
情報処理学会研究報告
IPSJ SIG Technical Report

Parallel grouping algorithm for a large set of Pauli

operators

Ikko Hamamura1,a) Takashi Imamichi1 Hiroshi Horii1 Jun Doi1 Nobuyuki Yoshioka2

Seetharami Seelam3 Takahiro Sagawa2 Antonio Mezzacapo3

Abstract: Estimating the energy of a Hamiltonian is one of the most important tasks and frequently ad-
dressed in a quantum-classical hybrid algorithm like VQE (Variational Quantum Eigensolver). Grouping of
Pauli operators plays a key role to improve efficiency of the energy estimation taking advantage of simul-
taneous measurements. However, the grouping of large molecules is difficult in terms of both computation
time and memory space required. We propose a parallelized algorithm of grouping to address this issue. We
succeeded to compute grouping of a large set of Pauli operators, which could not be computed before.

Keywords: Joint measurements, VQE (Variational Quantum Eigensolver)

1. Background

VQE (Variational Quantum Eigensolver) has been ex-

tensively studied in the past few years. In particular,

significant progress has been made in improving the ef-

ficiency of the estimation of quantum observables [1], [2],

[3], [4], [5], [6], [7], [8], [9], [10], [11], [12].

Quantum observables are given by the following form:

A =

n∑
i=1

aiPi, (1)

where ai are real coefficients and Pi ∈ { I,X, Y, Z }⊗N
are

N qubits tensor products of Pauli operators. Note that

tensor products of Pauli operators are called Pauli strings.

Let us consider computing an expectation value ⟨A⟩ =⟨∑n
i=1 aiPi

⟩
for a given quantum observable A using a

quantum computer. There are various methods to com-

pute this expectation value and the most commonly used

method is to decompose using linearity and measure the

expectation value of each Pauli string. In other words, ex-

pectation values ⟨Pi⟩ can be estimated using a quantum

1 IBM Quantum, IBM Research – Tokyo,
Chuo-ku, Tokyo, 103-8510, Japan

2 Department of Applied Physics, University of Tokyo,
7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan

3 IBM Quantum, T. J. Watson Research Center,
Yorktown Heights, New York 10598, USA

a) ikko.hamamura1@ibm.com

computer, and the expectation value ⟨A⟩ =
∑n

i=1 ai ⟨Pi⟩
can be obtained from its linear combination. The expec-

tation value of the Pauli string ⟨Pi⟩ can be estimated by

unitary pre-rotation and sampling. For example, the mea-

surement for Pauli Z does not require a pre-unitary ro-

tation, but the measurement for Pauli X uses Hadamard

gates to transform the basis, and the measurement for

Pauli Y uses S† gates and Hadamard gates to transform

the basis.

We note that some groups of Pauli strings can be mea-

sured simultaneously. A measurement using single qubit

unitary pre-rotation is called a TPB (Tensor Product Ba-

sis) measurement. The TPB measurements were used

for joint measurements when estimating the expectation

value [13]. For example, Pauli strings ZXZI and ZIZX

in Figure 1 are jointly measurable with TPB measure-

ments since they can be estimated from a measurement

for a Pauli ZXZX. The important point here is that

we need to transform quantum observables into groups of

Pauli strings that are mutually jointly measurable using

TPB measurements. This problem is called the grouping

problem, which corresponds to the vertex coloring problem

of Pauli graphs, and is known to be NP-hard [1]. A Pauli

graph of Pauli strings with TPB measurements is defined

as the complement graph of a graph with the Pauli strings

1ⓒ 2022 Information Processing Society of Japan

Vol.2022-QS-5 No.28
2022/3/25

情報処理学会研究報告
IPSJ SIG Technical Report

図 1: An example of a Pauli graph.

as nodes and edges on pairs of commutative Pauli strings

for each qubit. In other words, an edge of a Pauli graph

corresponds to a pair of Pauli strings that are not commu-

tative at one or more qubits. The vertex coloring problem

asks to minimize the number of node colors such that all

two adjacent nodes have different colors. Since this group-

ing problem is known to be NP-hard, heuristic algorithms

such as the LDFC (Largest Degree First Coloring) algo-

rithm are often used to obtain approximate solutions in

practice. Although LDFC solutions are not guaranteed

to be optimal, several examples have shown that the gap

between the optimal value and the lower bound is small

for the Pauli graph of TPB [9].

There are challenges to compute grouping of a huge set

of Pauli strings. Let n be the number of Pauli strings in

quantum observable A and m be the number of edges of

the Pauli graph of A with TPB. First, although LDFC re-

quires O(n log n) computational time, the entire grouping

takes O(n2) computational time if we include the time

O(n2) to construct the Pauli graph. Second, LDFC re-

quires O(m) space if we store all the edges of the Pauli

graph. In general, it holds that m ≫ n.

