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Abstract: We introduce an edge routing decision problem called the police officer patrol problem (POPP), which is
related to the vertex cover problem. A vertex cover of a graph can be regarded as the placement of police officers or
fixed surveillance cameras so that each street of a neighborhood represented by the graph can be confirmed visually
without moving from their position. In the edge routing problem we consider, a single police officer must confirm all
the streets. The officer is allowed to move, but can confirm any street visually from an incident intersection without
traversing it. In this paper, we show that the POPP on mixed graphs is NP-complete.
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1. Introduction

The Chinese postman problem (CPP) is to decide whether there
exists a tour for a post officer in a given area within a given
amount of time which starts and ends at the post office. The post
officer must traverse every street in the area at least once. CPP is
one of the typical edge routing problems on graphs introduced by
Mei-Ko [7].

Edmonds and Johnson [1] showed that CPP on undirected
graphs or directed graphs can be solved in polynomial time. On
the other hand, Papadimitriou [8] showed that CPP on mixed
graphs is NP-complete. Mixed graphs represent the realistic sit-
uation in urban areas where there are both two-way streets and
one-way streets. He showed that CPP remains NP-complete even
if restricted to those whose edges all have equal length or those on
mixed planner graphs or on mixed graphs with vertices of degree
three. Tohyama and Adachi [9] investigated how the complexity
of CPP on a mixed graph changes with the addition of a limit
on the number of times each edge can be traversed. Specifically,
they showed that even if the number of traversals of each edge is
restricted to two, CPP on mixed graphs remains NP-complete.

The rural postman problem (RPP) is one of the generalizations
of CPP with a given set of edges that must be traversed by the
postman. This problem focuses on the fact that in rural areas
not every street has a delivery destination. Lenstra and Rinnoy-
Kan [5], [6] showed that the optimization version of RPP on undi-
rected graphs or directed graphs is NP-hard.

If the number of traversals of each edge is restricted to exactly
one, CPP is equivalent to the Eulerian circuit problem. The Eule-
rian circuit problem on undirected graphs can be solved in poly-
nomial time since it is only necessary to determine whether or not
the degree of each vertex is even. Similarly, the Eulerian circuit
problem on directed graphs can also be solved in polynomial time
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since it is only necessary to determine whether or not the indegree
and outdegree of each vertex are equal.

In Ref. [9], it is also shown that the Eulerian circuit problem on
mixed graphs can be solved in polynomial time. Let G = (V, E, A)
be a mixed graph. Here V is the set of vertices, E is the set of
undirected edges and A is the set of directed edges. If there exists
a vertex v ∈ V such that deg(v)− |indeg(v)−outdeg(v)| � (mod 2),
then it is obvious that G does not have an Eulerian circuit. Other-
wise, we construct the following bipartite graph G′ = (V1,V2, E′):
� The set V1 consists of the edges of G. That is, V1 = E ∪ A;
� The set V2 consists of deg(v)/2-copies of v for each vertex v

of G;
� If e ∈ E is incident to v ∈ V , then the vertex e ∈ V1 is

adjacent to each copy of v in V2;
� If a ∈ A is oriented to v ∈ V , then the vertex a ∈ V1 is

adjacent to each copy of v in V2.
For instance, given the mixed graph illustrated in Fig. 1 (i), we
construct the bipartite graph illustrated in Fig. 1 (ii). By finding a
perfect matching for this graph, an orientation of the undirected
edges in G can be determined, giving an Eulerian circuit. The
Eulerian circuit problem on mixed graphs can therefore be solved
in polynomial time since this bipartite graph can be constructed
in polynomial time and there exists an O(n5/2) time algorithm for
the perfect matching problem [3].

The vertex cover problem (VC) is a well known classical graph
problem. A vertex cover of a graph is a set of vertices that in-
cludes at least one endpoint of every edge of the graph. VC is
the problem of deciding whether there exists a vertex cover of
size at most k in a given graph G where k is a given positive
integer. VC is one of Karp’s 21 NP-complete problems [4]. The
connected vertex cover problem (CVC) is to decide whether there
exists a vertex cover V ′ of size at most k such that the subgraph
induced by V ′ is connected for a given graph and positive inte-
ger k. CVC is NP-complete problem introduced by Garey and
Johnson [2] and they also showed that CVC on planar graphs of
maximum degree 4 remains NP-complete.
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Fig. 1 (i) Mixed graph and (ii) the corresponding bipartite graph.

