreter. The productions
whose left-hand side is State are as follows:

State — sinit,
State — §(State, Action),

where Sinit, § € Tint- Sint denotes the initial state of the
BE interpreter, and 6(s, a) denotes the state immediately
after action a is performed at state s.

By using the notion of the states of a BE interpreter,
we define the semantics of each action a as relation be-
tween the values of the registers and I/O buffers before a
is performed and the values after a is performed. To ex-
press this relation in SPECyt, we introduce val € Tinr
such that for each D € Np, a production

D — val(D, State)
is in Pnt. For any expression t which includes some of
members of REG U BUF, val(t, s) denotes the value of ¢
at state s. The semantics of the actions is defined by the
axioms shown in Table 4.

Lastly, a BE interpreter has to remember what behav-
ior expression it is executing. This is easily achieved by

Table 3: Axioms on exec.
B,B', B\, B, B,, B} : Bexp, a: Action,
P,7,p1, P2 : Bool, % : B.id, A : Seg-Action
e Action-prefix:

exec(a; B, true, &, B) == true.
Choice:
exeC(Bl) P1, @, B;) 2
exec((B, O By), $1, a, B}) == true,
exec(B, f2,a, By) D
exec((B; O By), 52, a, B)) == true.
e Instantiation:
((7 := B) Aexec(B, p,a,B")) D
exec(®, p, &, B') == true.

o Parallel composition:
(exec(By, p1, &, B}) A -member(a, 4)) D
exec((Bi|A|By), pu, &, (Bi| A|By)) == true,
. (exec(By, 1, &, B3) A ~member(a, A)) D
exec((Bi|A|B,), 2, &, (B1] 4| By)) == true,
(exec(Bi, 1, 8, B) A
exec(Bs, 52, &, By) A member(a, A)) D
exec((Bi|A|By), b1 A P2, @, (B[A| By)) == true.
e Conditional:
exec(B, p,a,B) D
exec([p'] > B,pAF,a,B") == true.
e Enabling:)
(exec(B,, 51, &, B)) A ~-member(a, A)) D
exec((B1 > A> By),p1,a,(Bi > A> By)) == true,
(exec(B,, 71, &, By) A member(a, A)) D
exec((Bi > A> By), 5, &, B) == true.
e Disabling:
(exec(By, 1, &, B}) A ~-member(a, 4)) D
exec((B1 [> A [> B2), 1, &, (B [> A[> B2)) == true,
(exec(By, 1, &, B]) A member(a, 4)) D
exec((B: [> A[> B2), p, &, Bi) == true,
exec(B,, p2, &, By) D
exec((B; [> A[> By), p2, @, By) == true.

using relation EXEC. We introduce a production
Bool — bexp(B_exp, State)

into P, where bexp € Tinr, and the axioms shown in
Table 5 into AXInT.

5 Translation from Natural Language Specifi-
cations into BE Programs

5.1 Translation from Natural Language Specifica-
tions into Logical Formulae

In Refs. [3] and [6], we proposed a translation method
from natural language specifications into algebraic spec-
ifications. As an example of an input specification, we
considered a communication protocol specification. In
such a specification, a sentence often specifies an action
which a program (or a protocol machine in the case of
protocol specifications) has to perform but often specifies
implicitly when the action is performed.

Example 1: Consider the following consecutive sen-
tences in Ref. [4]:

— 4 —

Table 4: Axioms onval.
: State
Calculation: For each ¢ € T,
val(e, 3) == ¢,
and for each f € Tp such that A — f(A,,...,An) € P,
{] :Ai, ceay t-,., 1 An
val(f,...,1n),8) == f(val(, 3),...,val(,, 5)).
Initial value: For each reg € REG and buf € BUF,
val(reg, sinit) == initial(reg),
Va!(buf, Sinit) == mltlal([)uf).
in(buf, reg). For each reg, reg’ € REG such that reg # reg’,
and for each buf, buf' € BUF such that buf # buf',
val(reg, §(3,in(buf, reg))) == head(val(buf, 3)),
val(reg’, 6(3, in(buf, reg))) == val(reg, 3),
val(buf, (3, in(buf, reg))) == tail(val(buf, 5)),
val(buf', 6(3, in(buf, reg))) == val(buf', 3).
out(buf,reg): For each reg,reg’ € REG, and for each
buf,buf' € BUF such that buf # buf",
val(reg', §(3,0ut(buf, reg))) == val(reg', 3),
val(buf, 6(3, out(buf, reg))) == val(buf, 3) - val(reg, 5),
val(buf', 6(3,0ut(buf, reg))) == val(bus',).
sel(reg « t): Foreach reg, reg’ € REG such thatreg # reg’,
and for each buf' € BUF,
T : type[reg]
val(reg, 6(3, set(reg — 1)) == val({, 5)
val(reg', 8(3, set(reg «— D)) == val(reg', 5),
val(buf', 6(3, set(reg — 1))) == val(buf', 5).

