
Pricing multi-asset derivatives by finite difference method on a quantum computer

Koichi Miyamoto1, ∗ and Kenji Kubo2, 3

1Center for Quantum Information and Quantum Biology, Osaka University, Japan
2R4D, Mercari Inc., Japan

3Graduate School of Engineering Science, Osaka University, Japan

Following the recent great advance of quantum computing technology, there are growing interests in its
applications to industries, including finance. In this paper, we focus on derivative pricing based on solving the
Black-Scholes partial differential equation by finite difference method (FDM), which is a suitable approach for
some types of derivatives but suffers from the curse of dimensionality, that is, exponential growth of complexity
in the case of multiple underlying assets. We propose a quantum algorithm for FDM-based pricing of multi-
asset derivative with exponential speedup with respect to dimensionality compared with classical algorithms.
The proposed algorithm utilizes the quantum algorithm for solving differential equations, which is based on
quantum linear system algorithms. Addressing the specific issue in derivative pricing, that is, extracting the
derivative price for the present underlying asset prices from the output state of the quantum algorithm, we
present the whole of the calculation process and estimate its complexity. We believe that the proposed method
opens the new possibility of accurate and high-speed derivative pricing by quantum computers.

I. INTRODUCTION

The recent advance of quantum computing is invoking a
strong interest in its applications to industries, including fi-
nance. Since large banks perform enormous computational
tasks in their daily business, it is expected that quantum
speedup of them will make a large impact. In fact, some recent
papers have already discussed applications of quantum algo-
rithms to concrete problems in financial engineering such as
derivative pricing [2–5]. See [6, 7] as comprehensive reviews.

In this paper, we focus on the derivative pricing method
based on solving the partial differential equation (PDE) by
finite difference method (FDM). Let us describe the outline
of the problem. First of all, a financial derivatives, or sim-
ply a derivatives is a contract between two parties, in which
amounts (payoffs) determined by prices of some underlying
assets (e.g., stocks and bonds) are paid and received. One sim-
ple example is an European call (resp. put) option, the right to
buy (resp. sell) some asset at the predetermined price (strike)
K and time (maturity) T . This is equivalent to the contract that
the option buyer receives the payoff fpay(S T) = max{S T−K, 0}
(resp. max{K − S T , 0}) at T , where S t is the underlying as-
set price at time t. Since large banks hold a large number
of derivatives, pricing them is crucial for their business. We
can evaluate a derivative price by modeling the random time
evolution of underlying asset prices as some stochastic pro-
cesses and calculating the expected values of the discounted
payoff under some probability measure. Analytical formu-
las for derivative prices are available only in limited settings,
and therefore we often resort to numerical methods. Since the
expected value obeys the so-called Black-Scholes (BS) PDE,
we can obtain the derivative price by solving it [8]. More
concretely, starting from the maturity T , at which the deriva-

∗ koichi.miyamoto@qiqb.osaka-u.ac.jp
This document is the short version of the full paper [1]. This work was
supported by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP)
Grant Number JPMXS0120319794.

tive price is trivially determined as the payoff itself, we solve
the PDE backward to the present, and then find the present
derivative price. This PDE approach is suitable for derivatives
whose price is subject to some continuous boundary condi-
tions. One example is the barrier option. In this product, one
or multiple levels of underlying asset prices (barriers) are set,
and they determine whether the payoff is paid at the maturity
or not. For example, in a knock-out barrier option, the pay-
off is not paid if either of barriers is reached once or more
by T . This means that the price of the knock-out barrier op-
tion is 0 at barriers. Such a boundary condition is difficult to
be strictly taken into account in the other approach such as the
Monte Carlo method because of discretization in time, but can
be dealt with in the PDE approach.

Although the PDE approach is suitable in some cases, it is
difficult to apply it to multi-asset derivatives, where the num-
ber of underlying assets d is larger than 1, because of the curse
of dimensionality, the exponential growth of complexity with
respect to d. We can see this as follows. The BS PDE is (d+1)-
dimensional, where d and 1 correspond to asset prices and
time, respectively. In FDM, which is often adopted for solving
a PDE numerically, the discretization grid points are set in the
asset price directions, and partial derivatives are replaced with
matrices which correspond to finite difference approximation.
This converts a PDE into a linear ordinary differential equa-
tion (ODE) system, in which the dependent variables are the
derivative prices on grid points and the independent variable
is time. Then, we solve the resulting ODE system. The point
is that this calculation contains manipulations of the matrices
with exponentially large size, which scales on the desired ac-
curacy ϵ as O((1/ϵ)poly(d)), and so does the time complexity.
This makes the PDE approach, at least in combination with
FDM, intractable on classical computers.