Fig. 2 Mixed graph. The set of blue vertices is one of vertex covers of this
graph.

In urban settings, crime prevention measures taking the whole
area into consideration are especially important. From this point
of view, a vertex cover of a graph can be regarded as an appropri-
ate placement of police officers or fixed surveillance cameras. A
police officer placed at an intersection (vertex) can confirm each
incident street (edges) visually without moving. Not only two-
way streets but also one-way streets can also be confirmed con-
firmed visually from either of its incident intersections. We there-
fore consider a vertex cover of a mixed graph to be a vertex cover
of the underlying undirected graph obtained by ignoring the ori-
entation of its directed edges. For instance, given the mixed graph
illustrated in Fig. 2, the set {v2, v4, v5, v6, v9, v11} of vertices is a
vertex cover.

In this paper, we introduce an edge routing decision problem
which is to find a patrol route for one police officer to confirm all
streets. The police officer is allowed to confirm any street visually
from an incident intersection without traversing it. Therefore, he
does not have to traverse all the streets. That is, the set of ver-
tices on the patrol route is a vertex cover for the given graph.
The police officer patrol problem (POPP) is the problem of de-
ciding whether there exists a patrol route for a given mixed graph
in which each edge is either traversed exactly once or confirmed
visually. In this paper, we show that POPP is NP-complete by a
similar method to the one used in Ref. [9].

2. Police Officer Patrol Problem (POPP)

Let G = (V, E, A) be a connected simple mixed graph.
Throughout this paper, when we simply refer to an “edge,” we
mean either an undirected or a directed edge. A sequence S : v0,
v1, v2, · · · , vn of vertices is said to be a patrol route on G, if the
following conditions hold:
(1) For each i (0 ≤ i < n), either {vi, vi+1} ∈ E or (vi, vi+1) ∈ A.

Fig. 3 Mixed graph and a patrol route S : v1, v3, v4, v7, v10, v11, v14, v12, v11,
v8, v9, v5 and v1. The set of vertices RS = {v1, v3, v4, v5, v7, v8, v9, v10,
v11, v12, v14} in S is one of vertex covers of this graph.

(2) For any i and j (0 ≤ i < j < n),
{vi, vi+1} � {v j, v j+1} if {vi, vi+1}, {v j, v j+1} ∈ E

and
(vi, vi+1) � (v j, v j+1) if (vi, vi+1), (v j, v j+1) ∈ A.

(3) The set RS = {vi : 0 ≤ i ≤ n} of vertices in S is a vertex
cover of G. That is, RS ∩ {v, v′} � φ holds for any (v, v′) ∈ A

and {v, v′} ∈ E.
(4) v0 = vn.

Here, (1) means that there exists an edge between two suc-
cessive vertices in S. Directed edges must be traversed accord-
ing to their direction. It is said that each edge {vi, vi+1} ∈ E (or
(vi, vi+1) ∈ A) between members of S is traversed from vi to vi+1.
(2) means that the same edge cannot be traversed more than once.
(3) means that for any edge e, at least one vertex to which e is in-
cident is in S. If exactly one vertex to which e is incident is in
S, it is said that e is confirmed visually. By (1) and (4), S is a
circuit.

For instance, we illustrate a mixed graph and a patrol route on
it in Fig. 3.

The POPP is to decide whether there exists a patrol route for a
given mixed graph.

3. Result

In order to show that POPP is NP-complete, we introduce four
graphs illustrated on the left in Fig. 4. These will appear as sub-
graphs in a graph constructed in our proof of NP-completeness.
In each of these graphs, only v and v′ may have additional neigh-
bors outside of each graph. Therefore, we call v and v′ external
vertices. We call ui internal vertices since they have no neighbors
outside of each graph.

For each graph in Fig. 4, consider a patrol route for a graph
containing it as a subgraph:
(1) In the subgraph (i), both directed edges (v, u2) and (u2, v

′)
must be traversed in order to confirm the undirected edge
{u1, u2} visually. Therefore, we regard this subgraph as a
deemed edge with end endpoints v and v′ which must be tra-
versed from v to v′ exactly once. We call the subgraph (i) an
α-edge and denote it by (v, v′)→.

