V7 bUe7IE 1102
(1996. 7. 25)

A Dynamic Extention for the Specifications of
Distributed Systems

Issam A. Hamid
¥ Tohoku University of Art & Design
Department of Information Design
200 Kamisakurada, Yamagata, JAPAN

In this paper, we describe an approach for extending distributed system specifications. These
specifications are structured as a parallel composition of subsystem specifications. The approach
consists of building a new specification Snew by adding a new behavior described by a
specification Sadded to a specification Sold with preservation of the properties of Sold and Sadded
as well as the structure of Sold. Snew has all the properties of Sold and Sadded, if Snew can
perform whatever Sold (and Sadded) can perform, and it does not block where Sold (or Sadded)
does not block. We apply our approach for extending the functionality of a basic Automatic Teller
Machine.

TR AT LAMEERD 72O DENRIHRR
TAH A A NIF
AT TR
TERTH A > FF
T LA2E 2 0 0 Fih

FRTR, SHRATADAEEEIRT 2007 TO—FIIDNTiRE, Zh 5
DOEHIE. YT ATF ARBOLTINSBRE L TEBELENS, ZO77/0—F T
[$. £#SoldIcx LT, A#SaddediC k> TRtk ENBMALERSF I\ LENTS O
Elck Y., #F-mt#Snew 2% T 5, {T#Snew TIE. Sold&SaddedD 7 O/<F o«
(2. SoldmigELRFICHIFENS, H L. Sold (MDSadded) MWRITARELDBDE
TESnewNRITTESHDE L. Sold (F(dSadded) 70y V{LLIRWNERT,
SnewH 7 Av oLz EThiE., SnewldSold&SaddedD 7 O//nsTF 4 DLTHEF
DI &L B, FHeld. ERRO7O0—-F %, BEM/Automatic Teller Machine
DHEE EDIIRISERT 5.

" This research is done in part as international scientific joint research, sponsored by the ministry of Education,
Science and Culture of Japan, with the University of Montreal, department of Information and Operational Research.

e

1 Introduction

The design of a distributed system goes through many
phases. The initial phase allows the capturing of
functional requirements in a specification with a high level
of abstraction. This specification describes the
functionalities of the system, but not how to realize them.
In the next phases, it is refined into specifications with a
lower level of abstraction where some design decisions are
taken and a structure is chosen. The specification obtained
after each step should remain correct with respect to the
initial specification. The service specification and protocol
specification for a given OSI layer are typical examples of
two different levels of abstraction [Viss 85].

The step-wise refinement approach allows the methodical
production of a specification with a low level of
abstraction from a specification with a high level of
abstraction. The distributed system specification task,
however, still remain very complex, particularly when
many functions have to be handled simultaneously. A
complementary approach to deal with this complexity is
the divide-and-conquer methodology. It consists of
building specifications for the different features of -the
required system independently and of combining them to
obtain the desired specification. From another point of
view, this approach allows the enrichment of a system
specification by adding new behaviors required by the user,
such as adding a new functions to a given
telecommunication system.

The combination should preserve the semantics properties
of each single specification. For instance, the addition of
anew function to a telephone system specification should
not disturb the semantics properties of the telephone
system specification and the semantics properties of the
new function. In the context of distributed systems,
preserving semantic properties may, for instance, mean
that the combined specification exhibits at least the
behaviors of the original ones without introducing
additional failures for these behaviors. This is captured by
the formal relation between specifications, called
extension, introduced in ({Brin 86]. Informally, a
specification S2 extends a specification S1, if and only if,
$2 allows any sequence of actions that S1 allows, and S2
can only refuse what S1 can refuse, after a given sequence
of actions allowed by S1.