Y]

Table 5: Axioms on bexp.
:B.d, B,B' : B_exp, 3 : State,
: Bool, & : Action

ETl

=

main(#) O bexp(#, Sint) == true,
(bexp(B, 5) A exec(B, p, &, B') Aval(p, 5))
D bexp(B’, 6(3, a)) == true.

(1) A valid incoming MAJOR SYNC POINT SPDU

(with ...) results in an S-SYNC-MAJOR indication.

(2) If Vscis false, V(A) is set equal to V(M).
The protocol machine has to perform the actions specified
by (2) immediately after it performs the actions specified
by (1). However, sentence (2) does not specify explicitly
when the actions has to be performed. o
In Ref. [3], a state of the program which is specified im-
plicitly in a natural language specification is called a sit-
uation. Moreover, for a constituent (i.e., a phrase, clause
or sentence) X, the pre-situation of X is defined as the
situation at which the action(s) specified by X has to be
performed, and the post-situation of X is defined as the
one immediately after the action(s) is performed. The
pre-/post-situations are also defined for a sequence of sen-
tences.

It is assumed that a natural language specification is a
set of paragraphs (i.e., sequences of sentences) and there
exists no contextual dependency between distinct para-
graphs (i.e., for any constituent X in a paragraph, the pre-
situation of X is either the pre-situation of the paragraph
or the post-situation of another constituent). Each para-
graph in a natural language specification is independently
translated into an algebraic axiom.

In Ref. [3], we formalized situations as a data type
Situation, which is represented by a sequence of “events”
which the program has performed from the initial situa-
tion. By using type Situation and other primitive data
types, a paragraph P of a natural language specification
is translated into an axiom in the form of

I :Al)"-yi‘m :Am
Qlil o Qmim
(8@ [[Rm @ [A\ preds]] -]] = true, 1)
sep

where preds is a logical formula without quantifiers de-
noting the meaning of sentence S, Z,, ..., &, are all the
distinct variables appearing in A\ g¢ p predg, and 4; (1 <
J < m) is the data type of Z;. We mean by R; @ F that
Ri(Z1,...,) AFif Q; =3, and Rj(,,...,E;) D Fif
Q;=V.

Each sub-predicate of pred s which denotes events has
two extra parameters: One denotes the pre-situation and
the other does the post-situation. In Axiom (1), each
pre-/post-situation is represented by a variable of type
Situation. The same situations are represented by the
identical variable. Since each paragraph is “contextually
closed,” the variable representing the pre-situation of the
paragraph is universally quantified, and the other vari-
ables of type Situation are existentially quantified. In
the case of a protocol specification, the pre-situation of
a paragraph usually denotes a state in which a protocol
machine is waiting for an input. And, if a protocol ma-
chine reaches the post-situation of a paragraph, then the
machine waits for a next input.

Example 2: The two sentences in Example 1 are trans-
lated into an axiom of F == true, where F' is the follow-
ing formula in a first-order predicate logic:

&1,...,0g : Situation, z; : SPDU,

V&,YZ,3623%,353364355365¢35735%

[valid(z,) A incoming(z;) A MAP(z;) D

[SSYNMind(z,) A
[receive(Z;, 71, 62) A send(Za, 52, 53)] A
[if_then_else(Vsc = false,
set_equal_to(Va,Vm, a4, 55),

Z, : SSprm

nop(as, 67,

3, 5s)111
Intuitive meanings of subexpressions in the formula are
presented in Table 6. w]

Consider Axiom (1) again. Let Z; be an existentially
quantified variable, and Z;,, . . ., Z;, be all the universally
quantified variables such that j,...,7; < 7. To simplify
the implementation method proposed in the next section,
we assume the existence of a Skolem function skolems,
for Z; such that if

Ri(zy,...,zx) = true
foreachk (1 < k< j— 1), then
RJ‘(I],...,:Bj_l,skole’nij(iﬂj],..A,(E]‘l)) = frue.