(2) In the subgraph (ii), both undirected edges {v, u2} and
{u2, v

′} must be traversed in order to confirm the undirected
edge {u1, u2} visually. We can choose whether these edges
are traversed either from v to u2 and from u2 to v′ respectively
or from u2 to v and from v′ to u2 respectively. Therefore, we
regard this subgraph as a deemed edge with endpoints v and
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Fig. 4 (i) α-edge (v, v′)→, (ii) β-edge (v, v′)→←, (iii) γ-edge (v, v′)→↔ and (iv)
δ-edge (v, v′)↔, and their representations.

v′ which must be traversed either from v to v′ or from v′ to v
exactly once. We call the subgraph (ii) a β-edge and denote
it by (v, v′)→←.

(3) In the graph (iii), both directed edges (v, u2) and (u2, v
′)

must be traversed in order to confirm the undirected edge
{u1, u2} visually. On the other hand, we can choose whether
(v′, u3) and (u3, v) are confirmed visually or traversed. When
we regard this subgraph as a deemed edge, we say that the
deemed edge is traversed as a round trip between v and v′, if
the patrol route includes u3. That is, we regard this subgraph
as a deemed edge with endpoints v and v′ which is either tra-
versed from v to v′ exactly once or traversed as a round trip
between v and v′ exactly once. We call the subgraph (iii) a
γ-edge and denote it by (v, v′)→↔.

(4) In the subgraph (iv), both directed edges (v, u2) and (u2, v
′)

must be traversed in order to confirm the undirected edge
{u1, u2} visually, and (v′, u3) and (u3, v) must also be tra-
versed in order to confirm the undirected edge {u3, u4} vi-
sually. Therefore, we regard this subgraph as a deemed edge
with endpoints v and v′ which is traversed as a round trip
between v and v′ exactly once. We call the subgraph (iv) a
δ-edge and denote it by (v, v′)↔.

We represent an α-edge (v, v′)→, a β-edge (v, v′)→←, a γ-edge
(v, v′)→↔ and a δ-edge (v, v′)↔ as shown on the right in Fig. 4. To
simplify our discussion, we treat these deemed edges as normal
edges below. That is, when we give the definition of a graph us-
ing deemed edges, only their external vertices are indicated, and
not their internal vertices and edges. Additionally, when we de-
fine a mixed graph G = (V, E, A) using deemed edges, we do not
distinguish between the set of undirected edges E and the set of
directed edges A, and simply write G = (V, E).

First, we give a property of a patrol route in a graph with three
deemed edges incident to the same vertex.
Lemma 1 Let G be any mixed graph including one β-edge

Fig. 5 Three deemed edges (v, v1)→←, (v2, v)→↔ and (v, v3)→↔ which are incident
to the same vertex v.

(v, v1)→← and two γ-edges (v2, v)→↔, (v, v3)→↔ which are incident to
a vertex v (Fig. 5). Suppose that only these three deemed edges
are incident to v. Then, for any patrol route S on G, either of the
following holds:
(1) (v, v1)→← is traversed from v to v1, (v2, v)→↔ is traversed from
v2 to v and (v, v3)→↔ is traversed as a round trip.

(2) (v, v1)→← is traversed from v1 to v, (v2, v)→↔ is traversed as a
round trip and (v, v3)→↔ is traversed from v to v3.

This assertion holds even if two γ-edges are incident to the same
two vertices (that is, v2 = v3).
Proof This assertion is obtained by considering the number of
in-going and out-going traversals at v in S. �

In our proof of NP-completeness for POPP, we show that 3SAT
(Ref. [4]) is reducible to POPP in polynomial time. We construct
graphs corresponding to the variables and clauses which arise in
a given Boolean formula in 3-conjunctive normal form, and show
their properties in advance.

For a non-negative integer z and a label σ, we define a set of
vertices Vz

σ and a set of edges Ez
σ as follows:

Vz
σ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{σ0, σ

′
0}, if z = 0,

{σi, σ
′
i : 1 ≤ i ≤ z}, otherwise,

Ez
σ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{(σ0, σ
′
0)→↔, (σ′0, σ0)→↔}, if z = 0,

{(σi, σ
′
i )
→↔ : 1 ≤ i ≤ z}

∪{(σ′i , σi+1)→← : 1 ≤ i < z}, otherwise.