In this paper, we propose an incremental specification
approach, which consists of merging two given
specifications Sold and Sadded into a specification Snew,
such that Snew extends Sold and Snew extends Sadded.
Moreover, in the case of minimal cyclic traces of Sold or
Sadded, Snew transforms into Snew, and may exhibit, in
a recursive manner, behaviors of Sold and Sadded. We
consider distributed system specifications, which may
consist of a parallel combination of subsystem
specifications. The incremental specification approach
preserves such structure. Therefore, the designer does not

have to redesign it. The approach for merging structured
specifications described in this paper, is based on our
approach for merging monolithic specifications described
in [Hami 95].
The remainder of the paper is structured as follows.
Section 2 introduces the labelled transition systems model
[Kell 76] and some definitions used in this paper. In
Section 3, we summarize the principle and properties of
the approach for merging monolithic specifications. In
Section 4, our approach for merging structured
specifications is described. In Section 5, we apply our
approach for extending the functionality of a basic
Automatic Teller Machine. In Section 6 our approach is
compared to related ones. In Section 7, we conclude.

2 Labelled Transition Systems
We view the specification of a distributed system and its
subsystems as processes, which are expressed by labelled
transition systems (LTS for short). In this section, we
introduce the LTS model [Kell 76] and some definitions,
such as the definition of a cyclic trace, a minimal cyclic
trace, and the definition of the extension relation [Brin 86].
2.1 Definitions
An LTS is a graph in which nodes represent states, and
edges, also called transitions, represent state changes,
labelled by actions occurring during the change of state.
These actions may be observable or not.
Definition 2.1 [Kell 76]
An LTS TS is a quadruple <S, L, T, So>, where
- S is a (countable) nonempty set of states.
- L is a (countable) set of observable actions.
-T: S xL W{t} = S s a transition relation, where a
transition from a state Si to state Sj by an action 1 (1
e L U {1}) is denoted by Si-p—Sj.

T represents the internal, nonobservable action.
- So is the initial state of TS.

A finite LTS (FLTS for short) is an LTS in which S and
L are finite. In the remainder of this paper, we may refer to
an LTS by its initial state and vice versa. We may also
write act(TS), instead of L, to denote the set of observable
actions of TS. Some notations for LTSs are summarized
in Table 1.

A trace, of a given state Si in the LTS TS, is a sequence
of actions that TS can perform starting from state Si. A
cyclic trace in TS is a trace of the initial state So that
reaches only the initial state So and the states that can be
reached by the empty trace from So. In other words, a
cyclic trace always brings back TS to its initial state. TS
may then move to an other state by the nonobservable
action t. A minimal cyclic trace is a cyclic trace that is
not prefixed by a nonempty cyclic trace.

Definition 2.2 (Cyclic Trace)

Given an LTS TS =<8, L, T, So>, atrace s is cyclic, iff
(So aftr o) = (Si e S such So=¢ = Si}.

Definition 2.3 (Minimal Cyclic Trace)

Given an LTS TS = <S, L, T, So>, © is a minimal
cyclic trace, iff ¢ is a cyclic trace, and Jo' (# €) and ©"
(#e) such that 6 = ¢'.6" and ¢’ is cyclic trace in TS.

P-ul..pn—Q: I Pi (0 < < n) such that
P =Py~ —-P1...Pp-1-n—Pn=Q
P-pj... up—>: 3 Q such that P—pg...un—Q

P=£=Q: P=Qor3n=1P-11 5Q
P=a=Q: 3P], P7 such that P=e=P1-a— Py=£=Q
P=aj... an=Q: 3 P; (0 <i < n)such that
P =Po=aj=P1=a]=..an=>Pn =Q
P=0=: 3Q such that P=6=3Q
P#o=: not (P=0=)
Tr(P): {ce L*|P=s=}
out(P, 8): {ae Llc.ae Ti(P)}
initials(P): out(P, €)
P aftero: {QlP=0=Q}
Acc(P,0): (X 13Q e (P after g), such that
initials(Q) € X Cout(P, o)}
where 1, pj UL (t}; a,aie L; P, Q,Pi, Qi
represent states; € represents the empty trace;
o = al.a2... an, where "." denotes the concatenation of
actions or sequence of actions (traces).

