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A general VC dimension upper bound for quantum circuit
learning
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Abstract:
Previously we established a VC dimension upper bound for ”encoding-first” quantum circuits, where the input layer is
the first layer of the circuit. In this report, we prove a general VC dimension upper bound for quantum circuit learning
including ”data re-uploading” circuits, where the input gates can be single qubit rotations anywhere in the circuit. We
discuss the properties of the bound and some other considerations.
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1. Introduction
Due to the difficulty of simulating quantum systems using clas-

sical computers, building computing machines using quantum
mechanics is suggested as a way toward computational advan-
tages [1], [2], [3], [4], [5], [6]. The computational capability of
current Noisy Intermediate-Scale Quantum (NISQ) [7] hardware
was experimentally demonstrated [8]. On the other hand, clas-
sical machine learning [9], [10], [11], [12] for Artificial Intelli-
gence (AI) shows a wide range of applications [13], [14]. It is
reasonable to consider NISQ devices for AI applications [15].

Using variational quantum circuits [16], [17], [18] as predic-
tion models in supervised learning leads to the quantum circuit
learning (QCL) method [18], [19], [20], [21]. In this setting, the
learning task is similar to classical setting such that the training
data set and predictions are restricted to classical data. Only the
hypothesis set is constructed using variational quantum circuits.
Theoretical efforts toward understanding the expressive power of
QCL is conducted by many groups [22], [23], [24], [25], [26].

One important question in supervised learning is the learn-
ability of the hypothesis set being used. If the size of train-
ing data set is small but the model complexity is high, a learn-
ing machine could overfit to the data noise and hence fail to
generalize well for future predictions. Uniform non-asymptotic
theory of generalization for supervised machine learning started
with Vapnik–Chervonenkis (VC) theory [27] and is generally
known as statistical learning theory [28], [29], [30], [31], [32].
Probably Approximately Correct (PAC) framework proposed by

1 Grid Inc., 107-0061 Tokyo, Japan
2 Engineering department, The University of Electro-Communications,

182-8585 Tokyo, Japan
3 i-PERC, The University of Electro-Communications, 182-8585 Tokyo,

Japan
a) chen.chih.chieh@gridsolar.jp
b) sogabe@uec.ac.jp

Valiant [33] also includes computational requirements in its orig-
inal form. For binary classification tasks, VC theory can be used
to establish the generalization ability by using the VC dimension
of the model class [34].

Previous learnability results for quantum machine learning are
based on fat-shattering dimension [35], pseudo-dimension [36],
or quantum sample complexity [37]. Another VC-dimension up-
per bound, which is different from our result, is proposed in [38].
Many other recent learnability results based on various measures
and settings could be found in literatures [39], [40], [41], [42],
[43], [44], [45].

The limitation of expressibility of ”encoding-first” quantum
circuit was observed by many groups [24], [44], [46], and the
”data re-uploading” circuit [46] was proposed to resolve the lim-
itation. The learnability of data re-uploading QCL is shown
in [44] by using Rademacher complexity. Our previous study
[47] shows that the growth of VC dimension saturates for deep
QCL. This is different from classical deep neural networks (num-
ber of edges=|E|, number of vertices=|V |), where the VC di-
mension grows asymptotically as O(|E| log(|E|)) (for sign acti-
vation function) or O(|V |2|E|2) (for sigmoid activation function)
[29], [31], [48]. In this work, we extend our previous [47] result
of VC dimension upper bound to include the data re-uploading
scheme.

This report is organized as follows. Section 2 provides brief
explanations for quantum circuit learning method and statistical
learning theory. Section 3 contains the main result and its proof.
Further discussions about the results are presented in Section 4.

2. Preliminaries
Quantum circuit learning and statistical learning theory are in-

troduced in this section.
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2.1 Quantum circuit learning
For a supervised binary classification learning problem, we are

given some classical training data set {(~xi, yi) : ~xi ∈ X, yi ∈ Y =

{−1, 1}, i ∈ {1, ...,N}} drawn from some unknown joint probabil-
ity distribution (~xi, yi) ∼ P(~x, y) over X × Y . The goal of learning
is to obtain a model h : X 7→ Y such that the prediction error
(out-of-sample error) Eout = P(~x,y)∼P(~x,y)[h(~x) , y] is small.