These are used to construct a mixed graph corresponding to each
variable. Let s and t be non-negative integers with s + t ≥ 1 and
let x be a label. Then we define a mixed graph Gs,t

x = (V s,t
x , E

s,t
x ).

Here, V s,t
x = V s

x ∪ Vt
x and Es,t

x = Es
x ∪ Et

x ∪ Ês,t
x , where

Ês,t
x =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{(x0, x1)→←, (x′0, x
′
t )
→←}, if s = 0,

{(x1, x0)→←, (x′s, x
′
0)→←}, if t = 0,

{(x1, x1)→←, (x′s, x
′
t )
→←}, otherwise.

Furthermore, in order to show a property of Gs,t
x , we define a

mixed graph G̃s,t
x = (Ṽ s,t

x , Ẽ
s,t
x ) which contains Gs,t

x as a subgraph.
Here, let y be an arbitrary fixed label,

Ṽ s,t
x =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

V0,t
x ∪ Vt

y
, if s = 0,

V s,0
x ∪ V s

y , if t = 0,

V s,t
x ∪ V s,t

y , otherwise,

and
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Fig. 6 Mixed graphs (i) G̃s,t
x (s, t ≥ 1) and (ii) G̃0,t

x . Blue parts are Gs,t
x and G0,t

x .

Ẽs,t
x = Es,t

x ∪ {(yi, xi)
→
↔, (x′i , y

′
i )
→
↔ : 1 ≤ i ≤ s}

∪ {(yi, xi)
→
↔, (x′i , y

′
i )
→
↔ : 1 ≤ i ≤ t}.

We illustrate the graph G̃s,t
x and its subgraph Gs,t

x in Fig. 6.
For the mixed graph G̃s,t

x , the following lemma holds.
Lemma 2 Let G be a mixed graph with a subgraph isomorphic
to G̃s,t

x . Assume that only the vertices yi, y′i , yi and y′i have neigh-
bors outside Ṽ s,t

x (that is, they are external vertices of G̃s,t
x ). Then

for any patrol route S on G, either of the following conditions is
satisfied:
(1) Every γ-edge (xi, x′i )

→↔ is traversed from xi to x′i and every
γ-edge (xi, x

′
i )
→↔ is traversed as a round trip.

(2) Every γ-edge (xi, x′i )
→↔ is traversed as a round trip and every

γ-edge (xi, x
′
i )
→↔ is traversed from xi to x′i .

Proof First, since every vertex in V s,t
x is incident to one β-edge

and two γ-edges in directions opposite each other, we remark that
every edge-induced subgraph generated by the set of these three
deemed edges is isomorphic to the graph constructed in Lemma 1.
If s = 0 or t = 0, subgraphs that are isomorphic to the one in Fig. 5
with v2 = v3 are included in the collection of these edge-induced
subgraphs (For instance, in the case s = 0 (Fig. 6 (ii)), two edge-
induced subgraphs generated by the set of (x0, x1)→←, (x0, x′0)→↔
and (x′0, x0)→↔ and the set of (x′0, x

′
t )
→←, (x0, x′0)→↔ and (x′0, x0)→↔ are

included).
We focus on the deemed edge (x′s, x

′
t )
→←. Suppose that it is tra-

versed from x′s to x′t by S. Since the way to traverse this edge
is decided, by Lemma 1, the way to traverse the remaining two
deemed edges incident to x′s is also decided. That is, (xs, x′s)→↔
must be traversed from xs to x′s and (x′s, y′s)→↔ must be traversed as
a round trip ((x′0, x0)→↔ is traversed as a round trip if s = 0). Simi-
larly, how to traverse the remaining two deemed edges which are
incident to x′t can also be decided. That is, (xt, x

′
t )
→↔ must be tra-

versed as a round trip and (x′t , y
′
t )
→↔ must be traversed from x′t to y′t

((x′0, x0)→↔ is traversed from x′0 to x0 if t = 0). Moreover, the de-
cision on how to traverse (xs, x′s)→↔ and (xt, x