To address these challenges, we propose the following

approaches: 1) parallelize the construction of the edges of

Pauli graphs, 2) avoid storing and loading the edge data

of the Pauli graph in memory. These improvements have

resulted in faster speed and less memory required.

2. Method

2.1 Existing method

We describe the existing method in more detail. The

computation steps are as follows:

(1) Construct the Pauli graph.

(2) Perform the greedy coloring algorithm (Largest de-

gree first coloring).

An example of Pauli graph is shown in Figure 1. Quan-

tum observables which have edges are not commutative in

at least one qubit. Constructing Pauli graph takes O(n2)

time because we need to check the commutativity for all

pairs of operators. Then, we perform the coloring of the

Pauli graph. LDFC is an algorithm that assigns colors

in order of the largest degree to the smallest degree. In

graph theory, degree is defined as the number of edges

connected to each nodes. The LDFC algorithm repeats

the operation of finding unassigned colors among neigh-

boring nodes and assigning the color that is assigned by

the node with the largest degree among them. As shown

in the paper [9] numerically, LDFC generates near optimal

solutions to some molecule data with TPB grouping.

Now let’s think whether we actually need to store the

entire information of the graph. As the name implies,

LDFC assigns colors to nodes starting from the largest de-

gree. Therefore, we first need to calculate the degrees for

all nodes to sort by order of largest to smallest. The calcu-

lation of the degrees requires the commutativity check all

pairs of operators. In the second step, assigning a color

to a node, it is necessary to check whether the node is

commutative with all nodes with the color. If so, we can

assign the color to the node. Otherwise, we try another

color. Again, we need to check the commutativity here.

If we store all edges of the Pauli graph, we can check the

commutativity in the second step by just loading the edge

data. However, storing all edge data requires extra time

in addition to check commutativity of all pairs of Pauli

strings in the first step.

2.2 Largest degree first coloring without storing

and loading the Pauli graph

The above argument implies that we can avoid stor-

ing all the edges by checking commutativity again in the

second step (assigning colors) instead of loading the edge

data. We need to check whether a node is commutative

with nodes with each color. We can stop the check if a

node is commutative with all nodes with a color, i.e., as-

sign the color to the node. Thus, the number of commuta-

tivity checks is expected to be smaller than the number of

edges. Furthermore, instead of checking the commutativ-

ity with all Pauli strings of each color, finding the color to

be assigned can be achieved to check the commutativity

with the measurement basis for each color. The number

of commutability checks can be reduced because only one

2ⓒ 2022 Information Processing Society of Japan

Vol.2022-QS-5 No.28
2022/3/25

情報処理学会研究報告
IPSJ SIG Technical Report

図 2: Illustration of parallelization.

commutability check is needed instead of checking com-

mutability with all the Pauli strings within each color. If

the data is held in bits as described below, the measure-

ment basis can be calculated easily by bit OR operations.

Therefore, checking commutativity again in the second

step can be faster than storing all edges in the first step.

We can also save the memory space for the edge data.

2.3 Parallelization of the computation of the de-

grees

Checking the commutativity (O(n2)) is the bottleneck

of the grouping algorithm based on LDFC. However, we

can parallelize the commutativity check. We check the

commutativity between Pi and Pj for all i ̸= j. Focusing

on the symmetry about changing i and j, we only need to

check the lower (or upper) triangular components. Now,

we consider a parallelization for i as shown in the fig-

ure 2. If we divide the elements into equal intervals, the

number of elements will be skewed. In order to divide

the data uniformly, we propose to take the k-th partition

from
√
k√

#threads
to

√
k+1√

#threads
as the width of i shown in

Figure 2. Here, #threads is the number of threads in the

parallelization. This is based on the fact that the sum of

i up to K is K(K + 1)/2, which scales with O(K2). It

can be divided if taken as a square root. Since this value

is not an integer in general, it is rounded to the nearest

number. It is also possible to divide the number of data

equally, but for the sake of simple implementation, we

implemented this approximate division.

2.4 Checking commutativity

A common task in calculating degrees and determin-

ing colors is to check commutativity of two Pauli strings.

Two Pauli strings are commutative only if all their Pauli

operators are commutative for every qubit, and two Pauli

operators are commutative if they are the same or one of

them is I.

We represent a Pauli string Pi with a type uint64 t

and every two-bits represent a Pauli operator: 00, 01, 11,

and 10 means I, X, Y , and Z, respectively. With this

representation, commutativity of two Pauli strings can be

tested by calculating their XOR excepting 00. That is,

our implementation first generates a mask mi for Pi to

indicate positions of X, Y , and Z in Pi with two-bits. For

example, a Pauli string ZXZI is represented as 10011000

and its mask is 11111100. Once all the masks of Pauli

strings are calculated, commutativity of two Pauli strings

Pi and Pj are tested by (Pi&mi)⊕(Pj&mj). Note that an

array of uint64 t can be used for more than thirty-qubit

Pauli strings and their masks.

