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Abstract: Task allocation is one of the essential procedures in distributed computing and this will be also true for
distributed quantum computing, which is a promising approach to achieve large-scale quantum computing. Total ex-
ecution time and the stability in the entire system are the two main optimization criteria for this problem, but existing
works for distributed qubit allocation only deal with the latter. This work proposes the heuristic algorithm to decide
how each qubit on the given quantum circuit should be allocated on quantum processors with different execution time
in order to minimize the total execution time. The performance of the proposed scheme is also evaluated by a simple
numerical simulation.
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1. Introduction
Quantum computers can theoretically solve several problems,

such as factoring [1] and unstructured search [2] faster than clas-
sical computers, and it is already known that they need thousands
of qubits in order to solve problems that are even intractable for
their classical counterparts [3].

Two main approaches have been proposed to achieve large-
scale quantum computing, which is building a single large quan-
tum processor [3] and perform quantum computing in a dis-
tributed manner [4]. Distributed quantum computing is consid-
ered more realistic because each quantum processor requires less
number of qubits [5].

Recently, several works have been focused on a software called
distributed quantum compiler [6], which maps qubits on the pro-
gram onto physical qubits, optimizes the whole quantum circuit,
and reduces the number of communication.

Task allocation problem itself is an NP-problem [7] and classi-
cal task allocation algorithms for distributed system are classified
into those which aim to minimize the total execution time [8] and
those aim to maximize the total reliability of the entire system [9].
However, all the previous works about distributed quantum com-
pilers only care about the error rates in quantum processors and
quantum links [10–16]. Execution time might be a new measure
of efficiency after the fault-tolerant quantum computing becomes
real, especially processors with various physical architectures are
connected.

In this work, we propose a heuristic algorithm that provides
optimized distributed qubit allocation scheme which minimizes
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the total execution time.

2. Background
2.1 Distributed Quantum Computing

This subchapter explains each technological layer of the dis-
tributed quantum computing system, that are discussed in [17].
2.1.1 Distributed Quantum Algorithms

Some quantum algorithms, such as Shor’s algorithm and
Grover’s algorithm distributed quantum computing setting [18,
19] were proposed. These algorithms take quantum circuit for
inter-processor communications into account.
2.1.2 Distributed Quantum Compiler

Distributed quantum compiler converts the quantum circuit in
the user’s program to executable form on each physical processor.
For example, it plays the three main roles as follows.
• Finding the optimal mapping of between qubits in the given

quantum circuit and those on physical quantum processors,
which leads to more efficient quantum computing

• Decomposing the given quantum circuit into available gate-
set on each quantum processor

• Optimizing the given quantum circuit in order to reduce the
number of both local and inter-processor operations

2.1.3 Virtual Quantum Processor
Virtual quantum processor is the multiple physical quantum

processors connected by communication links, which will be ex-
plained later.
2.1.4 Remote Operations

Remote operations are quantum gates applied between two
physical quantum processors, and three main approaches have
been proposed, which are
• Swapping-gate-based approach [6]
• Non-local-CNOT-gate-based approach [20]
• Quantum-teleportation-based approach [21]
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Fig. 1 An example of qubit layout in a physical processor
white circles represent physical qubits, gray links
represent physical connection between two qubits

2.1.5 Local Operations
Local operations mean quantum gates that can be executed on

a single physical quantum processor.
2.1.6 Physical Quantum Processor

The connection of qubits in a single quantum processor is re-
stricted to physical limitation. The link between two qubits indi-
cates the fact that a physical CNOT gate can be executed between
these qubits. However, an additional sequence of SWAP gates is
required in order to apply a physical CNOT gate between non-
neighboring qubits. An example of physical qubit connectivity is
shown in Fig.1
2.1.7 Communication Link

Distributed quantum computing requires two types of commu-
nication links, which are classical links and quantum links. For
instance, quantum entanglement has to be established between
qubits on two different quantum processors, and the measurement
outcomes on these qubits are transmit through classical commu-
nication links.

2.2 Task Allocation Problem
Here are some definitions of the task allocation problem in dis-

tributed system [25]. Given a distributed system G =< V, E >,
where V is the set of nodes and E is the set of communication
link between two different nodes, i.e. ∀vi.v j ∈ V,∃ < vi, v j >∈ E.
The set of the resources in ai is Rai and that required by the task t
is Rt.
( 1 ) Rt ⊆

⋃
∀ai∈At

Rai .
( 2 ) The objective should be either minimizing the execution

time or the maximizing reliability of the whole system.
( 3 ) The nodes in At can execute the allocated task under the con-

straint of the network structure ∀ai, a j ∈ At ⇒ Pi j ⊆ E
where Pi j denotes the path between ai and a j.

