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Abstract: Variational quantum algorithms (VQAs) are expected to be promising strategies to achieve quantum ad-
vantages in the near future. However, gradients of some VQA cost functions vanish exponentially with the number
of qubits, which requires exponentially large resources for optimizing them. This phenomenon is the so-called barren
plateau problem and has been studied in previous works for certain types of ansatzes. We extend the previous works
to a more general type of ansatz. Specifically, we calculate the second moment of a cost function gradient for a gen-
eral ansatz, assuming that it is an unitary 2-design. We also evaluate the second moment without this assumption,
which leads to a relation between a metric to quantify ansatz expressibilities and the second moment. This relation
implies cost function landscapes for more expressive ansatzes become flatter. Our results hold independently of ansatz
structures, so they are applicable to analysis of scalabilities of various VQAs.
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1. Introduction

Real quantum devices in the near future, called noisy
intermediate-scale quantum (NISQ) era [1], have a limited num-
ber of qubits and su↵er from quantum noises. Variational quan-
tum algorithm (VQA) is one of candidates that may achieve quan-
tum advantages in the NISQ era. The first step of a VQA is to
define a cost function C(⇥) whose minimum point gives a solu-
tion for a problem, by a ⇥-parametrized quantum circuit. Then
a classical optimizer trains the parameter ⇥ to minimize the cost
function. VQAs are applicable to a variety of fields such as quan-
tum chemistry [2], [3], combinatorial optimization [4], machine
learning [5], [6], quantum circuit compiling [7], [8], [9] and dy-
namics simulation [10], [11], [12], [13], [14].

While such various applications of VQAs have been proposed,
it has been found that some VQAs su↵er from an infamous prob-
lem called barren plateau phenomena, where gradients of cost
functions vanish exponentially with the number of qubits increas-
ing [15], [16], [17], [18], [19]. This vanishing gradient problem
makes training process harder even if we use a higher-derivative
method [20] or a gradient-free method [21].

Previous works evaluated magnitudes of cost function gradi-
ents, assuming that ansatzes are highly expressive to be unitary
2-designs [15], [16], [22], [23]. Furthermore, they gave upper
bounds of the magnitudes without the assumption and proved
that more expressive ansatzes make cost function landscapes flat-
ter [22], [23]. However their results hold only for specific types
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of ansatzes such as the hardware e�ceint ansatz (HEA) and the
Hamiltonian variational ansatz (HVA). For expample, the parti-
cle number preserving ansatz (PNPA) [24] is not categorized as
ansatzes considered there.

In this paper, we extend the previous results to a more general
type of ansatz. We first explicitly calculate the gradient magni-
tude under the assumption that the ansatz is a unitary 2-design.
We also evaluate the gradient without the assumption to give an
inequality for its magnitude. We do not assume any detailed
structure of the ansatz except for layer-wise unitarity, so our an-
alytical results hold for various types of ansatzes including the
HEA, the HVA and the PNPA.

This paper is organized as follows. In section 2, we introduce
a general form of ansazes including the HEA, the HVA and the
PNPA, a metric to quantify expressibilities of ansatzes and a for-
mal definition of barren plateau in VQA cost function landscapes.
Section 3 provides our analytical results that hold for the general
ansatz. In section 4, we apply the general results to the HEA and
the HVA, and see that our results reproduce the previous works.
We also give novel results for the PNPA. Section 5 verifies our
analytical results with numerical simulations. In section 6, we
discuss our results and conclude this paper.

2. Preliminaries

VQAs solve optimization problems by minimizing a cost func-
tion evaluated on a quantum circuit. Throughout this paper, we
consider cost functions of the form

C(⇥) = trH
h
OU(⇥)⇢U†(⇥)

i
, (1)

where ⇢ is an input state on an n-qubit system, O is a Hermitian
operator acting on a d-dimensional Hilbert spaceH with d = 2n,
and U(⇥) is a unitary operator parametrized by ⇥ 2 D ⇢ RNp
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Fig. 1 An example of a four-qubit HEA on a quantum hardware with
nearest-neighbor qubit connectivity.

whereD is a parameter space of ⇥ and Np is its dimension.