′
t )
→↔, determines how

to traverse the remaining deemed edges which are incident to xs

and xt is decided. By applying Lemma 1 repeatedly in this way,
if (x′s, x

′
t )
→← is traversed from x′s to x′t , then we obtain the fact that

every γ-edge (xi, x′i )
→↔ is traversed from xi to x′i and every γ-edge

(xi, x
′
i )
→↔ is traversed as a round trip. By a similar argument, we

Fig. 7 Mixed graph G̃C and its subgraph GC (blue part).

can verify that every γ-edge (xi, x′i )
→↔ is traversed as a round trip

and every γ-edge (xi, x
′
i )
→↔ is traversed from xi to x′i if (x′s, x

′
t )
→← is

traversed from x′t to x′s. �
Next, we construct a mixed graph corresponding to a clause in

a Boolean formula in 3-conjunctive normal form. Let C be a la-
bel and p, q and r be fixed labels determined by C. We define a
mixed graph GC = (VC , EC), where VC = {p j, q j, r j : 1 ≤ j ≤ 3}
and

EC = {(r1, p j)
→
↔, (q j, r2)→↔ : 1 ≤ j ≤ 3}

∪ {{r1, r3}, {r2, r3}, (r2, r1)→}.

Furthermore, in order to describe a property of GC , we define a
mixed graph G̃C = (ṼC , ẼC) which contains GC as a subgraph.
Here,

ṼC = VC ∪ {p′j, q′j : 1 ≤ j ≤ 3}
ẼC = EC ∪ {(p j, q j)

→
↔, (p j, p

′
j)
→
←, (q j, q

′
j)
→
← : 1 ≤ j ≤ 3}.

We illustrate G̃C and its subgraph GC in Fig. 7.
For the mixed graph G̃C , the following lemma holds.

Lemma 3 Let G be a mixed graph with G̃C as a subgraph. Sup-
pose that only the vertices p′j and q′j have neighbors outside ṼC

(In other words, these are external vertices of G̃C). Then for any
patrol route S on G, at least one of the three γ-edges (p j, q j)→↔
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must be traversed from p j to q j.
Proof The vertices p j and q j are each incident to one β-edge
and two γ-edges in opposite directions. Therefore, by Lemma
1, if the way to traverse one of these three deemed edges is de-
cided, the way to traverse the others is also decided, accordingly.
Specifically, if (p j, q j)→↔ is traversed from p j to q j, then:
� (r1, p j)→↔ must be traversed as a round trip and (p j, p′j)

→← must
be traversed from p′j to p j;

� (q j, r2)→↔ must be traversed as a round trip and (q j, q′j)
→← must

be traversed from q j to q′j.
Similarly, if (p j, q j)→↔ is traversed as a round trip, then:
� (r1, p j)→↔ must be traversed from r1 to p j and (p j, p′j)

→← must
be traversed from p j to p′j;

� (q j, r2)→↔ must be traversed from q j to r2 and (q j, q′j)
→← must

be traversed from q′j to q j.
Suppose that k γ-edges (p j, q j)→↔ are traversed from p j to q j on

S (the remaining 3 − k γ-edges (p j, q j)→↔ are traversed as round
trips). Then, by the relation between the number of in-going and
out-going traversals at r1 and r2, the following statements hold:
(i) if k = 3, for each j (1 ≤ j ≤ 3), both (r1, p j)→↔ and (q j, r2)→↔

must be traversed as a round trip. In this case, it is necessary
that {r1, r3} is traversed from r1 to r3 and {r2, r3} is traversed
from r3 to r2.

(ii) if k = 2 then, for exactly one value of j (1 ≤ j ≤ 3),
(r1, p j)→↔ and (q j, r2)→↔ must be traversed from r1 to p j and
from q j to r2, respectively. For the two remaining values
of j, both (r1, p j)→↔ and (q j, r2)→↔ must be traversed as round
trips. In this case, it is necessary that both {r1, r3} and {r3, r2}
are confirmed visually.

(iii) if k = 1, for exactly two values of j (1 ≤ j ≤ 3), (r1, p j)→↔
and (q j, r2)→↔ must be traversed from r1 to p j and from q j to
r2, respectively. For the remaining value of j, both (r1, p j)→↔
and (q j, r2)→↔ must be traversed as round trips. In this case, it
is necessary that {r2, r3} is traversed from r2 to r3 and {r1, r3}
is traversed from r3 to r1.