2.3 Classical Distributed Task Allocation Algorithms
This subsection discusses the task allocation algorithm that

minimizes the total execution time. In other words, the author
has to come up with the optimal allocation A, which A(i) = p
indicates that the task i is allocated to the processor p and tasksp

is a group of tasks that are allocated to a processor p. The to-
tal execution in the heterogeneous computing cluster is same as
the execution time depends on the one in the most heavily loaded
processor. Two types of costs should be considered. One is the
execution cost. The execution load in the processor p is the cost
of processing all the tasks that are assigned to p for the allocation
A.

Suppose Cip is the cost of processing the task i on the processor

p, then the total execution cost on the processor p is

EXECp =
∑

task∈tasksp

Ctask,p (1)

.
The other cost is the communication cost, which can be calcu-

lated by the following formula.

COMMp =
∑

task∈tasksp

∑
(i= j),(i, j)∈E,

A( j),p

di j ∗ ccavg (2)

.
di j is the data sent between two communicating tasks between

i, j and ccavg is the average amount of transferring a data unit
through the network transmission media. Therefore, the total cost
for the processor p is

COS Tp = EXECp +COMMp (3)

.
Because the total execution time is equal to the execution of

the most heavily loaded processor, the total execution time can
be described as following.

COS T = max{COS Tp|1 ≤ p ≤ n} (4)

.
Therefore, the object function [26] is

min COS T (5)

.

2.4 Quantum Distributed Task Allocation Algorithms
Partitioning the given quantum circuit into several fragments is

one of the main roles for a distributed quantum compiler. In the
process of partitioning the given quantum circuit, the distributed
quantum compiler has to minimize the number of inter-processor
communication in order to reduce the delay in the entire circuit
execution.

Severals algorithm for finding the quantum circuit partition
with minimum number of inter-processor communications have
been proposed and these algorithms are based on exhaustive
search [10], graph partitioning [11], hypergraph partitioning [12],
genetic algorithm [13], dynamic programming [14], window-
based quantum circuit partitioning [15], and connectivity matrix
of the quantum circuit [16].

2.5 Experimental Works Related To Distributed Quantum
Computing

An optical remote quantum gate is already experimentally im-
plemented and it successfully implemented four Bell states [27].

Quantum computing architecture for a large-scale quantum
computing that combines ion-trap and optical technologies [28]
and a superconducting chiplet that connects the physical proces-
sor and microwave links are also proposed.
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Table 1 Comparison of Execution Times Between
Superconducting and Ion trap [29]

Physical Architecture One qubit gate time (ns) Two qubit gate time (ns)
Superconducting 1.3 × 102 2.5 × 102 − 4.5 × 102

Ion trap 2.0 × 104 2.5 × 105

2.6 Toward Realization of Heterogeneous Quantum Com-
puting

Distributed quantum computing is superior to a single large
quantum processor in terms of not only its scalability, but also
its heterogeneity. In other words, the whole quantum computing
clusters can use quantum processors with different physical archi-
tectures. As shown in the Table 1, the execution time of quantum
qubit gates significantly changes in various physical architecture.
Also, the concept and challenges for building a quantum comput-
ing cluster with various physical platforms or quantum intercon-
nects (QuICs) are discussed in [30].

3. Problem Definition
Suppose a distributed quantum computing system consists of

N quantum processors connected via communication links. Each
quantum processor has limited number of qubits and execution
time.

A quantum circuit in the program consists of several qubits and
M gates, including CNOTs which corresponds to an interaction
graph G(V, E). V represents a set of qubits and E represents set
of a connection between two qubits involved in each CNOT gate.
qi ∈ V is labeled by the qubit index, and (control, target) ∈ E is
labeled by control-target relationship of all the CNOT gates.

The problem is how to allocate each qubits in the given quan-
tum circuit to which processor with varying execution time in
order to minimize the total execution time. This problem can
be formulated as an optimization problem, which requires a cost
function, which is the value to either maximize or minimize to
acquire the optimal solution.

4. Proposal
4.1 Objective Function

Suppose A be the optimal assignment such that A(qi) = p j if a
qubit qi in the given quantum circuit to a quantum processor p j.