2.1 General form of ansatz

We consider a general ansatz with the following layered struc-
ture:

U (⇥ = (✓0, · · · , ✓L�1)) =
0Y

l=L�1

Ul(✓l) , (2)

where Ul(✓l) is a unitary operator with real parameters ✓l :=
(✓l,0, ✓l,1, . . . , ✓l,Kl�1). We remark that there is no assumption on
a detailed structure of each Ul.

Choosing an appropriate Ul is an important issue in a VQA. We
should construct an ansatz to well approximate a solution state of
the VQA and be implemented e�ciently on a quantum device.
If we do not have much information about the solution, then we
choose Ul so that the ansatz can express as many unitary opera-
tors as possible. One example of such problem-agnostic ansatzes
is the HEA. On the other hand, if we have some information
about the solution, then the HEA can be ine�cient. In such case
we should use problem-inspired ansatzes like the HVA and the
PNPA. Below we will explain the HEA, the HVA and the PNPA
and see that the general ansatz with the structure Eq. (2) includes
all of them.
2.1.1 Hardware e�cient ansatz

The HEA is constructed as a sequence of gates taken from a
native gate set of a given quantum hardware. While its struc-
ture is constrained by the architecture of the quantum hardware, a
heavy transpilation process of decomposing an ansatz into the na-
tive gates is not needed. The HEA was used for finding a ground
state energy of a quantum system [3].

A general form of the HEA is given by

UHEA(⇥) =
0Y

l=L�1

0
BBBBBB@

0Y

k=Kl�1

e�i✓l,kVl,k

1
CCCCCCAWl , (3)

where Vl,k is a Hermitian and unitary operator, Wl is a unitary
operator that is independent of any parameter and each of the
unitary gates e�i✓l,kVl,k and Wl is a native gate of a given quan-
tum hardware. Fig. 1 shows an example of four-qubit HEAs on a
quantum hardware that has a native gate set {RZ , X,

p
X,CNOT}

and nearest-neighbor qubit connectivity.
2.1.2 Hamiltonian variational ansatz

Let us consider a problem to obtain the ground state energy of a
Hamiltonian H =

PK�1
k=0 Hk where [Hk,Hk0 ] , 0 for k , k0. Then

a HVA can be constructed as

UHVA(⇥) =
0Y

l=L�1

0Y

k=K�1

e�i✓l,k Hk , (4)

⇥L

e�i✓l,0 H0 e�i✓l,1 H1

· · ·

e�i✓l,K�1 HK�1

· · ·

· · ·

· · ·

8>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Fig. 2 A HVA for a Hamiltonian H =
PK�1

k=0 Hk .

as shown in Fig. 2. The HVA is inspired by Trotterized adiabatic
time evolution operator and used for solving combinatorial opti-
mization [4], [25] and analyzing physics models [14], [26], [27],
[28].
2.1.3 Particle number preserving ansatz

Let us define an m-particle subspace Hn,m (m = 0, 1, . . . , n)
ofH as

Hn,m = {| i 2 H | QPN | i = m | i} , (5)

where QPN is a particle number operator given by

QPN =

n�1X

j=0

1 � Zj

2
. (6)

An orthonormal basis of the subspace Hn,m is given in a compu-
tational basis by a set of quantum states with m qubits in the |1i
state and n�m qubits in the |0i state, so the dimension dn,m of the
subspace Hn,m is

⇣
n
m

⌘
. We call an ansatz that conserves a particle

number of an input state as a PNPA.
An explicit form of the PNPA for a two-qubit system is a

gate A(✓, �) (✓ 2 [0, 2⇡), � 2 [0, 2⇡)) given by

A (✓, �) =

0
BBBBBBBBBBBBBBB@

1 0 0 0
0 sin ✓ ei� cos ✓ 0
0 e�i� cos ✓ � sin ✓ 0
0 0 0 1

1
CCCCCCCCCCCCCCCA

(7)

in the orthonromal basis {|00i , |01i , |10i , |11i}. This gate is im-
plemented by a circuit as shown in Fig. 3. The PNPA for an n-
qubit system can be constructed by a sequence of A(✓, �) with the
form

UPNPA(⇥) =
0Y

l=L�1

A(✓l, �l) ⌦ IĀl
, (8)

where IĀl
is an identity operator acting on all qubits except the

two qubits on which the gate A(✓l, �l) acts. A quantum circuit of
a four-qubit PNPA is shown in Fig. 4.