(iv) If k = 0, that is, all three γ-edges (p j, q j)→↔ are traversed
as round trips, then for each j (1 ≤ j ≤ 3), (r1, p j)→↔ and
(q j, r2)→↔ must be traversed from r1 to p j and from q j to r2,
respectively. In this case, regardless of whether the edges
{r1, r3} and {r2, r3} are traversed or confirmed visually, the
number of in-going and out-going traversals at r1 (at r2 simi-
larly) cannot be equal. Hence, there exists no patrol route on
G such that all three γ-edges (p j, q j)→↔ are traversed as round
trips. �

Theorem POPP is NP-complete.
Proof It is obvious that POPP is in NP. It remains for us to show
that 3SAT is reducible to POPP in polynomial time. That is, for
any Boolean formula F in 3-conjunctive normal form, we show
that a mixed graph GF which satisfies the following condition can
be constructed in polynomial time:

F is satisfiable ⇐⇒ GF has a patrol route.

Let F = C1 ·C2 · · · · ·Cm be a Boolean formula in 3-conjunctive
normal form with n variables x1, x2, · · · , xn, where

Ci = ci1 + ci2 + ci3 (1 ≤ i ≤ m)

and each ci j (1 ≤ j ≤ 3) is either a variable or its negation. Let
sk and tk be the number of appearances of xk and xk in F, respec-
tively. For any k (1 ≤ k ≤ n), sk + tk ≥ 1 holds, since F contains
at least one xk or xk. Moreover, we assume that sk literals cik,1 jk,1 ,
cik,2 jk,2 , · · · , cik,sk jk,sk

are equal to xk, and tk literals ci′k,1 j′k,1 , ci′k,2 j′k,2 ,
· · · , ci′k,tk j′k,tk

are equal to xk. Suppose that their indices satisfy the
following conditions:
� ik,1 ≤ ik,2 ≤ · · · ≤ ik,sk ,
� jk,l < jk,l+1 if ik,l = ik,l+1,
� i′k,1 ≤ i′k,2 ≤ · · · ≤ i′k,tk ,
� j′k,l < j′k,l+1 if i′k,l = i′k,l+1.
We construct a mixed graph GF = (VF , EF) from the formula

F. Here, GF contains the following two kinds of subgraphs:
� Gsk ,tk

xk
= (V sk ,tk

xk
, Esk ,tk

xk
) corresponding to each variable xk

(1 ≤ k ≤ n). Gsk ,tk
xk

is the subgraph of the mixed graph G̃sk ,tk
xk

constructed in Lemma 2.
� GCi = (VCi , ECi ) corresponding to each clause Ci (1 ≤ i ≤

m). Here,

VCi = {pi, j, qi, j, ri, j : 1 ≤ j ≤ 3},
ECi = {(ri,1, pi, j)

→
↔, (qi, j, ri,2)→↔ : 1 ≤ j ≤ 3}

∪ {{ri,1, ri,3}, {ri,2, ri,3}, (ri,2, ri,1)→}.
We remark that GCi is isomorphic to the graph GC con-
structed in Lemma 3.

We combine n mixed graphs Gsk ,tk
xk

and m mixed graphs GCi by
equating vertices of Gsk ,tk

xk
with vertices of GCi as follows: For

each k (1 ≤ k ≤ n),
� if sk > 0, then for each l (1 ≤ l ≤ sk), the vertices xk,l and

x′k,l in the subgraph Gsk ,tk
xk

are equated with the vertices pik,l , jk,l

and qik,l , jk,l in the subgraph GCik,l
, respectively.

� if tk > 0, then for each l (1 ≤ l ≤ tk), the vertices xk,l and
x′k,l in the subgraph Gsk ,tk

xk
are equated with the vertices pi′k,l , j

′
k,l

and qi′k,l , j
′
k,l

in the subgraph GCi′k,l
, respectively.

These equated vertices have two labels (for example, xk,l and
pik,l , jk,l ), and we use these labels interchangeably according to con-
venience. Therefore, for instance, if vertices xk,l and x′k,l (or xk,l

and x′k,l) in Gsk ,tk
xk

are equated with vertices pik,l , jk,l and qik,l , jk,l in
GCik,l

, respectively, then the γ-edge (xk,l, x′k,l)
→↔ (or (xk,l, x

′
k,l)
→↔) is

sometimes represented by (pik,l , jk,l , qik,l , jk,l )
→↔.