Table 1. LTS notations

2.2 Operations on Labelled Transition Systems
The specification of a distributed system may be
considered as a composition of its subsystem
specifications. Among the possible compositions, the
parallel composition operator and the action hiding
operator are of special interest in this paper. The parallel
composition operator (B1 {al, ..., an} B2) allows one to
express the parallel execution of the behaviors B1 and B2.
B1 and B2 synchronize on actions in fal, ..., an} and
interleave with respect to other actions. The hiding
operator allows the hiding of actions, which then will be
considered internal actions. We write B\A to denote the
hiding of the actions in A in the behavior B. The inference
rules for these operators are as follows (adapted from [ISO
88071).

Parallel composition: Bll{a] an}B2

If Bl-a—B1'and a { {al, ..., an}, then B1 I{al, ..., an}
B2-a—B1'|{al, .., an} B2,

If B2-a—B2'and a { {al, ..., an}, then B1 l{al, ..., an}
B2-a—BI1 i{al, ..., an} B2,

IfB2-a—B2' and Bl-a—Bl'and ae (al, ..., an}, then
Bll{al, .., an} B2-a—B1'l{a1, ..., an} B2'
Hiding operator: B\{al, ..., am}

IfB-a—B'and a { {al, ..., am}, then B\{(al, ...
B'\{al, ..., am},

IfB—a—B'anda€e {al, ..., am}, then B\{al, ..., am}-1
—B\{al, ..., am}.

,am}—a—

2.3 The extension relation

Intuitively, different LTSs may describe the same

observable behavior. Therefore different equivalence
relations have been defined based on the notion of
observable behavior. They range from the relatively coarse
trace equivalence to the much finer strong bisimulation
equivalence [DeNi 87]. However, for our considerations,
one does not need equivalence relations, but rather ordering
relationships. Among them, we note the reduction and
extension relation as defined in [Brin 86]. These relations
may serve different purposes during the specification life
cycle. The extension relation is most appropriate for our
purpose of compatible enrichment of specifications.
Informally, S2 extends S1, if and only if, S2 allows any
sequence of actions that S1 allows, and S2 can only refuse
what S1 can refuse, after a given sequence of actions

allowed by S1.
Definition 2.4 [Brin 86]
S2 extends S1, written S2 ext S, iff

(a) Tr(S1) < Tr(S2), and

®VoeT(SH,VA C L,
if S2' such that S2=0=>S2'and S2'#a= , Va€ A,
then S1'suchthat S1=0=S1"' and S1'#a= , Vae A.

3 Merging monolithic specifications
In this section, we consider monolithic specifications
[Viss 88]. A monolithic specification has no intemal
structure and is defined directly in terms of some allowed
ordering of actions. A monolithic specification is
represented by a single LTS.
Given two LTSs, S1 and S2, we want to construct
systematically an LTS S3, such that S3 extends S1, and
S3 extends S2. Moreover, in the case of minimal cyclic
traces of S1 or S2, S3 transforms into S3, and may
exhibit, in a recursive manner, behaviors of S1 and S2.
Note that the usual choice operators defined for LOTOS
[ISO 8807] and CCS [Miln 89] for instance, do not allow
such combination of specifications as shown in Figure 1.

Si S2 Choice(S1, S2)

'S ENe Ax*
A

3

Fig 1. LOTOS, CCS choice operator
We assume that the LTSs are finite. Our FLTSs merging
algorithm, called Merge, uses an intermediate

representation, the Acceptance Graphs (AGs for short).

Definition 3.1
An AG G is 5-tuple <Sg, L, Ac, Tg, Sgo>, where
- Sg is a (countable) nonempty set of states.
- L is a (countable) nonempty set of events.
- Ac: Sg - P(P(L)) is a mapping from Sg to sets of
subsets of L.
Ac(Sgi) is called the acceptance set of Sgi.
- Tg: Sg x L — Sg is a transition function, where a

transition from

state Sgi to state Sgj by an action a (a € L) is denoted
by Sgi—a—Sgj.
- Sgo is the initial state of G.

The mappings Ac and Tg should satisfy the consistency
constraints defined for Acceptance Trees in [Henn 85]. A
finite AG (FAG for short) is an AG in which Sg and L are
finite. The LTS notations in Table 1 remain valid for the
AGs. A cyclic trace for an AG G = <Sg, L, Ac, Tg,
Sgo>, is a trace of the initial state Sgo that reaches the
initial state Sgo. As for an LTS, a minimal cyclic trace
for an AG is a cyclic trace that is not prefixed by a
nonempty cyclic trace. In the following, we define a
relation, denoted AGR, between AGs and LTSs.