The QCL considered in this work uses some quantum circuits
to construct the hypothesis set H. For some d-dimensional in-
put vector ~x = (x0, ..., xd−1) ∈ [−1, 1]d = X, some encoding
maps ~φ = (φ0(x0), ..., φd−1(xd−1)) : [−1, 1]d 7→ [−π, π]d and some
real variational parameters θ, the circuit gives an unitary evolu-
tion Uθ(~φ(~x)) acting on all-zero initial state |0〉⊗n. n denotes the
number of qubits (circuit width). We do not assume any spe-
cial structure for variational parameters and entanglers, while the
encoding method is specified as follows. For one input vector
~x = (x0, ..., xd−1) ∈ [−1, 1]d = X, each dimension xi ∈ [−1, 1] is
encoded by one encoding mapping φi : [−1, 1] 7→ [−π, π] with
one single qubit rotation Rs ∈ {RY ,RZ}. The gate Rs(φi(xi)) is ap-
plied to the quantum circuit to upload the data. Data re-uploading
means that the gate Rs(φi(xi)) is applied to the circuit several
times for an i ∈ {0, ..., d − 1}. The number ni denotes the total
number of Rs(φi(xi)) gates being applied for an i ∈ {0, ..., d − 1}.
The measurement result is used to compute the expectation value
for some fixed observable O.

〈O(θ, ~φ(~x))〉 = Tr[OUθ(~φ(~x))|0〉⊗n〈0|⊗nU†θ (~φ(~x))]. (1)

The expectation value is then thresholded to construct a hypoth-
esis set H = {sgn( fθ(~φ(~x)) + c) : fθ(~φ(~x)) = 〈O(θ, ~φ(~x))〉 =

Tr[OUθ(~φ(~x))|0〉⊗n〈0|⊗nU†θ (~φ(~x))], c ∈ R} for binary classification.

2.2 Statistical learning theory
VC theory provides a general theory of generalization ability

for binary classification tasks. We use the definition that the gen-
eralization error is Eout − Ein, where Eout is the out-of-sample
error (prediction error) and Ein = 1

N
∑N

i=1~h(~xi) , f (~xi)� is the
in-sample error. The VC generalization error bound is [27]

P[sup
h∈H
|Eout(h) − Ein(h)| > ε] ≤ 4mH(2N)e(− 1

8 ε
2N), (2)

where the randomness is over i.i.d. samples {(~xi, yi) ∼ P(~x, y) ∀i ∈
{1, ...,N}}. N is the sample size. The function mH(N) =

max~x1 ,...,~xN∈X |{(h(~x1), ..., h(~xN)) : h ∈ H}| could be upper bounded
by mH(N) ≤

∑dvc
i=0

(
N
i

)
≤ NdVC + 1 for finite VC-dimension

dVC = maxN∈N{N : mH(N) = 2N}. VC dimension is the max-
imum number of points that can be shattered by the hypothesis
set. In general, dVC could be infinite for an uncountable hypoth-
esis set. If dVC is finite, then the generalization ability of the
learning machine is guaranteed by the VC bound and the hypoth-
esis set is called ”PAC-learnable.” Several features of VC theory
are worth noting [28]: (1) VC bound is independent of the input
distribution. (2) VC bound is non-asymptotic, so it can be applied
when the size of training data set is small. (3) VC bound is uni-
form over the hypothesis set, which means that it is true for all
the models in the set.

After VC theory, there are latter developments for the gen-

eralization ability of learning machines. For real-valued func-
tions, the pseudo-dimension [49] and the fat-shattering dimen-
sion [50], [51] could be used for generalization bounds. VC the-
ory is also extended to real-valued functions [28]. PAC-Bayesian
bounds are proposed for Bayesian setting [52], [53], [54]. There
are also other generalization bounds which are not VC bound but
use VC dimension as a measure [55]. Some introductions and
comparative study of these measures could be found in references
[29], [31], [32], [55].