The set of vertices VF and the set of edges EF of GF are defined
as follows:

VF =

⎛⎜⎜⎜⎜⎜⎝
n⋃

k=1

V sk ,tk
xk

⎞⎟⎟⎟⎟⎟⎠ ∪
⎛⎜⎜⎜⎜⎜⎝

m⋃

i=1

VCi

⎞⎟⎟⎟⎟⎟⎠ ,

EF =

⎛⎜⎜⎜⎜⎜⎝
n⋃

k=1

Esk ,tk
xk

⎞⎟⎟⎟⎟⎟⎠ ∪
⎛⎜⎜⎜⎜⎜⎝

m⋃

i=1

ECi

⎞⎟⎟⎟⎟⎟⎠ ∪
{
(ri,1, ri+1,1)↔ : 1 ≤ i < m

}
.

The vertices ri,1 in GCi and ri+1,1 in GCi+1 are connected by the
δ-edge (ri,1, ri+1,1)↔. Since all δ-edges must be traversed as
round trips, these have no effect on the relationship between the
numbers of in-going and out-going traversals at their endpoints.
Therefore, we can apply Lemma 3 for every subgraph in GF

which is isomorphic to the graph G̃C constructed in Lemma 3.
The role of δ-edges is to guarantee that GF is connected.

For instance, consider the Boolean formula F = (x1 + x2 +

x3)(x1 + x3 + x4)(x1 + x3 + x4). We illustrate the mixed graphs

c© 2022 Information Processing Society of Japan
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Fig. 8 Mixed graphs (i) G2,1
x1

, (ii) G1,0
x2

, (iii) G1,2
x3

and (iv) G1,1
x4

.

Fig. 9 Mixed graph GF constructed from a Boolean formula in 3-conjunctive normal form F = (x1 + x2 +

x3)(x1 + x3 + x4)(x1 + x3 + x4).
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G2,1
x1

, G1,0
x2

, G1,2
x3

and G1,1
x4

corresponding to the variables x1, x2, x3

and x4 in Fig. 8 and illustrate the graph GF constructed from F

in Fig. 9. Since the two literals c21 and c31 in F are equal to x1

(that is, i1,1 = 2, j1,1 = 1, i1,2 = 3 and j1,2 = 1), the vertices
x1,1 and x′1,1 in G2,1

x1
are equated with the vertices pi1,1 , j1,1 (= p2,1)

and qi1,1 , j1,1 (= q2,1) in GCi1,1
(= GC2 ), respectively, and x1,2 and

x′1,2 in G2,1
x1

are equated with pi1,2 , j1,2 (= p3,1) and qi1,2 , j1,2 (= q3,1) in
GCi1,2

(= GC3 ), respectively. In addition, the remaining vertices of
Gxk are equated with the remaining vertices of GCi as follows:

x1,1 = p1,1, x′1,1 = q1,1,

x2,1 = p1,2, x′2,1 = q1,2,

x3,1 = p3,2, x′3,1 = q3,2,

x3,1 = p1,3, x′3,1 = q1,3, x3,2 = p2,2, x′3,2 = q2,2,

x4,1 = p2,3, x′4,1 = q2,3,

x4,1 = p3,3, x′4,1 = q3,3.

We remark that GF includes subgraphs which are isomorphic
to G̃sk ,tk

xk
and G̃Ci for each variable xk and clause Ci, respec-

tively. For instance, in the graph GF constructed from the for-
mula F = (x1 + x2 + x3)(x1 + x3 + x4)(x1 + x3 + x4) (Fig. 8), the
graph which adds the following six γ-edges to G2,1

x1
is isomorphic

to G̃2,1
x1

:

(r2,1, x1,1)→↔, (x′1,1, r2,2)→↔, (r3,1, x1,2)→↔,

(x′1,2, r3,2)→↔, (r1,1, x1,1)→↔, (x′1,1, r1,2)→↔.

On the other hand, the graph which adds the following six β-edges
to GC1 is isomorphic to G̃C1 :

(x1,1, x1,1)→←, (x′1,1, x
′
1,2)→←, (x2,1, x2,0)→←,

(x′2,1, x
′
2,0)→←, (x3,1, x3,1)→←, (x′3,1, x

′
1,1)→←.