By introducing such Skolem functions, we can ignore the
restriction R; of every existentially quantified variable

5._

Table 6: Meanings of predicates.

valid(;): £, has a valid data format.

incoming(#:): &, is an incoming object.

MAP(z,): &; is a data unit MAJOR SYNC POINT SPDU.

SSYNMind(z:): #; is a service primitive S-SYNC-MAJOR

indication.

o receive(zi, 31, 52): Atsituation &1, the event ““receipt of z;”
is allowed to occur and the situation immediately after the
event is &3.

e send(z2, &2, &3): Atsituation &3, the event “sending &, has

to occur and the situation immediately after the event is 3.
set_equal to(Va,Vm, Gs, &s): At situation &4, the event
“setting the value of V(A) equal to the value of V(M)” has
to occur and the situation immediately after the event is s.
nop(ds, &7): At situation &g, a “meaningless” event such as
“setting the value of a register equal to the value of the regis-
ter” has to occur and the situation immediately after the cvent
is 7.

-if.then_else(q, pred,, pred,, 33, 5s): At situation &3, the
events specified by pred, occurs if g is true, and the events
specified by pred, occurs otherwise. The situation immedi-
ately after these events is 3.

e e o o

L]

Z;, and Axiom (1) can be transformed into the following
axiom (the parameters of each R; are omitted):

F AL T AL
[R’l 2 ["' [R:n’ D [/\ preds]] ~:” == true,
that is, e
B AL T Al
A [(R’, A---ARL.) :)preds] = true.
sep

5.2 Implementation of Logical Formulae by Behav-
ior Definitions

In Ref. [3], an “event” is considered as an “atomic ac-
tion” of a protocol machine (in the case of protocol spec-
ifications) such as transmitting data or updating a partic-
ular register (See Table 6). However, “atomic action” is
informally used in Ref. [3] since protocol machines are
not defined formally.

In Sect. 4, we defined a BE interpreter, which can be
a formal model of protocol machines. Now we consider
“atomic actions” as expressions of type Action, i.e., we
assume that type Situation can be identified with type
State introduced in this paper.

Let SPECyy, be a natural language specification, i.e., a
set of paragraphs. Let SPECpL = (GipL, AXpL), GipL =
(NipL, TipL, PipL) be the algebraic specification derived
from SPECyy, where A X p, consists of:

e axioms on primitive data types; and
¢ axioms in the following form:
5 Situation, F1 AL Em i Am
A [(R; A-e-ARm) O preds] ==true, (2
SEP
where P € SPECy is a paragraph, and for each j
(1 £ j £ m), A; denotes a primitive data type
and R; denotes the restriction on Z,, ..., ;. For any
P € SPECyy, the pre-situation of P is denoted by 3y,

and for any Py, P» € SPECnL, no variable except §;
appears in both P; and P,.

SPEC;p_ is translated into a BE program SPECprg =

(Gprg, AXprg) in the following way. Let SPECNT be

a BE interpreter for SPECpgg, and SPEC = SPECprg U

SPECINT. '

The idea of our implementation method is making
each variable of a primitive data type correspond to a reg-
ister and each variable of type Situation correspond to a
behavior identifier. To do this, we introduce the following
registers and behavior identifiers into SPECprg:

1. Aset REGvag = {var, ..., vary} of registers: var; is
used for storing the value of variable &; in Axiom (2);

2. Let REGprgp = {regy,...,reg,} be the set of regis-
ters which have been defined in SPEC)p, (e.g., VSC,
Va, and Vm in Example 2). And, for each Skolem
function skolem; (introduced in Sect. 5.1) such thatthe
type of Z is not Situation, we suppose the existence of
a function ¢z such that
skolemz(3;,%,,..., Z;) =spec

ws(val(reg, 5),...,val(reg,, 81), &1,..., &)