Definition 3.2

Given an AG G =<Sg, L, Ac, Tg, Sgo> and an LTS S =
<St, L, T, So>, we say that G is a corresponding AG of
S, written <G, S> (E AGR, iff

- Tr(G) = Tr(S),

-V 6 e Ti(S), if Sgo=0=>Sgi, then Ac(Sgi) =Acc(So,
),

- Any minimal cyclic trace in S is a minimal cyclic trace
in G, and

- Any minimal cyclic trace in G is a minimal cyclic trace
in S.

Given two FLTSs S1 = <St1, L1, T1, Slo> and S2 =
<St2, L2, T2, S20>, the algorithm Merge consists, first,
of transforming the FLTSs S1 and S2 into FAGs
Gl=<Sgl, L1, Acl, Tgl, Sglo> and G2= <Sg2, L2,
Ac2, Tg2, Sg2o0>, respectively, such that Sgt N Sg2 =
g and <G1, S1> € AGR and <G2, §2> € AGR. The
FAGs G1 and G2 are then merged by an FAG merging
algorithm into the FAG G3 = <Sg3, L1 L2, Ac3, Tg3,
<Sglo, Sg20>>, which is transformed back to an FLTS
S3 such that <G3, S3> € AGR.

The algorithm for the transformation of an FLTS .to an
FAG is similar to the "subset construction" algorithm
defined in [Hopc 79]. The transformation of an FAG to an
FLTS, in the last step, is the converse transformation.
This transformation eliminates the information redundancy
concerning the failure possibilities. The FLTS generated
by this transformation is the canonical representative of a
class of testing equivalent LTSs with the same set of
minimal cyclic traces. In the following, we describe,
informally, the FAG merging algorithm.

A state Sgi in Sg3 may be either a tuple <Sgli, Sg2j>
consisting of state Sgli from Sgl and Sg2j from Sg2 (as
for the initial state <Sglo, Sg20>), or a simple state Sgli
from Sgl, or a simple state Sg2j from Sg2. These states
and the transitions which reach them are added by the FAG
merging algorithm step by step into Sg3 and Tg3,
respectively, except for the two initial states Sglo and
Sg2o0, each of these is replaced by the initial state <Sglo,
Sg2o> of G3.

Initially, Sg3 contains only the initial state <Sglo,
Sg20>. The definition of the transitions from state <Sgli,
Sg2j> in Sg3 depends on the transitions from Sgli in Sgl
and from Sg2j in Sg2. For instance, for a given state
<Sgli, Sg2j>, if there is a transition Sgli—a—Sglk in
Tgl and a transition Sg2j—a— Sg2m in Tg2, then the
state <Sglk, Sg2m> is added into Sg3 and the two
transitions are combined into one transition <Sgli,
Sg2j>—a—<Sglk, Sg2m> in Tg3. This is the situation
when G1 and G2 have a common trace from their initial
state to Sglk and Sg2m, respectively.
Another case of this construction, if for a given state
<Sgli, Sg2j>, there exists a transition Sgli—a—Sglk in
Tgl, with Sglk= Sglo, but there is no transition labelled
by a from Sg2j in Tg2, then the state Sglk is added into
Sg3 and the transition Sgli-a— Sglk in Tgl yields the
transition <Sgli, Sg2j>-a—Sglk in Tg3. Reciprocally,
if there exists a transition Sg2j—a— Sg2m in Tg2, with
Sg2m# Sg2o, but there is no transition labelled by a
from Sgli in Tgl, then the state Sg2m is added into Sg3
and the transition Sg2j—a — Sg2m in Tg2 yields the
transition <Sgli, Sg2j>—a— Sg2m in Tg3. In the case
where Sglk = Sglo (respectively Sg2m = Sg2o), instead
of the transition <Sgli, Sg2j>-a — Sglo (respectively
<Sgli, Sg2j>-a->Sg2m), the transition <Sgli, Sg2j>-a
—<Sglo, Sg20> is added into Tg3.
The transitions from a simple state in Sg3, like state
Sglk or Sg2m above, for instance, remain the same as
definedin G1 and G2, respectively. The states reached by
these transitions are added into Sg3, except for the two
initial states Sglo and Sg2o, each of these is replaced by
the initial state <Sglo, Sg20> of G3.
The mapping Ac3 is defined as follows: For every state
Sgi in Sg3, we have:

-if Sgi =<Sgli, Sg2j>, then Ac3(Sgi) = (X1 U X2
| X1 € Acl(Sgli) and X2 € Ac2(Sg2j)},

- if Sgi =Sgli, with Sgli € Sgl, then Ac3(Sgi) =
Acl(Sgli),

- if Sgi =Sg2j, with Sg2j € Sg2, then Ac3(Sgi) =
Ac2(Sg2)).
Given the FLTSs S1, S2, the following propositions have
been proved in [Hami 95] concerning the FLTS S3
constructed by the algorithm Merge:

Proposition 1

$3 extends S1 and S3 extends S2.

Merge satisfies our first requirement as stated above in
Proposition 1. However, the second requirement about the
recursive exhibition of behaviors of S1 and behaviors of
§2, in the case of minimal cyclic traces of S1 or S2, is
not always satisfied. This requirement is satisfied, if and
only if all the minimal cyclic traces in S1 and all the
minimal cyclic traces in $2 remain minimal cyclic traces
in S3. Unfortunately, there are some situations where a
minimal cyclic trace in S1 (respectively S2) does not
remain a minimal cyclic trace in S3. This is the case,

when a given trace s is a minimal cyclic trace in S1

(respectively S2), but s is a noncyclic trace in S2
(respectively S1). After executing such a minimal cyclic
trace, S3 reaches a state, which is different from its initial
state. Therefore, after performing such a minimal cyclic
trace, S3 does not transform into S3, and S3 may not
exhibit again the behaviors of S1 and the behaviors of $2.
Figure 2 illustrates such kind of situations. After
performing a, which is a minimal cyclic trace in S1, S3
does not transform into S3, because the trace a belongs to
S2 and it is not a cyclic trace in S2. S3 does not offer the
behavior a.b of S2, after the minimal cyclic trace a. Note
that, the minimal cyclic trace a.b in S2 remains a minimal
cyclic trace in S3. In Proposition 2, we determined a
necessary and sufficient condition, for which a minimal
cyclic trace in S1 (respectively S2) remains a minimal
cyclic trace in S3.

S1 S2 S3 = Merge(S1, S2)

3 < ™

b 2 a b
Fig 2. Counterexample for the minimal cyclic traces

3 3

Proposition 2

- A minimal cyclic trace s in S1, is a minimal cyclic in
S3, iff (s { Tr(S2) or s is cyclic in §2).

- Reciprocally, for a minimal cyclic trace s in S2.

Any trace of S3 is either a trace of S1, or a trace of S2,
or results from the concatenation of traces of S1 and S2.
The following proposition shows how a trace s.a of S3
may be decomposed into its subtraces in S1 and S2, when
s is a trace of S1 (respectively S2).

Proposition 3
Yae Ll W L2, ifse Tr(S1)and s.ae Tr(53),
then o.ae Tr(S1), or cg.ae Tr(S2), or
3 ol, o2 such that o = 61.62, S1=01=>S1, Sl=02=
S1'#¥a=, §2=52=82'=a=).
Reciprocally, for s (E Tr(S2) and s.a E Tr(S3).

4 Merging Structured Specifications

In this section, we consider distributed system
specifications, which consist of a parallel composition of
subsystem specifications as shown in Figure 3. Such
specifications have the following form: § = (S1 15S82) \
B, where A and B represent sets of actions. The
subsystem specifications S1 and S2 may also have the
same form as S and so on, until a level where the
specifications have no structure and are defined directly in
terms of some allowed ordering of actions as monolithic
specifications. These specifications are called basic
components, they may be nondeterministic, but are
assumed to be finite. For instance, these specifications are
represented by the streaked boxes in Figure 3.