The PNPA was employed for simulating dynamics and finding
a ground state energy of quantum systems that conserve the par-
ticle number QPN [29], [30]. These works demonstrated that the
PNPA reduced e↵ect of quantum noises.

2.2 Ansatz expressibility

An important property of an ansatz is expressibility, i.e., a de-
gree to which it expresses unitary operators in U(d). Here we
introduce a metric to quantify ansatz expressibilities according
to [22], [31], [32]

Let us first define a superoperatorA(t)
U : L(H⌦t)! L(H⌦t) as
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Fig. 3 Construction of the 2-qubit gate A(✓, �).

A (✓1, �1) A (✓4, �4)

A (✓3, �3) A (✓6, �6)

A (✓2, �2) A (✓5, �5)

Fig. 4 An example of a 4-qubit PNPA.

A(t)
U (•) :=

Z

U(d)
µHaar (dV) V⌦t(•)(V†)⌦t

�
Z

D
P⇥ (d⇥) U(⇥)⌦t(•)(U†(⇥))⌦t (9)

where t is a positive integer, L(H⌦t) is a set of linear opera-
torsH⌦t ! H⌦t, µHaar is the Haar distribution on U(d), and P⇥ is
the uniform distribution of theD-valued ⇥. Since the Haar distri-
bution corresponds to the uniform distribution on U(d), an U(d)-
valued random variable V following the Haar distribution can be
considered as a maximally expressive ansatz. Therefore, the su-
peroperator A(t)

U computes the di↵erence between the ansatz U
and the maximally expressive ansatz V . Then a quantity defined
by

✏(t)
U (X) :=

���A(t)
U (X⌦t)

���
2 (10)

measures an expressibility of the ansatz U for X 2 L(H). Note
that smaller values of ✏(t)

U (X) indicates that the ansatz U is more
expressible. The ansatz U is called a unitary t-design on U(d) if
✏(t)

U (X) = 0 for all X 2 L(H⌦t) [33].

2.3 Barren plateaus

Formally, barren plateau phenomena in VQA cost function
landscapes are defined as follows [34] .
Definition 1. A VQA cost function C : D! R exhibits a barren
plateau landscape with respect to ↵ if for all � > 0, there exists
b > 1 such that

P⇥ (|@↵C| � �) 2 O(b�n) , (11)

where P⇥ is the uniform distribution of theD-valued ⇥.
Eq. (11) means that the probability that the gradient @↵C |⇥=⇥0

is greater than or equal to � if we choose a set of parameters ⇥0

uniformly from the entire parameter spaceD decreases exponen-
tially with the number of qubits.

One way to show that a cost function C exhibits a barren
plateau landscape is to evaluate the second moment of the gra-
dient @↵C,

E⇥
h
(@↵C)2

i
=

Z

D
P⇥ (d⇥) (@↵C)2 . (12)

Once the second moment is obtained, we can bound the proba-
bility P⇥ (|@↵C| � �) from Chebyshev’s inequality (see e.g., [35])
as

P⇥ (|@↵C| � �)  1
�2 E⇥

h
(@↵C)2

i
. (13)

Thus if the second moment scales as O(b�n) with some b > 1, we
can conclude that the cost function C exhibits a barren plateau
landscape.

3. Main results

We study the second moment of a gradient of the cost func-
tion C defined in Eq. (1) with respect to a chosen parameter ↵ :=
✓l0 ,k0 . To this end, we divide the general ansatz U into three parts
as

U(⇥) = UL(⇥L)UM(⇥M)UR(⇥R) , (14)

where

⇥L = (✓l0+1, · · · , ✓L) , (15)

⇥M = (✓l0 ) , (16)

⇥R = (✓1, · · · , ✓l0�1) , (17)

and

UL(⇥L) :=
l0+1Y

l=L�1

Ul(✓l) , (18)

UM(⇥M) := Ul0 (✓l0 ) , (19)