Fortunately, quantum computers might change the situa-
tion. There are some quantum algorithms for solving lin-
ear ODE systems, whose time complexities depend on di-
mensionality only logarithmically[9–12]. This means that, in
combination with these algorithms, we can remove the expo-
nential dependency of time complexity of FDM-based PDE

IPSJ SIG Technical Report

ⓒ 2022 Information Processing Society of Japan 1

Vol.2022-QS-5 No.17
2022/3/25

solving on dimensionality. Then, this paper aims to speedup
FDM-based pricing of multi-asset derivatives, using the quan-
tum algorithm. Although one might think that this is just a
straightforward application of an existing algorithm to some
problem, there is a nontrivial issue specific for derivative pric-
ing, that is, how to extract the derivative price for the present
underlying asset prices from the output of the quantum algo-
rithm. By solving the BS PDE up to the present (t = 0) using
the quantum algorithm, we obtain the vector V⃗(0), which con-
sists of the present derivative prices on the grid points. How-
ever, it is given not as classical data but as a quantum state
|V⃗(0)〉, in which the elements of V⃗(0) are encoded as ampli-
tudes of computational basis states. On the other hand, typi-
cally, we are interested in only one element V0 in V⃗(0), which
corresponds to the derivative price for the present underly-
ing asset prices. That is, we want only the amplitude of the
specific computational basis state in |V⃗(0)〉. Since the ampli-
tude is exponentially small if there are exponentially many
grid points, reading it out requires exponentially large time
complexity, which ruins the quantum speedup.

We circumvent this issue by solving PDE up to not the
present but some future time tter. The key observation is
that V0 can be expressed as the expected value of its dis-
counted price at an arbitrary future time. Concretely, we
may take the following way. First, we generate two states:
|V⃗(tter)〉, in which the derivative prices at tter are encoded, and
| p⃗(tter)〉, in which the probability distribution of underlying as-
set prices at tter is encoded. Then, we estimate the inner prod-
uct 〈p⃗(tter)|V⃗(tter)〉, which is an approximation of V0. Note
that, in this way, the amplitudes of all basis states in |V⃗(tter)〉
are used to calculate V0. This is in contrast to read-out from
|V⃗(0)〉, in which the amplitude of one specific basis state is the
sole necessary information. This leads to much smaller time
complexity in the above way than reading V0 out from |V⃗(0)〉.

In the following sections, we describe the entire process
of the above calculation: setting tter, generating |V⃗(tter)〉 by
the quantum algorithm, generating | p⃗(tter)〉, and estimating V0.
Besides, we estimate the complexity of the proposed method.
We see that, in the expression of the complexity, there are not
any factors like (1/ϵ)poly(d) but only some logarithmic factors
to the power of d, which means substantial speedup compared
with classical FDM.

The rest of this paper is organized as follows. Sections
II and III are preliminary ones, which outline FDM-based
derivative pricing and the quantum algorithm for solving ODE
systems, respectively. Section IV discusses approximating V0
as the expected value of the price at tter, including its optimal
setting. Section V presents the main result, that is, the quan-
tum calculation procedure for V0 and its complexity. Section
VI summarizes this paper. All proofs are shown in [1].

Here, we explain the notations used in this paper. R+ :=
{x ∈ R | x > 0}. For n ∈ N, [n] := {1, ..., n} and [n]0 := {0}∪[n].
For n ∈ N, In denotes the n×n identity matrix. ‖ · ‖ denotes the
Euclidian norm for a vector and the spectral norm for a matrix.
We call each of them a “norm” simply. When a matrix A has
at most s nonzero entries in any row and column, we say that

the sparsity of A is s. For v⃗ = (v1, ..., vn)T ∈ Rn, where n is an
integer not less than 2, and i ∈ [n], we define v⃗∧i ∈ Rn−1 as the
vector made by removing the i-th entry vi from v⃗.

In this paper, we consider quantum states of systems con-
sisting of some quantum registers with some qubits. For a real
number x, |x〉 denotes one of the computational basis states on
some register, whose bit string corresponds to the binary rep-
resentation of x. For i ∈ {0, 1}, we let |i〉 and |ī〉 denote a state
on a multi-qubit register and a state on one qubit, respectively,
in order to distinguish them. For x⃗ := (x1, ..., xd)T ∈ Rd, |x⃗〉
denotes the (unnormalized) state in which the elements of x⃗
are encoded in the amplitudes of computational basis states,
that is, |x⃗〉 :=

∑d
i=1 xi |i〉. For a (unnormalized) state |ψ〉, its

norm is defined as ‖ |ψ〉 ‖ :=
√
〈ψ|ψ〉. If a state |ψ〉 satisfies

‖ |ψ〉 − |ψ′〉 ‖ < ϵ, where ϵ is a positive real number and |ψ′〉 is
another state, we say that |ψ〉 is ϵ-close to |ψ′〉.