Given a distributed system specification Sold, which
consists of a parallel composition of subsystem
specifications and so on until the basic components, and a

specification Sadded, we want to construct a specification
Snew, such that Snew extends Sold, and Snew extends
Sadded.

Fig 3. Structure of a Distributed System Specification

The specification Snew should preserve the internal
structure of Sold. As for the merging of monolithic
specifications, in the case of minimal cyclic traces of Sold
or Sadded, Snew transforms into Snew, and may exhibit,
in a recursive manner, behaviors of Sold and Sadded.

4.1 Identical Structure for Sold and Sadded

We assume that the specifications Sold and Sadded are
both structured according to the form (S1 I[AS2)\B
described above, and S1 and S2 are either basic
components or again structured by parallel composition.
Moreover, we assume that Sold and Sadded have an
identical structure. In other words, the form of the
expression Sold is identical to the form of the expression
Sadded. To every subsystem specification in Sold
corresponds a subsystem specification in Sadded and vice
versa. To every basic component Ciold in Sold,
corresponds a basic component Ciadded in Sadded and vice
versa.

The following algorithm for merging structured
specifications, called Structured_Merge, is recursive over
the structure of Sold and Sadded. It is based on the
algorithm Merge, for merging monolithic specifications,
described in Section 3.

Merging Algorithm for Structured
Specifications
Structured_Merge(S1, §2) =
if S1=(S1114 SI2)\B, S2 = (521 Ic S22)\D,
then (Structured_Merge(S11, $21) {a U C)
Structured_Merge(S12, S22))\ (BU D)
else Merge(S1,S2) (* S1 and S2 are basic
components *)

Snew, obtained by Structured_Merge(Sold, Sadded), has
a structure identical to the structure of Sold and Sadded. As
basic component, instead of Ciold or Ciadded, it has
Cinew which results from the merging of Ciold and
Ciadded by the algorithm Merge.
Unfortunately, Snew does not always extend Sold and
Sadded. The extension of the basic components of Sold
and Sadded is not sufficient to insure the extension of Sold
and Sadded, respectively. Consider the counterexample in
Figure 4, where Sold = (Clold I(g[} C2old)\{gl}, Sadded

= (Cladded I{g2} C2added)Mg2}. The structure of the
specification Snew is identical to the structure of Sold and
Sadded, but Snew does neither extend Sold nor Sadded.
Indeed, Sold never refuses the action b after trace a,
whereas Snew may refuse action b after trace a. The same
observation holds for action c after trace a. The trace a is
common for Clold and Cladded and it is followed by a
hidden action g1 in Clold and g2 in Cladded. The merging
of Clold and Cladded leads to a choice between the two
hidden actions g1 and g2 after the trace a, in Clnew. The
components Clnew and C2new may, intemally, choose to
synchronize on action gl or g2, after a trace a, and offer
only action b or only action c, respectively.

&
o
ol
=
=
E
2
=
o
%)
e,
|3
=
P
X
)
8
=IIl=
o
E
Pgr-—2

Fig 4. Counterexample

In Theorem 1, we have stated sufficient conditions for
Sold and Sadded such that Snew extends Sold and Snew
extends Sadded. We denote by HGold the set of hidden
action names in Sold, and by HGadded the set of hidden
action names in Sadded. The proof of Theorem 1 is given
in the Appendix.

Theorem 1
Given Sold in the form of a hierarchical structure with the
basic components Clold, C2o0ld, ..., Cnold,
Sadded with an identical structure and the basic
components Cladded, C2added, ..., Cnadded, and
Snew = Structured_Merge(Sold, Sadded) as defined by the
merging algorithm defined above,
we have that Snew ext Sold and Snew ext Sadded, if
the following conditions are satisfied:
(@ Vi, i=1,.,n, act(Ciold) n (HGadded =@, and
act(Ciadded) N (HGold = @,
(b) Vi, j, i #j, (act(Ciold) Wact(Ciadded)) M ((act(Cjold)
U act(Cjadded)) M ((act(Sold) U act(Sadded)) =@,
(¢) For x = old, added,

Ciy and Cjx, with i # j, such that for some g € HGx, g
€ initials(Cix) and g € initials(Cjx),
(dFori=1,..n,
1- V o e Tr(Ciold), if s.g € Tr(Ciadded) with g €
HGadded, then & is cyclic in Ciold and Ciadded, and
reciprocally,
2 - V ae (act(Sold) (initials(Ciold)), ifc.ae
Tr(Ciadded) for some o, then ¢ is cyclic in Ciadded, and

reciprocally.