UR(⇥R) :=
0Y

l=l0�1

Ul(✓l) . (20)

3.1 Gradient for unitary 2-design general ansatz

Assuming that UL and UR are highly expressible to be unitary
2-designs, we can exactly calculate the second moment of the
gradient as follows.
Theorem 2. Suppose that UL and UR are unitary 2-designs on
U(d). Then the second moment of @↵C is given by

E⇥
h
(@↵C)2

i
=

2d�d(⇢)�d(O)
(d2 � 1)2

Z
P⇥M (d⇥M) f1(⇥M), (21)

where �(2)
d (X) = tr

h
X2
i
� 1

d tr [X]2, P⇥M denotes the uniform dis-
tribution of ⇥M , and

f1(⇥M) := tr
h
UM,↵U†M,↵

i
�1

d

����tr
h
UM,↵U†M

i����
2
, (22)

with UM,↵ = @↵UM .
Eq. (21) says that the second moment of the gradient depends

on four factors: the input sate ⇢, the observable O, the ansatz UM

and the dimension d of the Hilbert space. We can obtain a scaling
of a cost function gradient for a VQA we wish to solve, by substi-
tuting the corresponding quantities ⇢, O, UM and d into Eq. (21).
If we have �d(⇢)�d(O)

R
P⇥M (d⇥M) f1(⇥M) 2 O(d2), the second

moment scales as O(d�1) = O(2�n), which means that the cost
function exhibits a barren plateau landscape.

3.2 Relation between gradient and expressibility

In Section 3.1, we assumed that UL and UR are unitary 2-
designs. Without this assumption, we can derive the second mo-
ment of the gradient as follows.
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Proposition 3. The second moment of @↵C is given by

E⇥[(@↵C)2]

=
2d�d(⇢)�d(O)

(d2 � 1)2

Z
P⇥M (d⇥M) f1(⇥M)

� 2�d(⇢)
d2 � 1

Z
P⇥M (d⇥M) tr


A(2)

U†L

⇣
O⌦2
⌘

S⌦1

�

� 2�d(O)
d2 � 1

Z
P⇥M (d⇥M) tr

h
A(2)

UR

⇣
⇢⌦2
⌘

S⌦2
i

+

Z
P⇥M (d⇥M) tr

✓
J �A(2)

U†L

◆ ⇣
O⌦2
⌘
A(2)

UR

⇣
⇢⌦2
⌘�
, (23)

where

⌦1 := I ⌦ UM,↵U†M,↵ � UM,↵U†M ⌦ UMU†M,↵ , (24)

⌦2 := U†M,↵UM,↵ ⌦ I � U†MUM,↵ ⌦ U†M,↵UM , (25)

J (•) := (U†M)⌦2 (•) U⌦2
M,↵ + (U†M,↵)⌦2 (•) U⌦2

M

+ 2
⇣
U†M ⌦ U†M,↵

⌘
(•) �UM,↵ ⌦ UM

�
, (26)

and S is a subsystem SWAP operation defined by S : |ii ⌦ | ji 7!
| ji ⌦ |ii.

Proposition 3 gives the following upper bound on the second
moment of the gradient using ✏(2)

L := ✏(2)
U†L

(O) and ✏(2)
R = ✏

(2)
UR

(⇢).
Theorem 4. The second moment of @↵C is upper bounded as

E⇥
h
(@↵C)2

i

 2d�d(⇢)�d(O)
(d2 � 1)2

Z
P⇥M (d⇥M) f1(⇥M)

+ 2✏(2)
R ✏(2)

L

Z
P⇥M (d⇥M) f2(⇥M)

+
2
⇣
✏(2)

L �d(⇢) + ✏(2)
R �d(O)

⌘

d2 � 1

Z
P⇥M (d⇥M) f3(⇥M) , (27)

where

f2(⇥M) :=
���UM,↵

���2
2 +
p

d
���U†M,↵UM,↵

���
2
, (28)

f3(⇥M) :=
⇣
d
���U†M,↵UM,↵

���2
2
+
���UM,↵

���4
2

� 2tr
h
UM,↵U†MUM,↵U†M,↵

i
tr
h
UMU†M,↵

i ⌘ 1
2 . (29)

The right hand side of Eq. (27) takes the smaller value for
smaller ✏(2)

L and ✏(2)
R . We thus find that more expressive ansatzes

induce flatter landscapes of cost functions. We remark that this
statement holds for the general ansatz including the HEA, the
HVA and the PNPA.