It is obvious that GF can be constructed from F in polynomial
time. It remains for us to show that F is satisfiable if and only if
GF has a patrol route.

Let I : {x1, x2, · · · , xn} → {0, 1} be a truth assignment of
F. Then, the β-edge (x′k,s, x

′
k,t)
→← in the subgraph Gsk ,tk

xk
is tra-

versed from x′k,s to x′k,t if I(xk) = 1, and is traversed from x′k,t
to x′k,s if I(xk) = 0. By Lemma 2, if I(xk) = 1 then every γ-
edge (xk,l, x′k,l)

→↔ is traversed from xk,l to x′k,l and every γ-edge
(xk,l, x

′
k,l)
→↔ is traversed as a round trip, and if I(xk) = 0 then every

γ-edge (xk,l, x′k,l)
→↔ is traversed as a round trip and every γ-edge

(xk,l, x
′
k,l)
→↔ is traversed from xk,l to x′k,l. Additionally, by Lemma

2, each Gsk ,tk
xk

has no other valid edge tour.
We assume that F is satisfiable. Then, there exists a truth as-

signment I by which F is satisfied. In this case, at least one
among ch1, ch2 and ch3 is satisfied for every h (1 ≤ h ≤ m). Now,
suppose that chh′ is satisfied under this assignment. If chh′ = xk

(or xk), then the corresponding γ-edge (xk,l, x′k,l)
→↔ (or (xk,l, x

′
k,l)
→↔),

that is, (ph,h′ , qh,h′ )→↔ is traversed from ph,h′ to qh,h′ (We remark
that h = ik,l, h′ = jk,l). Edges in GCh can be traversed in the way
described in the proof of Lemma 3. In addition, all δ-edges can
be traversed as round trips. Such an edge tour constitutes a patrol
route of GF .

Conversely, suppose that GF has a patrol route S. Then by the

way of constructing the mixed graph GF and Lemma 2, we can
define a truth assignment IS : {x1, x2, · · · , xn} → {0, 1} uniquely
for the patrol route S as follows:
(1) IS(xk) = 1 if every γ-edge (pik,l , jk,l , qik,l , jk,l )

→↔ corresponding
to sk literals cik,1 jk,1 , cik,2 jk,2 , · · · , cik,sk jk,sk

which are equal to
xk is traversed from pik,l , jk,l to qik,l , jk,l ((xk,0, x′k,0)→↔ is traversed
from xk,0 to x′k,0 if sk = 0).

(2) IS(xk) = 0 if every γ-edge (pi′k,l , j
′
k,l
, qi′k,l , j

′
k,l

)→↔ corresponding
to tk literals ci′k,1 j′k,1 , ci′k,2 j′k,2 , · · · , ci′k,tk j′k,tk

which are equal to xk

is traversed from pi′ , j′ to qi′ , j′ ((xk,0, x
′
k,0)→↔ is traversed from

xk,0 to x′k,0 if tk = 0).
Assume that for each i (1 ≤ i ≤ m), a γ-edge (pi, ji , qi, ji )

→↔
(1 ≤ ji ≤ 3) is traversed from pi, ji to qi, ji on the patrol route
S. The existence of such γ-edge is guaranteed by Lemma 3. Let
ci ji be the literal corresponding to the γ-edge (pi, ji , qi, ji )

→↔. If the
literal ci ji is equal to xk then IS(ci ji ) = IS(xk) = 1. On the other
hand, if the literal ci ji is equal to xk then IS(ci ji ) = IS(xk) = 1
since IS(xk) = 0. Hence, F is satisfiable since every clause
Ci = ci1 + ci2 + ci3 is satisfied by IS. �

4. Concluding Remarks

We introduce an edge routing problem on mixed graphs repre-
senting urban areas and investigate its complexity. Our next inter-
est is in how the computational complexity changes when POPP
is restricted for instance, to undirected or directed graphs. We are
especially interested in the complexity of POPP on undirected
graphs since this is also a restricted variation of CVC. In addi-
tion, it would be interesting to study approximation algorithms
for POPP by defining the problem on weighted graphs (where
each street is given a distance).
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