A group of qubits allocated to a quantum processor p j is de-
noted as qubits j, local single qubit gates allocated to a particular
qubit qi is S ingleQubitGatesi, local two qubit gates allocated to
a particular qubit qi is TwoQubitGatesi.

The execution time of a single qubit gate and two qubit gate on
a particular quantum processor p j is S ingleQubitGateT ime j and
TwoQubitGateT ime j, respectively.

The cost of executing all local quantum gates on a qubit qi on
a quantum processor p j is

GAT ECOS T =
∑

gate∈S ingleQubitGatesi

S ingleQubitGateT ime j +
∑

gate∈TwoQubitGatesi

TwoQubitGateT ime j

(6)

.

Suppose a CNOT gate CNOT(control, target) involves two
qubits, which are control qubit and target qubit, and they are a
part of a quantum processor ps and pt respectively. Also, all the
CNOT gates in a quantum processor p j are denoted as CNOT s j.

The communication cost in a quantum processor p j is

COMMCOS T j =
∑

CNOT (control,target)∈CNOT s j
control∈qs
target∈qt

PathLength(s, k)

(7)
.

PathLength is the length of the path between the processor s
and the processor t on the given network topology, and the pro-
cessor j is same as at least either the processor s or the processor
t.

Thus, the total cost on a quantum processor p j is

COS T j = GAT ECOS T j +COMMCOS T j (8)

.
Both execution of single qubit gates and communication with

other processors affect the total execution time on each processor,
and because the processor with the greatest cost will decide the
total execution time on the whole distributed quantum system, the
following value should be calculated.

MAXCOS T = max{COS T j|1 ≤ j ≤ N} (9)

.
Also, minimizing this value will reduce both the execution time

for quantum gates execution and interprocessor communication,
and the objective function of this problem is

min MAXCOS T (10)

4.2 Simulated Annealing
Simulated annealing [31] is a heuristic algorithm which

reaches to the global optimal solution in some cases. It requires
two given values, which are temperature (how long it takes to
reach the optimal solution) and energy (how close the current an-
swer is to the optimal solution).

The solution changes randomly and even the answer after ran-
domization process is accepted if the current energy value be-
comes higher than its previous one in order to avoid being stuck
in the local minimum.

3ⓒ 2022 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2022-QS-5 No.20
2022/3/25



Algorithm 1 Finding a neighbor state
Require:
1: Processor list P {P0,P1, . . .PN}

2: Initial allocation A {P0 : qubits0,P1 : qubits1, . . .Pn : qubitsn}

Ensure: New allocation A
3: function Move
4: Pi ← a randomly selected processor
5: Pj ← another randomly selected processor
6: qindexi ← a randomly selected qubit index from 0 to len(qubitsi)
7: qindexj ← a randomly selected qubit index from 0 to len(qubitsj)
8: A[Pi][qindexi], A[Pj][qindexj] = A[Pj][qindexj], A[Pi][qindexi]
9: end function

Algorithm 2 Calculating the acceptance probability
Require: current energy value cur eng, new energy value new eng, current

temperature temp
Ensure: an acceptance probability prob
1: function AcceptProb(cur eng, new eng, temp)
2: if cur eng < new eng then
3: return 1
4: else
5: return exp (-(new eng-cur eng)/temp)
6: end if
7: end function

Algorithm 3 Simulated Annealing
Require:
1: A random allocation A
2: Initial temperature T
3: Iteration number IterNum

Ensure: The optimal allocation A’
4: function SimulatedAnnealing(A, T, IterNum)
5: A’ = A
6: for iter := 1 to IterNum do
7: temp := T ∗(1 − iter/IterNum)
8: copyA← Copy(A’)
9: newA←Move(copyA)

10: eng← CalcEnergy(copyA)
11: neweng← CalcEnergy(newA)
12: if AcceptProb(eng, neweng, temp) > randomvalue(0, 1) then
13: A’ = newA
14: end if
15: end for
16: return A’
17: end function

Algorithm 4 Calculating the energy value
Require:
1: Initial qubit allocation A {P0 : qubits0,P1 : qubits1, . . .Pn : qubitsn}

2: A list of quantum gates gate list {gate0, . . . , gateN}

3: A list of execution time of a single qubit gate on each quantum processor
single qubit gate time list [time 0, . . . timeN]