4. Ansatz-specific results

In the previous section we studied the gradient of the VQA cost
function for the ansatz of the form Eq. (2). In this section, we see
that results of the previous works on the HEA [15], [22] and the
HVA [23] can be obtained as corollaries of our results. We also
give novel results for the PNPA as corollaries of Theorem 2 and
Proposition 3.

4.1 Hardware e�cient ansatz

We consider VQA cost functions of the form

CHEA(⇥) = trH
h
OUHEA(⇥)⇢U†HEA(⇥)

i
, (30)

where UHEA is the HEA defined in Eq. (3) and ⇢ is an input state
on an n-qubit Hilbert space H . We study the gradient @↵CHEA

with respect to ↵ = ✓l0 . The first step to do this is to decompose
the ansatz UHEA into three blocks as

UHEA(⇥) = UL(⇥L)UM(⇥M)UR(⇥R) , (31)

where

⇥L = (✓l0+1, ✓l0+2, . . . , ✓L) , (32)

⇥M = (✓l0 ) , (33)

⇥R = (✓1, ✓2, . . . , ✓l0�1) , (34)

and

UL(⇥L) =
l0+1Y

l=L�1

e�i✓lVl Wl , (35)

UM(⇥M) = e�i✓l0 Vl0 Wl0 , (36)

UR(⇥L) =
1Y

l=l0�1

e�i✓lVl Wl . (37)

Assuming that UL and UR are unitary 2-designs, we can easily
calculate the second moment of the gradient @↵CHEA from Theo-
rem 2 as

E⇥
h
(@↵CHEA)2

i
=

2n+1�2n (⇢)�2n (O)�2n (Vl0 )
(4n � 1)2 , (38)

which reproduces the result of previous works [15], [22].
We next consider the second moment of @↵CHEA without an

assumption that UL and UR are unitary 2-designs. Proposition 3
with the fact that UM,↵ = �iVl0 UM is unitary leads to the follow-
ing upper bound on the second moment:

E⇥
h
(@↵CHEA)2

i

 2n+1�2n (⇢)�2n (O)�2n (Vl0 )
(4n � 1)2

+ 4✏(2)
R ✏(2)

L +

p
2n+3�2n (Vl0 )

4n � 1

⇣
✏(2)

R �2n (O) + ✏(2)
L �2n (⇢)

⌘
,

(39)

where ✏(2)
L := ✏(2)

U†L
(O) and ✏(2)

R := ✏(2)
UR

(⇢). This inequality is
tighter than the one derived directly from Theorem 4. Eq. (39)
reproduces the upper bound on the second moment in a previous
work [18].

4.2 Hamiltonian variational ansatz

We consider VQA cost functions of the form

CHVA(⇥) = trH
h
OUHVA(⇥)⇢U†HVA(⇥)

i
, (40)

where UHVA is the HVA for the Hamiltonan H =
PK�1

k=0 Hk defined
in Eq. (4) and ⇢ is an input state on an n-qubit Hilbert space H .
Here we make the following two assumptions:

(i) There is a Hermitian operator Q that has G distinct eigen-
values qg (g = 0, 1, . . . ,G � 1) and commutes with each
term Hk of the Hamiltonian H =

PK�1
k=0 Hk. Then the

n-qubit Hilbert space H is decomposed in a direct sum
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form H =
LG�1
g=0 Hg, where Hg is the eigenspace associ-

ated with the eigenvalue qg.

(ii) The input state ⇢ lives only on Hg, i.e., ⇢ = ⇢[g] �⇣L
g0,g 0

⌘
. Here we introduced the notation X[g] = PgXP†g

where Pg is a projector from the n-qubit Hilbert space H
onto the eigenspaceHg.