Condition (a) says that the names of hidden actions in
Sadded should not conflict with the names of observable or
hidden actions in Sold. Reciprocally, the names of hidden
actions in Sold should not conflict with the names of
observable or hidden actions in Sadded. Note that the
names of the hidden actions in both specifications are not
important. These actions may be renamed without any
observable effect, in order to satisfy this condition.
Condition (b) says that there is no observable action of
Sold and Sadded shared by two (or more) basic components
of Sold (respectively Sadded). A basic component Ciold in
Sold may have common observable actions only with the
corresponding basic component Ciadded in Sadded, and
reciprocally. Consider the example in Figure 5, where
Clold and C2added have the action a in common, but they
are not merged together. Clnew = Merge(Clold, Cladded),
C2new = Merge(C2o0ld, C2added), Clnew extends Clold
and Cladded , and C2new extends C2old and C2added. The
constructed specification Snew may refuse action b or
action ¢, after trace a, whereas Sold and Sadded never
refuses b or c after a, respectively. Snew does neither
extend Sold nor Sadded. In order to prevent such
situations, for each observable action, we may assign a
"place” and the components with common observable
actions have to be merged together, as stated by Condition

(b).
g
B
g

sﬂCW

AN A A
AVRWIIW)

Clago Clyge Clygw Clney

pap=

oy

Fig 5. An illustration for Condition (b)

Condition (c) prevents Sold and Sadded from performing a
hidden action from HGold or from HGadded, respectively,
before interacting with the environment. Consider the
example in Figure 6, in which Clnew = Merge(Clold,
Cladded), C2new = Merge(C2o0ld, C2added), Clnew
extends Clold and Cladded, and C2new extends C2old and
C2added. However Snew does not extend Sadded. After an
internal move by executing the hidden action g1, it refuses
the action a, whereas Sadded never refuses action a after an
empty trace.

Condition (d-1) prevents from any new nondeterminism
which may be introduced by the hidden actions in HGadded
with respect to behavior in Sold and reciprocally, as
shown in Figure 4. For a given pair of basic components
Ciold and Ciadded, a common trace, which is not cyclic in
both components, should not be followed by hidden

actions from HGold or HGadded.
‘t Clol “ b 2 g ¢ .
Sold SW
\ \ \ \

Claddu Oadded

Figure 6. An illustration for Condition (c)

Condition (d-2) is introduced in order to prevent situations
similar to the one shown in Figure 7. Assume that Sold
= (Clold l{g1, g2} C20ld){gl, g2} and Sadded = (Cladded
g stop)\ ¢ . The merging algorithm for structured
specifications leads to Snew = (Clnew l{g1, g2} C2new)
\{g1, g2}, where Clnew is shown in Figure 7 and C2new
= C20ld. We have Clpew ext Clold and Clnew ext
Cladded as well as C2new ext C2old and C2new ext
C2added. However, Snew does not extend Sold. For
instance, after the trace f.ab.c, Snew may refuse to
perform action d, whereas Sold never refuses to perform
action d after trace f.a.b.c. This is due to the fact that we
have two traces s1 = a.g1.b and s2 =a.g2.b in Clold, such
that s1 # 52, s1\HGold =s2\HGold, s1 is cyclic, s2 is not
cyclic, §2.c is a trace in Clold, and ¢ is a trace in
Cladded. It is possible to prevent such situations with a
weaker condition than Condition (d-2) as explained in this
example. However the verification of such conditions may
be complex, whereas Condition (d-2) can be checked very
easily.