4: A list of execution time of a CNOT gate on each quantum processor
CNOT gate time list [time 0, . . . timeN]

5: Network topology N
Ensure: An energy value E
6: function CalcEnergy(A, gate list)
7: processor list← [keys in A]
8: gate cost list← [0 for processor in processor list]
9: comm cost list← [0 for processor in processor list]

10: for processor id := 0 to length of processor list−1 do
11: for gate := gate0 to gateN do
12: single qubit gate time ←

single qubit gate time list[processor id]
13: CNOT gate time← CNOT gate time list[processor id]
14: if gate. name , CNOT and gate. index ∈ A[processor id]

then
15: gate cost list[processor id] += single qubit gate time
16: else if gate. name = CNOT and gate. index ∈ A[processor id]

and gate. target index ∈ A[processor id] then
17: gate cost list[processor id] += CNOT gate time
18: end if
19: end for
20: end for
21: distance matrix← N distance matrix
22: for processor id := 0 to len(processor list)−1 do
23: for gate := gate0 to gateN do
24: if gate name = CNOT then
25: if gate index, gate target index ∈ A[processor id] then
26: comm cost list[processor id] += 0
27: else if gateindex ∈ A[processor id] then
28: for processor’ id := 0 to length of processor list−1

do
29: if gate target index ∈ A[processor’ id] then
30: distance ←

distance matrix[processor id][processor’ id]
31: comm cost list[processor id] += distance
32: end if
33: end for
34: else if gategate index ∈ A[processor id] then
35: for processor’ id := 0 to length of processor list−1

do
36: if gateindex ∈ A[processor’ id] then
37: distance ←

distance matrix[processor’ id][processor id]
38: comm cost list[processor id] += distance
39: end if
40: end for
41: end if
42: end if
43: end for
44: end for
45: for processor id := 0 to length of processor list−1 do
46: gate cost← gate cost list[processor id]
47: comm cost← comm cost list[processor id]
48: cost list[processor id]← gate cost + comm cost
49: end for
50: return max cost list
51: end function
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5. Evaluation
This chapter investigates the efficiency of the allocation

method proposed in the previous chapter, under the distributed
quantum computing system with several processors with differ-
ent execution time in a limited network topology.

In this experiment, three 2-qubit quantum processors with dif-
ferent execution time are connected in a linear topology, which
are shown in Table2 and Fig2.

The author executed the quatum circuit in Fig3 on these three
quantum processors. This circuit is a quantum circuit for encod-
ing 5-qubit quantum repetition code, which is one of the circuits
used for benchmarking purposes [32].

The code used for this experiment is uploaded in [33]
.

6. Result
the total execution time of four different allocation cases
• when qubits are randomly allocated
• when only the gate execution cost is optimized
• when only the communication cost is optimized
• when both costs are optimized

.
are compared and the comparison result is shown in Fig4. I

measured the total execution time in the four cases, ten trials for
each, and compared the average execution time. The figure 4
shows that the total execution time becomes the shortest when the
both gate execution cost and communication cost are optimized.

7. Discussion
In this experiment, the total execution time of the gate-cost-

based case and that of the communication-cost-based-case are
almost the same. However, there should be some cases that
where either the gate-execution-cost-based optimization or the
communication-cost-based optimization works better than the
other. For example, gate-cost-based optimization would work
better if the given circuit have more single qubit gates than CNOT
gates and these gates are fairly allocated to each qubit. On the

Table 2 Details of Each Processor

Processor name One qubit gate time (s) Two qubit gate time (s)
P1 0.2 1.0
P2 0.4 2.0
P3 0.6 3.0

Fig. 2 Network Topology of Quantum Processors
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Fig. 3 Quantum circuit for encoding 5-qubit quantum repetition code

Fig. 4 Experiment result

other hand, the communication-cost-based optimization yields a
better performance if the given quantum circuit has more CNOT
gates than one-qubit gates, and each processor has less neighbor-
ing processors, such as linear topology.

8. Conclusion
This thesis aims to propose an effective scheme for qubit allo-

cation for distributed quantum computing to reduce the total exe-
cution time, and the chart in the previous chapter clearly demon-
strates that the case when the both gate execution cost and com-
munication cost are optimized performs the best. This fact also
states that, similar to the task allocation algorithm for classical
distributed computing, people have to take both the task (quan-
tum gate) execution cost and communication cost into account
in order to come up with an (nearly-) optimal qubit allocation in
terms of reducing the total execution time.
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