Under these assumptions, we study the second moment of the
gradient @↵CHVA with respct to ↵ = ✓l0 ,k0 . The HVA can be de-
composed as

UHVA(⇥) = UL(⇥L)UM(⇥M)UR(⇥R) , (41)

where

✓l = (✓l,0, ✓l,1, . . . , ✓l,K�1) , (42)

⇥L = (✓l0+1, ✓l0+2, . . . , ✓L�1) , (43)

⇥M = (✓l0 ) , (44)

⇥R = (✓1, ✓2, . . . , ✓l0�1) , (45)

and

UL(⇥L) =
l0+1Y

l=L�1

0Y

k=K�1

e�i✓l,k Hk , (46)

UM(⇥M) =
0Y

k=K�1

e�i✓l0 ,k Hk , (47)

UR(⇥L) =
0Y

l=l0�1

0Y

k=K�1

e�i✓l,k Hk . (48)

Each e�i✓l,k Hk that commutes with Q is block diagonal as

e�i✓l,k Hk =

G�1M

g0=0

e�i✓l,k H[g0 ]
k , (49)

so UL, UM , and UR are also block diagonal as

UL(⇥L) =
G�1M

g0=0

U[g0]
L (⇥L), U[g0]

L (⇥L) =
l0+1Y

l=L�1

0Y

k=K�1

e�i✓l,k H[g0 ]
k ,

(50)

UM(⇥M) =
G�1M

g0=0

U[g0]
M (⇥M), U[g0]

M (⇥M) =
0Y

k=K�1

e�i✓l0 ,k H[g0 ]
k ,

(51)

UR(⇥R) =
G�1M

g0=0

U[g0]
R (⇥R), U[g0]

R (⇥R) =
0Y

l=l0�1

0Y

k=K�1

e�i✓l,k H[g0 ]
k .

(52)

This implies that UL, UM , and UR act non-trivially only on ⇢[g]

if the input state ⇢ satisfies the second assumption (ii). Thus we
should focus only on the subspace Hg rather than the entier n-
qubit Hilbert space H , and can rewrite the cost function CHVA

as

CHVA(⇥) = trHg
h
O[g]U[g]

L U[g]
M U[g]

R ⇢[g]U[g]†
R U[g]†

M U[g]†
L

i
, (53)

by tracing out the other sectorsHg0 (g0 , g).
Assuming that U[g]

L and U[g]
R are unitary 2-designs on U(dg),

where dg denotes the dimension ofHg, Theorem 2 gives

E⇥
h
(@↵CHVA)2

i
=

2dg�dg (⇢[g])�dg (O[g])�dg (H
[g]
k0

)

(d2
g � 1)2 , (54)

which reproduces the result of a previous work [23].
Without the assumption that UL and UR are unitary 2-designs,

we can evaluate the second moment of the gradient from Theo-
rem 4 as

E⇥
h
(@↵CHVA)2

i


2dg�dg (⇢[g])�dg (O[g])�dg (V

[g]
k0

)

(d2
g � 1)2

+ 2✏(2)
R ✏(2)

L

✓
tr
h
H[g]2

k0

i
+

q
dgtr
h
H[g]4

k0

i◆

+
2
⇣
✏(2)

R �dg (O[g]) + ✏(2)
L �dg (⇢[g])

⌘

d2
g � 1

⇥
r

dgtr
h
H[g]4

k0

i
+ tr
h
H[g]2

k0

i2 � 2tr
h
H[g]3

k0

i
tr
h
H[g]

k0

i
,

(55)

where ✏(2)
L := ✏(2)

U[g]†
L

(O[g]) and ✏(2)
R := ✏(2)

U[g]
R

(⇢[g]). Another upper

bound on the second moment for the HVA is given by [23].

4.3 Particle number preserving ansatz

We consider VQA cost functions of the form

CPNPA(⇥) = trH
h
OUPNPA(⇥)⇢U†PNPA(⇥)

i
, (56)

where UPNPA is the PNPA defined in Eq. (8) and ⇢ is an m-particle
state (m = 1, 2, . . . , n � 1) on an n-qubit Hilbert spaceH .