SIMD instructions are effective to perform the above

bit operations for commutativity check of Pauli strings.

If 512-bit registers and their instructions are available,

eight pairs of Pauli-strings can be simultaneously checked

for their commutativities.

3. Result

We compare the computation times of grouping ran-

dom Pauli strings with various methods. The random

Pauli strings are generated from 70% I and 10% X,Y, Z

each. The reason for this bias in the generation proba-

bility of Pauli strings is that if all strings were generated

uniformly, the number of groups would be too large be-

cause joint measurements would not be possible in most

cases. Compared to the Hamiltonian of molecules, it is

the same that the non-identity Pauli strings exist O(N)

for Jordan–Wigner and Parity transformation where N is

the number of the qubits. However, since the Pauli strings

exist O(logN) for Bravyi–Kitaev transformation, the sit-

uation is different. The non-identity Pauli operator also

has a biased appearance probability, but the bias depends

on the transformations and molecules. For simplicity, we

use the random Pauli string defined above.

We show the result of the benchmark in Figure 3.

“Qiskit” in the legend represents grouping using the

group_qubit_wise_commuting method of PauliList in

Qiskit Terra 0.19 [14]. This method uses NumPy’s vector-

ization to speed up the construction of the Pauli graph,

and uses retworkx [15] implemented in Rust for graph al-

gorithms including the LDFC algorithm. “Serial” used

the algorithm we presented above without parallelization.

“Parallel (8 threads)” used the algorithm we presented

with parallelization using 8 threads. The computer had

3ⓒ 2022 Information Processing Society of Japan

Vol.2022-QS-5 No.28
2022/3/25

情報処理学会研究報告
IPSJ SIG Technical Report

103 104

Number of Paulis

10 2

10 1

100

101

Ti
m

e
(s

ec
)

Qiskit
Serial
Parallel (8 threads)

(a) Benchmark for small numbers of Pauli strings.

104 105

Number of Paulis

10 1

100

101

102

Ti
m

e
(s

ec
)

Serial
Parallel (8 threads)

(b) Benchmark for large numbers of Pauli strings.

図 3: Benchmark of the computation time of grouping for random Pauli strings.

8 logic processors (8 CPU cores). This results shows our

proposed method can improve the performance of group-

ing.

Using this fast grouping, we tried to group a large num-

ber of Pauli strings. Subspace expansion [16] and quan-

tum computed moments correction [17] requires the esti-

mation of the number of Pauli strings that are greater than

the number of strings in the original Hamiltonian. For

simplicity, we try grouping the square of the Hamiltonian.

Since the Hamiltonian changes depending on the setting

of the atomic distance and other factors, we use publicly

available Hamiltonian data for benchmarking [18]. The re-

sults of the grouping are shown in Table 1. We succeeded

in grouping of large number of Pauli strings. Interestingly,

it turns out that the square Hamiltonian is harder to re-

duce than the original. This may be due to the fact that

the squaring makes the string more dense.

4. Discussion

Some of the authors pointed out in the previous SIGQS

4th that other Greedy algorithms were better for all entan-

gled measurements and that there was room for further

improvement. It would be worth considering a parallel

version of independent-set or the color interchange algo-

rithm without constructing graphs.

4ⓒ 2022 Information Processing Society of Japan

Vol.2022-QS-5 No.28
2022/3/25

情報処理学会研究報告
IPSJ SIG Technical Report

Molecule Transformation #Qubits #Pauli strings #Groups #Pauli strings (square) #Groups (square)

LiH JW 12 631 135 25542 2233

LiH Parity 12 631 165 25542 2433

LiH BK 12 631 212 25542 3464

BeH2 JW 14 1150 215 91831 7531

BeH2 Parity 14 1150 324 91831 10074

BeH2 BK 14 1150 341 91831 10708

H2O JW 14 1858 380 179083 13603

H2O Parity 14 1858 495 179083 16313

H2O BK 14 1858 515 179083 18825

NH3 JW 16 4957 1052 1043405 73852

NH3 Parity 16 4957 1090 1043405 74559

NH3 BK 16 4957 1083 1043405 64454

HCl JW 20 4427 906 1780408 156995

HCl Parity 20 4427 1099 1780408 181924

HCl BK 20 4427 1434 1780408 197685

表 1: The number of groups for the molecule Hamiltonian H and its square H2.

5ⓒ 2022 Information Processing Society of Japan

Vol.2022-QS-5 No.28
2022/3/25

情報処理学会研究報告
IPSJ SIG Technical Report

参考文献

[1] Jena, A., Genin, S. and Mosca, M.: Pauli Partition-
ing with Respect to Gate Sets. Preprint at https:

//arxiv.org/abs/1907.07859 (2019).