Since a BE interpreter can calcu-

late pz(val(reg,,s),...,val(reg,, s),t1,...,t;) only

when it is in situation s, we introduce a set REGgack =

{backy,...,back,} of registers. The value of each

reg; € REGppep (1 < ¢ < n) is copied to back; €

REGgack before the actions specified by a paragraph
P are performed. Therefore, a BE interpreter can cal-
culate pz(backy,...,backn,t,...,t;) to obtain the
value of pz(val(reg),s),...,val(reg,, s),t1,...,t;).
Similarly, we suppose that each restriction R; is in the
form of
Rj(val(reg,, 51),...,val(reg,,, 51), &1,..., &;);

3. A set REGqwp of temporary or dummy registers: An
element of REGrmp is denoted by tmp with some sub-
scripts; and

4. For each pre-/post-situation § appearing in Axiom (2),
we introduce a behavior identifier 5 into SPECppg.
A human implementor specifies behavior definitions
so that for any instantiated term s of § which satisfies
Axiom (2),

o bexp(rs, s) =spgc true, or

o bexp(my,s) =spec true for some my such that

Ty = Ty Sspec true.
That is, in such a situation s, a BE interpreter can al-
ways execute Ts.

The implementation method consists of the following

four steps:

Step 1: For each paragraph P € SPECyy, the set Bp of

behavior definitions is constructed by the following three

steps. Upespecy, Bp is the implementation of SPEC.

Step 2: For each sentence S € P, (Ry A+ A Rp) D

predg is translated into behavior definitions (denoted by

behavior[(Ry, ..., Rnm), preds]) as follows:

Step 2.1: The “subroutines” for “variable bindings”

are defined as a set of behavipr definitions (denoted by

biﬂd[(R], ceey R’m))preds])' Let 0‘{74/‘)’17 ey '7:n/7M}

— 6 —

denote the expression obtained by replacing each subex-
pression y; (1 < j < m) of expression o by
expression 7}. Let pre[preds] denote the actual pa-
rameter of predg which represents the pre-situation of
predg, and let post[predg] denote the actual parameter
of preds which represents the post-situation of preds.
Let skolems be the Skolem function for 5 introduced in
Sect. 5.1. For simplicity, define skolems,, where 3, de-
notes the pre-situation of the paragraph, as the identity
function on type Situation. Suppose that pre[preds] =
skolems(31, %1,...,2) (0 < j < m) and post[predg) =
skolems (51, 21,...,%5) (j < j° < m). Then, during
the “execution” of preds, each of Z;,1,...,Z; must be
bound to some value. A behavior identifier which sim-
ulates these variable bindings is denoted by p s,#. The
behavior definition of ps,s is in the following form:
ps, = set(varj,, — fj+1);--‘;set(varj/ — fjr);
((Rjs1 A--- A Rjr)
{vari/y,... var; [3;}] =
set(tmpy;,q + true); stop
a
[(Rjsi A+ ARjr)
{vari/z,... var; 23] =

set(tmp,;.4 + false); stop).
Here, {j.1,...,E; are terms which indicate how the val-
ues of varj,y,...,vary are obtained respectively, and
are specified by a human implementor. Register tmp,;
is used for storing the “return value” of ps . Action
set(tmpy;,q +— true) is performed if the variable bindings
are completed successfully, and action set(tmp,;,q
false) is performed otherwise.

Step 2.2: The “main routine” of preds is defined as a
set of behavior definitions (denoted by dic[predg)). As
shown in the following examples, a behavior definition
of Tpre[preds] has to be in dic{pred,), and Tpost[Predg]
has to appear in some behavior definitions in dic[pred sl

If dic[pred] is already defined and stored as a “lex-
ical item” of predy, then a human implementor has only
to define bind[(R,, ..., Ry), predg].

Example 3: dic[receive(f, 3, §)] is shown in Table 7,
where rype{tmp,] = D such that

Bool — receive(D, Situation, Situation) € Pp.