3. Main result
The main result is presented here. The proof is an extension of

the proof in [47].
Theorem 1 (VC dimension upper bound for quantum circuits).
Assume the input vector ~x = (x0, ..., xd−1) ∈ [−1, 1]d. Each di-
mension xi ∈ [−1, 1] is uploaded ni times using single qubit
encoding rotations Rs(φi(xi)) for some fixed encoding mapping
φi : [−1, 1] 7→ [−π, π] with s ∈ {Y,Z}. Then the VC dimen-
sion of the hypothesis set H = {sgn( fθ(~φ(~x)) + c) : fθ(~φ(~x)) =

〈O(θ, ~φ(~x))〉 = Tr[OUθ(~φ(~x))|0〉⊗n〈0|⊗nU†θ (~φ(~x))], c ∈ R} for a
fixed observable O is upper bounded by

dVC ≤

d−1∏
i=0

(2ni + 1). (3)

Proof. We claim that fθ(~φ(~x)) is a real trigonometric polynomial
of d variables, and the degree of the polynomial for each variable
is at most ni. Then the theorem is proved by Dudley’s theorem for
VC dimension of thresholded real vector space function classes
[29], [31], [56], [57].

The proof of the claim is as follows. The initial density matrix
ρ0 = |0〉⊗n〈0|⊗n has constant matrix elements. From the assump-
tions, all the variational unitaries and entanglers do not depend
on input vector ~x. Consider an input dimension xi ∈ [−1, 1] and
encoding mapping φi(xi) ∈ [−π, π] where i ∈ {0, ..., d − 1}. If this
dimension is uploaded by RY

RY (φi) =

cos( φi
2 ) − sin( φi

2 )
sin( φi

2 ) cos( φi
2 )

 (4)

= cos(
φi

2
)
1 0
0 1

 + sin(
φi

2
)
0 −1
1 0

 , (5)

then the action of this gate on k-th qubit of n-qubit Hilbert space
is

RY (φi)|k = cos(
φi

2
)I2n + sin(

φi

2
)I2k ⊗

0 −1
1 0

 ⊗ I2n−k−1 (6)

= cos(
φi

2
)I2n + sin(

φi

2
)A (7)

where IM denotes M × M identity matrix and A is some constant
matrix. The action of this gate on a density matrix ρ is then

RY (φi)|kρRY (φi)|
†

k (8)

= (cos(
φi

2
)I2n + sin(

φi

2
)A)ρ(cos(

φi

2
)I2n + sin(

φi

2
)A†) (9)

=
1
2

[(1 + cos(φi))ρ + sin(φi)(Aρ + ρA†) (10)

+(1 − cos(φi))AρA†]. (11)
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If the matrix elements of ρ are trigonometric polynomials
of ~φ, then the matrix elements of the updated density matrix
RY (φi)|kρRY (φi)|

†

k are trigonometric polynomials where the de-
gree for the variable φi is increased by at most one. Similar ar-
gument works if the dimension is uploaded by RZ(φi). Hence,
fθ(~φ(~x)) is a trigonometric polynomial with the claimed degree
upper bound. Let fθ(~φ(~x)) =

∑
k ak(θ) fk(~φ(~x)), where { fk(~φ)} is

the real trigonometric polynomial basis and {ak(θ)} are the Fourier
coefficients. Since fθ(~φ(~x)) is a real-valued function, the coeffi-
cients ak(θ) = 〈 fk | fθ〉 ∈ R ∀k. The claim is proved.

�

4. Discussions
In this section, we provide some short discussions regarding

the obtained theorem.

4.1 Applicability of the bound
There is no requirement on the structure of variational (train-

able) gates and entangling gates of the circuit, except that they
should not contain any input data xi. There is no requirement on
the encoding gates Rs(φi(xi)), except that they should not contain
any variational parameter.

Notice that in practice, one usually applies some classical post
processing techniques to the output expectation values [20]. The
VC dimension bound should be adjusted accordingly.