In order to study the gradient @↵CPNPA with respect to ↵ 2
{✓l0 , �l0 }, let us decompose UPNPA as

UPNPA(⇥) = UL(⇥L)UM(⇥M)UR(⇥R) , (57)

where

⇥L = ((✓l0+1, �l0+1), (✓l0+2, �l0+2), . . . , (✓L, �L)) , (58)

⇥M = (✓l0 , �l0 ) , (59)

⇥R = ((✓1, �1), (✓2, �2), . . . , (✓l0�1, �l0�1)) , (60)

and

UL(⇥L) =
l0+1Y

l=L�1

⇣
A(✓l, �l) ⌦ IĀl

⌘
, (61)

UM(⇥M) = A(✓l0 , �l0 ) ⌦ IĀl0
, (62)

UR(⇥L) =
0Y

l=l0�1

⇣
A(✓l, �l) ⌦ IĀl

⌘
. (63)

The decomposed ansatzes UL, UM , and UR conserve the particle
number since they are sequences of the particle number preserv-
ing gates A(✓, �). Thus they are block diagonal as

UL(⇥L) =
nM

m0=0

U(m0)
L (⇥L) , (64)

UM(⇥M) =
nM

m0=0

U(m0)
M (⇥M) , (65)

UR(⇥R) =
nM

m0=0

U(m0)
R (⇥R) . (66)
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Here we introduced the notation X(m) = Pn,mXP†n,m where Pn,m is
a projector from the n-qubit Hilbert space H onto the m-particle
subspace Hn,m. As a result, the cost function CPNPA can be ex-
pressed as

CPNPA(⇥) = trHn,m

h
O(m)U(m)

L U(m)
M U(m)

R ⇢(m)U(m)†
R U(m)†

M U(m)†
L

i
,

(67)

since the initial state ⇢ is an m-particle state. Theorem 2 gives
a scaling of the gradient @↵CPNPA if U(m)

L and U(m)
R are unitary

2-designs as the following corollary.
Corollary 5. We consider the gradient of the cost function CPNPA

defined in Eq. (8) with respect to ↵ 2 {✓l0 , �l0 }. Suppose that the
input state ⇢ is an n-qubit and m-particle state (m = 1, 2, . . . , n�1)
and U(m)

L and U(m)
R are unitary 2-designs on U(dn,m), then the sec-

ond moment of the gradient is given by

E⇥
h
(@↵CPNPA)2

i
=

4b↵dn,mdn�2,m�1�dn,m (⇢(m))�dn,m (O(m))
(d2

n,m � 1)2 ,

(68)

where

b↵ :=

8>>><
>>>:

1 (↵ = ✓l0 )
1
2 (↵ = �l0 )

. (69)

Corollary 5 shows that the second moment depends on the pa-
rameter ↵ di↵erentiating CPNPA and the particle number m of the
initial state ⇢. For example, suppose that the input state ⇢ is a m-
particle pure state |01 · · · 01|   {z   }

2m

00 · · · 00|   {z   }
n�2m

i h01 · · · 01|   {z   }
2m

00 · · · 00|   {z   }
n�2m

| and the

observable O = � |01 · · · 01|   {z   }
2m

00 · · · 00|   {z   }
n�2m

i h01 · · · 01|   {z   }
2m

00 · · · 00|   {z   }
n�2m

|, then

the second moment is proportional to dn�2,m�1d�1
n,m(dn,m + 1)�2.

Therefore it scales as O(n�5) for m = 2 while O(n4�n) for
m = n/2. This implies that whether or not the CPNPA exhibits
a barren plateau landscape depends on the particle number of the
input state.

As with Eq. (39), Proposition 3 leads to a relation between the
second moment and ✏(2)

L := ✏(2)
U(m)†

L

(O(m)) and ✏(2)
R := ✏(2)

U(m)
R

(⇢(m)).
Corollary 6. We consider the gradient of the cost function CPNPA

defined in Eq. (8) with respect to ↵ 2 {✓l0 , �l0 }. Suppose that the
input state ⇢ is an n-qubit and m-particle state (m = 1, 2, . . . , n�1),
then the second moment of the gradient is bounded as

E⇥
h
(@↵CPNPA)2

i


4b↵dn,mdn�2,m�1�dn,m (⇢(m))�dn,m (O(m))

(d2
n,m � 1)2 + 4b↵✏(2)

R ✏(2)
L

+
2b↵dn�2,m�1

d2
n,m � 1

s

4 +
2n(n � 1)
m(n � m)

⇣
✏(2)

R �dn,m (O(m)) + ✏(2)
L �dn,m (⇢(m))

⌘
.