The meaning of the behavior definition is as follows.
When buf| is not empty, then look ahead the first ele-
ment d of buf,, copy d to a temporary register tmp;,, and
perform variable bindings p; ;. During the execution of
Ps,s0, Settmpy,, — true) is performed if the variable
bindings are completed successfully, and set(tmpy; g —
false) is performed otherwise. When the variable bind-
ings are completed successfully, move the first element d
of buf | to tmp;,, and execute 7. Otherwise, execute 73,
since the semantics of receive(f, §, §') is “receipt of £ is
allowed to occur” (see Table 6) and the receipt of another
data may be allowed by another axiom.
Also,

bind[(valid(z;) A incoming(,) A MAP(z,)),
receive(i,, &, 2)]

Table 7: dic[receive(t, §, 3')].

w5 = ([buf, # A] > set(mp,, — head(buf))); ps. 5
> A-set(umpy,, «— true)-set(rmp,, , — faise) >
([(rmpy ;4 = true)

Atmp,, = t{var1/&,,...,varm [Em })] —>
in(buf,, tmp,,); wa
[m]
[=({(tmpyq = true)
AUmp,, = t{var[Z1,. .., varm [&m)] => 73))

Table 8: dic[send(i, 5, §)].

s = (ps,5
> A-set(imp,;,, — true)>>
set(tmp,,, — Hvari/2,,...,varm/3m});

out(buf,, tmp), war)

can be defined as
Paa, = set(var) « tmp,);
([valid(var;) A incoming(var;)
AMAPar))] =
set(tmp,;,q + true); stop
a
[~(valid(var,) A incoming(var,)
AMAP(var)))] =
set(tmpy;,q + false); stop).
Here, we specify that the value of Z, is equal to the value
of tmp;,, i.e., the first element of buf . 0

Example 4: We define dic[send({, 3, §')] as shown in
Table 8, where type[tmp,,,] = D such that

Bool — send(D, Situation, Situation) € Pyp,.
First, perform the variable bindings pss. When this
is completed successfully, calculate £, assign the result
to a temporary register tmp,,, and output it to buf,.
Otherwise, come to a deadlock, since the semantics of
send(, 3, 3') is “sending £ has o0 occur” (see Table 6)
and the variable bindings also have fo be completed suc-
cessfully.

The behavior definition

bind[{valid(z,) A incoming(z;) A MAP(,)),
Send(f:g, &2’ 5’3)]

is simply defined as ps,,5, 1= set(tmpy;,q — true); stop,
since there are no variables to be bound. m}

Example 5: We define dic[set-equal_to(f;, #,, 5, §')] as
shown in Table 9. Also,
bind[{valid(s,) A incoming(z;) A MAP(z,)),
set_equal_to(Va,Vm, 34, &5)]
can be defined as pg, 5, := Set(tmpy;,, — true); stop. O

As shown in the following example, we can construct
behavior definitions for a predicate which takes other
predicates as its parameters.

Example 6: We define
behavior((Ry, ..., Ry),if_then_else(d, p1, p2, §, §)]

Table 9: dic[set_equal_to(f}, £, 3, §)]
w5 = (ps,a
> A-set(tmpy,, «— true) >
set, — H{var1/21,...,varm/Zm});75)

as
behavior{{R,,... ,Rm),;ﬁx],
behavior{{Ry,...,Rm), 2],
dtc[lf_then_else(q pl,pz, 5,80,

And dic[if then_else(d, p1, 2, §, &')] is the set of the fol-

lowing behavior definitions:

Ty = ([é{varl /il, ceey varm/a‘:m}] —> Tpre[p|)]

a
[=¢{var/z1, ..., varm/Em}] => Tprepaih
Tpost[py] = T3's
Tpostipy] = T4+
m]
Let 8% = Ugep behavior[(Ry, ..., Rm), preds].

Step 3: The following behavior definition is added to 85p:

Poack = Sel(back, «— reg,);- - -;set(back, « reg,);

Set(tmp back < [P back) >

stop.
Then, each 75, := B in B} is replaced by

= (Poack > A - Set(tmpy,. — tmpy,) > B).

Prack 18 executed first of all in order to remember the
value of each register in REGprgp at the pre-situation of
P. Action sel(tmp,,, — tmp,,,) is used as a “signal”
which denotes the completion of copying reg; to back;
(I €7 < n). Let 8% be the resultant set of behavior
definitions.