We provide some extensions.
Corollary 1 (Linear combinations of expectations). If the hy-
pothesis set is the real linear combination of several observables
for a fixed circuit such that H = {sgn( fθ(~φ(~x)) + c0) : fθ(~φ(~x)) =∑

i ci〈Oi(θ, ~φ(~x))〉 =
∑

i ciTr[OiUθ(~φ(~x))|0〉⊗n〈0|⊗nU†θ (~φ(~x))], ci ∈

R}, then the bound in Theorem 1 is still true.
Corollary 2 (Mixed state learnability). If the initial state is some
mixed state ρ which does not depend on the input vector ~x such
that HQCL = {sgn( fθ(~φ(~x)) + c0) : fθ(~φ(~x)) =

∑
i ci〈Oi(θ, ~φ(~x))〉 =∑

i ciTr[OiUθ(~φ(~x))ρU†θ (~φ(~x))], ci ∈ R}, then the bound in Theo-
rem 1 is still true.

4.2 Reduction to the previous results
We show how to obtain the special case in our previous work

[47] for the ansatz in [19].

dVC ≤ (2
n
d

+ 1)2d. (12)

This bound can be obtained from the general bound in Theorem
1 as follows. The encoding used in [19] can be understood as
performing feature maps xi 7→ x2

i to increase the feature dimen-
sion from d to 2d. The encoding maps φi(xi) = arcsin(xi) and
φ′i (x2

i ) = arccos(x2
i ) are used, and are uploaded by RY (φi(xi)) =

RY (arcsin(xi)) and RZ(φ′i (x2
i )) = RZ(arccos(x2

i )). Each dimen-
sion is uploaded ni = n

d times, and hence we get the bound
(2ni + 1)2d = (2 n

d + 1)2d. The lightcone bound can be calculated
by counting ni covered by the lightcone for a specific ansatz.

4.3 Looseness of the bound
Notice that our bound is based on counting the number of ba-

sis functions, hence the bound does not depend on the number of

variational parameters. This suggests that the bound can not be
tight in general. For example, if the number of variational param-
eter is zero, then the VC dimension is zero. Ideally, we also want
a scaling with respect to the number of variational gates like the
cases in [41], [45].

4.4 Approximation-estimation trade-off considerations
To achieve low prediction error in supervised learning, the

approximation-estimation trade-off (also known as bias-variance
trade-off) should be considered [31], [32]. The generalization er-
ror bound discussed in this work is only for estimation error.

Barron [58] gives the approximation error bound for single
layer classical neural network hypothesis set HNN = { f (~x) =∑n

k=1 ckφ(~ak ·~x+bk)+c0 : ~ak ∈ R
d, bk, ck ∈ R}where φ is a sigmoid

function and n is the number of nodes. Barron also analyzed the
approximation-estimation trade-off of neural networks [59]. It is
shown that neural networks have approximation advantage over
linear combinations of fixed basis functions in the sense that the
approximation has faster convergence rate for high-dimensional
inputs.

One attempt to overcome the limitation of fixed basis func-
tions of QCL was actually proposed in [46]: combining neural
networks with QCL to construct, for example, the hypothesis set
Ha f f ineQCL = {( fθ(~φ(~x)) + c0) : fθ(~φ(~x)) =

∑
i ci〈Oi(θ, ~φ(W · ~x +

~b))〉 =
∑

i ciTr[OiUθ(~φ(W · ~x + ~b))ρU†θ (~φ(W · ~x + ~b))], ci ∈ R,W ∈
Rd×d, ~b ∈ Rd}, where the affine transformation W ·~x+~b is compos-
ited with QCL. However, a simple special case {sin(Wx) : W ∈

R} has infinite VC dimension, and hence is not PAC-learnable
[28], [29], [47]. This is because W provides possibly high-
frequency oscillations to shatter arbitrarily many data points. One
possible way to resolve this problem could be using a sigmoid
activation function φ for encoding. For example, uploading the
input xi with Rs(πφ(Wixi + bi)) gate. This could be a future direc-
tion.

5. Conclusion
In this work, we give a general VC dimension upper bound for

quantum circuit learning, and hence establish the PAC learnabil-
ity of this hypothesis set. While this result provides a basis for
quantum circuit supervised learning, many questions remain. For
example, we did not address the issues of hardware error and sam-
pling error of quantum machines (due to finite readout samples),
which could effect the generalization ability. We did not have a
bound which scales with respect to the number of trainable pa-
rameters. The approximation-estimation trade-off should also be
addressed. These questions are left for future investigations.
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