(70)

In the next section, we will numerically evaluate how tight this
bound is.

5. Numerical simulation

The previous section analytically evaluates the second moment
of the gradient for the HEA, the HVA and the PNPA. In this sec-
tion, we numerically confirm the analytical results for the PNPA,

Fig. 5 Expressibilities ✏(2)
L and ✏(2)

R versus number L of the layers of the
eight-qubit PNPA.

Fig. 6 Comparison between the second moment of the gradient and its up-
per bound for the eight-qubit PNPA. The blue line denotes the numer-
ically estimated second moment. The orange line is the numerically
estimated upper bound on the second moment obtained in Corol-
lary 6. The black dashed line denotes the second moment derived
in Corollary 5 assuming that U(2)

L and U(2)
R are unitary 2-designs on

U(d8,2).

i.e., Corollary 5 and Corollary 6. Such numerical simulations for
the HEA and the HVA were done by [18] and [23] respectively.

In our numerical simulation, we consider an eight-qubit sys-
tem, a two-particle input state ⇢ = |10100000i h10100000|, and
a global measurement operator O = � |10100000i h10100000|.
We then numerically estimate second moments of the gradient of
the cost function CPNPA with respect to ✓bL/2c and the quantities
✏(2)

L := ✏(2)
U(2)†

L

(O(2)) and ✏(2)
R := ✏(2)

U(2)
R

(⇢(2)). These numerical simula-
tions are implemented with Qulacs [36].

We observe from Fig. 5 that ✏(2)
L and ✏(2)

R for the eight-qubit
PNPA monotonically decreases and converges to 0 with the num-
ber of layers increasing. This implies that su�ciently deep U(2)

L
and U(2)

R are approximately unitary 2-designs on U(d8,2). It is thus
expected that the value of the second moment of the gradient for
such a deep ansatz is near to that derived in Corollary 5. This
expectation is verified in the blue line of Fig. 6. We also com-
pares, in Fig. 6, the numerically estimated second moment for the
eight-qubit PNPA with its upper bound obtained in Corollary 6.
We can see that the di↵erences between the second moment and
the upper bound are around 0.18 for L = 3 and around 0.002 for
L = 51 respectively, and thus our bound is tighter for a deeper
ansatz.

6. Discussion and Conclusion

In this paper, we generalize previous analytical studies on the
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barren plateaus. Although their results hold only for specific
types of ansatzes such as the HEA and the HVA, we extend them
to a general type of ansatz including the HEA, the HVA and the
PNPA. Theorem 2 shows the second moment of the cost function
gradient for ansatzes of the form (2) assuming that the ansatz is a
unitary 2-design. Without this assumption, we analytically derive
the second moment in Proposition 3. Moreover, Proposition 3
gives an upper bound on the second moment using the ansatz ex-
pressibilities in Theorem 4, which shows that more expressive
ansatzes make the cost function landscapes flatter. As shown in
section 4, our analytical results are useful for understanding scal-
abilities of various VQAs.

Theorem 4 implies that using a less experssive ansatz is a strat-
egy to avoid the barren plateau problem. Reducing number of
layers of an ansatz and restricting ranges of its parameters lower
its expressibility [22]. We however remark that we should keep
the ansatz expressive enough to express an exact or well approx-
imate solution of a VQA while suppressing its expressibility.

While VQAs are run in practice under noisy situations, our
analytical results for a general type of ansatz hold only for noise-
less situations. A previous work has analyzed noise-induced cost
function landscapes for the HEA and the HVA [37]. A natural
question that arises is to understand a cost function landscape for
the general type of ansatz under such practical situations, which
we leave for future work.

We numerically confirm our analytical results in section 5. We
see that our upper bound on the second moment is not su�ciently
tight, at least for shallow PNPAs. Similar behavior is also ob-
served for shallow HEAs [22]. Thus further analysis to obtain
tighter bounds would be important.
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