Step 4: Let § be the post-situation of paragraph P. Then,
ms = 75, is added to B%. That is, after the completion of
performing the actions specified by P, a BE interpreter
executes 7s,, i.e., performs the actions specified by any
paragraph P’ from the first (recall that the pre-situation
of any paragraph P’ is denoted by 5;). The resultant set
of behavior definitions is Gp.

Example 7: For the logical formula in Example 2, the
behavior definitions in Table 10 are obtained. Here, we
write ; instead of 75,. By Step 3, the behavior definition
of m; is modified so that py, is executed first. And, by
Step 4, the behavior definition of g is added. a

6 Conclusion

According to the definition of a BE interpreter, we
have implemented a prototype system which executes a
given BE program. Now we are implementing a system
which translates algebraic specifications derived from
natural language specifications into BE programs.

References

[1] Futatsugi, K. and Toyama, Y., “Term Rewriting Systems
and Their Applications: A Survey,” Journal of IPSJ,
vol. 24, no. 2, pp. 133-146, Feb. 1983 (in Japanese).

Table 10: Implementation of the logical formula in Ex-
ample 2.

1= (pbzck
> A-SettMmpyaey — MPyacy) >
([buf, # \] —> set(tmp,, — head(buf)); ps,,5,
> A-set(tmp,;,y — true)-set(rmpy,,, «— false) >
([(rmpy;g = true) A (tmp;, = var))] —>
in(buf |, tmp;,); *2
a
[=((rmpy;,q = false) A (tmpy, = vari))] => m1))),
w2 1= (pay,63
> A-set(tmp,;,, « true) >
set(tmp,,, «— ps,(backy,. .., backs,vary));
out(buf,, tmp .,); 73),
w3 2= ([Vsc = false] —> 4 O [~(Vsc = false)] = 1r5),
T4 1= (pay,55
> A-set(tmpy,, « true) >
set(Va — Vm); xs),

5 1= T,
76 1= Setmpyy, «— tMppoy)i ™,
™7 = g,
g = My

Poack = Set(back; — reg,); -+
SeHIMPy — 1MPpaai);
stop,

= set(vary « tmp,);
([valid(var,) A incoming(vari)

AMAP(var)] —>
set(tmp,;,q — true); stop
a
[—(valid(var;) A incoming(var:)
AMAP(var;))] —>
set(rmp,,,q — false); stop),

Poq5y = SeU(tmp,, — true); stop,

set(rmpy,q — true); stop.

; set(backa «— reg,);

Psy,6,

W

Psy,55

[2] Goguen,J. A., Thatcher, J. W. and Wagner, E. G., ‘An Ini-
tial Algebra Approach to the Specification, Correctness and
Implementation of Abstract Data Types,” IBM Research
Report, RC 6487, 1976, also in ed, Yeh, R., Current Trends
in Programming Methodology IV: Data Structuring, Pren-
tice Hall, pp. 80-144, 1978.

Ishihara, Y., Seki, H., Kasami, T., Shimabukuro, J. and

Okawa, K., “A Translation Method from Natural Lan-

guage Specifications of Communication Protocols into Al-

gebraic Specifications Using Contextual Dependencies,”

IEICE Trans. Inf. & Syst., vol. E76-D, no. 12, pp. 1479-

1489, Dec. 1993.

[4] ISO: “Basic Connection Oriented Session Protocol Speci-
fication,” ISO 8327.

[5]1 Kasami, T., Taniguchi, K., Suglyama Y. and Seki, H.,
“Principles of Algebraic Language ASL/*,” Trans. IECE
Japan, vol. J69-D, no. 7, pp. 1066-1074, Jul. 1986 (in
Japanese), also in Systems and Computers in Japan, vol. 18,
no. 7, pp. 11-20, Jul. 1987.

[6] Seki, H., Kasami, T., Nabika, E. and Matsumura, T., “A
Method for Translating Natural Language Program Specifi-
cations into Algcbraic Specifications,” Trans. IEICE Japan,
vol. J74-D-1, no. 4, pp. 283-295, Apr. 1991 (in Japancse).

[3

fart

__8___