[2] Yen, T.-C., Verteletskyi, V. and Izmaylov, A. F.:
Measuring All Compatible Operators in One Series
of Single-Qubit Measurements Using Unitary Transfor-
mations, Journal of Chemical Theory and Computa-
tion, Vol. 16, No. 4, pp. 2400–2409 (online), DOI:
10.1021/acs.jctc.0c00008 (2020). PMID: 32150412.

[3] Gokhale, P., Angiuli, O., Ding, Y., Gui, K., Tomesh,
T., Suchara, M., Martonosi, M. and Chong, F. T.:
Minimizing State Preparations in Variational Quan-
tum Eigensolver by Partitioning into Commuting Fami-
lies. Preprint at https://arxiv.org/abs/1907.13623
(2019).

[4] Izmaylov, A. F., Yen, T.-C. and Ryabinkin, I. G.: Revis-
ing the measurement process in the variational quantum
eigensolver: is it possible to reduce the number of sep-
arately measured operators?, Chem. Sci., Vol. 10, pp.
3746–3755 (online), DOI: 10.1039/C8SC05592K (2019).

[5] Huggins, W. J., McClean, J., Rubin, N., Jiang, Z.,
Wiebe, N., Whaley, K. B. and Babbush, R.: Efficient
and Noise Resilient Measurements for Quantum Chem-
istry on Near-Term Quantum Computers. Preprint at
https://arxiv.org/abs/1907.13117 (2019).

[6] Zhao, A., Tranter, A., Kirby, W. M., Ung, S. F., Miyake,
A. and Love, P. J.: Measurement reduction in variational
quantum algorithms, Phys. Rev. A, Vol. 101, p. 062322
(online), DOI: 10.1103/PhysRevA.101.062322 (2020).

[7] Crawford, O., van Straaten, B., Wang, D., Parks, T.,
Campbell, E. and Brierley, S.: Efficient quantum mea-
surement of Pauli operators. Preprint at https://

arxiv.org/abs/1908.06942 (2019).

[8] Gokhale, P. and Chong, F. T.: O(N3) Measurement
Cost for Variational Quantum Eigensolver on Molecu-
lar Hamiltonians. Preprint at https://arxiv.org/abs/
1908.11857 (2019).

[9] Hamamura, I. and Imamichi, T.: Efficient evaluation
of quantum observables using entangled measurements,
npj Quantum Inf., Vol. 6, No. 1, p. 56 (online), DOI:
10.1038/s41534-020-0284-2 (2020).

[10] Huang, H.-Y., Kueng, R. and Preskill, J.: Predicting
many properties of a quantum system from very few mea-
surements, Nature Physics, Vol. 16, No. 10, pp. 1050–
1057 (online), DOI: 10.1038/s41567-020-0932-7 (2020).

[11] Hadfield, C., Bravyi, S., Raymond, R. and Mezza-
capo, A.: Measurements of Quantum Hamiltonians with
Locally-Biased Classical Shadows (2020).

[12] Huang, H.-Y., Kueng, R. and Preskill, J.: Efficient esti-
mation of Pauli observables by derandomization (2021).

[13] Kandala, A., Temme, K., Córcoles, A. D., Mezzacapo,
A., Chow, J. M. and Gambetta, J. M.: Error mitigation
extends the computational reach of a noisy quantum pro-
cessor, Nature, Vol. 567, No. 7749, pp. 491–495 (online),
DOI: 10.1038/s41586-019-1040-7 (2019).

[14] ANIS, M. S., Abraham, H., AduOffei, Agarwal, R. and
et al.: Qiskit: An Open-source Framework for Quan-
tum Computing, https://doi.org/10.5281/zenodo.

2562110 (2021).

[15] Treinish, M., Carvalho, I., Tsilimigkounakis, G. and Sá,
N.: retworkx: A High-Performance Graph Library for
Python (2021).

[16] McClean, J. R., Kimchi-Schwartz, M. E., Carter, J. and
de Jong, W. A.: Hybrid quantum-classical hierarchy for

mitigation of decoherence and determination of excited
states, Phys. Rev. A, Vol. 95, p. 042308 (online), DOI:
10.1103/PhysRevA.95.042308 (2017).

[17] Vallury, H. J., Jones, M. A., Hill, C. D. and Hollen-
berg, L. C. L.: Quantum computed moments correction
to variational estimates, Quantum, Vol. 4, p. 373 (on-
line), DOI: 10.22331/q-2020-12-15-373 (2020).

[18] Bravyi, S., Gambetta, J. M., Mezzacapo, A. and Temme,
K.: Tapering off qubits to simulate fermionic Hamiltoni-
ans. Preprint at https://arxiv.org/abs/1701.08213
(2017).

6ⓒ 2022 Information Processing Society of Japan

Vol.2022-QS-5 No.28
2022/3/25