Theorem 2 states that under certain conditions on the basic
components of Sold and Sadded, a minimal cyclic trace &
in Sold (respectively Sadded) remains cyclic in Snew.
Therefore, after performing o, Snew reaches its initial
state, and may exhibit again behaviors of Sold and
behaviors of Sadded, without any new failure for these
behaviors, since Snew extends Sold and Sadded.

J ’7%"’;
A
3 ésl;ﬁ\ob Y

aCloid w2 qold Ll
f

'%
/,«gl gl\qb o,gflgl\o

~

O O+, o%

Fig 7. lustration for Condition (d-2).

Theorem 2

Given specifications Sold, Sadded, and Snew as in
Theorem 1, and assume that the conditions of Theorem 1
are satisfied, we have

- For any minimal cyclic trace ¢ in Sold, if fori=1,..,
n, oi is a minimal cyclic trace in Cigjq and (6i
Tr(Ciadded) o1 Gi is a cyclic trace in Ciadded)), Where i
represents the sequence of actions performed by Ciold,
when Sold performs the trace 6, then G is a cyclic trace
in Snew.

- Reciprocally, for any minimal cyclic trace ¢ in Sadded.

5 Application

In the following, we illustrate our approach by an
application. We start with a basic Automatic Teller
Machine (ATM) which provides only the withdrawal
function as described by the LTS in Figure 8. After
inserting his card a customer is prompted for the Personal
Identification Number (PIN) which may be valid or
invalid. In case of invalid PIN, the card is rejected and the
customer can retry again. If the PIN is valid, the customer
can ask for a certain amount. The transaction is refused if
the amount is higher than the balance. The customer can
try with another amount or end the process and get back
his card. In the other case, the money is delivered and the
card is rejected. This function is implemented by three
components as shown in Figure 9. The composition of
these components, using the LOTOS parallel and hiding
operators, yields the LTS in Figure 8.

We want to enrich the basic ATM with a new function,
money deposit described by the LTS in Figure 10. This
function allows the customer to deposit money into his
account,

Similarly to the decomposition of the withdrawal
function, the deposit function is implemented by three
components as shown in Figure 11. The behavior of each
of these three components is described by an LTS.

In order to obtain a new ATM providing both of the above
functions without any interference among them and
preserving the structure of the basic ATM, we apply our

algorithm for merging structured specifications. This
Basic A'Y'M

pin

return-card

\j/& '*

ask-amount

new-trans.

T T
trans.- money
refused

end

Figure 8. Basic Automatic Teller Machine.

card pin Deposit function

Y Py
card
returm- ¢
card
pin
retusm-card
ask -
amount : Transaction \
Manager (TM) demostt_amon) N
money ¢ N :

end new- trans. trans.- refused.

k—%t
[

algorithm will couple and merge the card readers together, Fig 10. Deposit function.
the PIN verifiers together and the transaction managers card pin

together. The structure of the enriched ATM as well the T '

behavior of the new components are shown in Figure 12. returh-

The behavior of the new ATM is described by the LTS in card

Figure 13. The sufficient conditions of Theorem 1 and

Theorem 2 are satisfied. The behavior of the new ATM

is an extension of the basic ATM and deposir function,

and the new ATM is able to provide, alternatively, the

deposit and the withdrawal function. deposit -
CR PV ™ amount

Transaction
Manager (TM')

L g L
end new- trans.

/‘?\ m e
)

cetuam-card

continue deposn amount 'r

Y

[3 5%

invalid yali

invalid vaid

start-trans.
continue

return-card ¢
end-trans,

Figl1. Decomposition of deposit function.

ask -

amount References

money [Brin 86]) E. Brinksma, G. Scollo and S. Steenbergen,
deposit- 4 LOTOS specifications, their implementations and their tests,
amount

4 n c:v- Lran's refused Protocol Specification, testing and verification, VL
0 trans. ') [Kell 76] R. Keller, Formal verification of parallel

. X . programs, Communication of the ACM 19 July 1976, pp.
Fig 9. Structure of the Basic Automatic Teller Machine. 371-384.