II. FDM-BASED DERIVATIVE PRICING

A. Derivative pricing problem and the Black-Scholes PDE

In this paper, we consider the following problem.

Problem 1. Let d be a positive integer and
T,U1, ...,Ud, L1, ..., Ld be positive real numbers
such that Li < Ui for i ∈ [d]. Define D :=
(L1,U1) × · · · × (Ld,Ud), D̄ := [L1,U1] × · · · × [Ld,Ud] and
D̂i := [L1,U1]× · · ·× [Li−1,Ui−1]× [Li+1,Ui+1]× · · ·× [Ld,Ud]
for i ∈ [d]. Assume that a function V : [0,T] × D̄ → R
satisfies the following PDE

∂

∂t
V(t, S⃗) +

1
2

d∑
i, j=1

σiσ jρi jS iS j
∂2

∂S i∂S j
V(t, S⃗)

+r

 d∑
i=1

S i
∂

∂S i
V(t, S⃗) − V(t, S⃗)

 = 0, (1)

on [0,T) × D and boundary conditions

V(T, S⃗) = fpay(S⃗),

V(t, (S 1, ..., S i−1,Ui, S i+1, ..., S d)T) = VUB
i (t, S⃗ ∧i) for i ∈ [d],

V(t, (S 1, ..., S i−1, Li, S i+1, ..., S d)T) = VLB
i (t, S⃗ ∧i) for i ∈ [d].

(2)

Here, t ∈ [0,T], S⃗ := (S 1, ..., S d)T ∈ D, σ1, ..., σd, r are posi-
tive real constants such that r < 1

2σ
2
i for i ∈ [d], ρi j, i, j ∈ [d]

are real constants such that ρ11 = · · · = ρdd = 1 and the matrix
ρ := (ρi j)1≤i, j≤d is symmetric and positive-definite, and fpay :
D→ R, VUB

i : [0,T]× D̂i → R and VLB
i : [0,T]× D̂i → R are

given functions. Then, for a given S⃗ 0 := (S 1,0, ..., S d,0)T ∈ D,
find V0 := V(0, S⃗ 0).

Here, we make some comments. (1) is the so-called
BS PDE, which corresponds to the following derivative
pricing problem. Under some probability space (Ω,F , P),
we consider the d-dimensional stochastic process S⃗ (t) :=

IPSJ SIG Technical Report

ⓒ 2022 Information Processing Society of Japan 2

Vol.2022-QS-5 No.17
2022/3/25

(S 1(t), ..., S d(t))T , t ≥ 0 obeying the following stochastic dif-
ferential equation (SDE) system

dS i(t) = rS i(t)dt + σiS i(t)dWi(t), i ∈ [d] (3)

where W1, ...,Wd are the Brownian motions on (Ω,F , P) sat-
isfying dWidW j = ρi jdt for i, j ∈ [d], with the initial value
S⃗ (0) = S⃗ 0. S 1, ..., S d correspond to prices of d underlying
assets and (3) describes the random time evolution of S⃗ (t) un-
der the so-called risk-neutral measure, where any asset price
grows with the risk-free rate r in expectation. σi is the pa-
rameter called volatility, which parameterizes how volatile the
random movement of S i is. This is the so-called BS model.
Then, the derivative price is given by the conditional expected
value of the payoff discounted by the risk-free rate. That is,
the price of the derivative in which the payoff fpay(S⃗ (T)) arises
at maturity T is

V(t, S⃗) = E[e−r(T−t) fpay(S⃗ (T))1NB|S⃗ (t) = S⃗] (4)

at time t, if S⃗ (t) = S⃗ . Here, 1NB takes 1 if the condition for
the payoff to be paid (e.g., barrier condition) is satisfied and
0 otherwise. It is known that V(t, S⃗) satisfies (1) and appro-
priate boundary conditions, which should be set according to
the product characteristics of the derivative. For example, if
Ui (resp. Li) is a knock-out barrier, VUB

i = 0 (resp. VLB
i = 0).

For a later convenience, we here transform the PDE (1) on
[0,T) × D into

∂

∂τ
Y(τ, x⃗) =

1
2

d∑
i, j=1

σiσ jρi j
∂2

∂xi∂x j
+

d∑
i=1

(
r − 1

2
σ2

i

)
∂

∂xi

 Y(τ, x⃗)

(5)
on (0,T] × D̃, where τ := T − t, x⃗ := (x1, ..., xd)T :=
(log S 1, ..., log S d)T , Y(τ, x⃗) := erτV(T −τ, (ex1 , ..., exd)T), D̃ :=
(l1, u1) × · · · × (ld, ud) and ui := log Ui, li := log Li for i ∈ [d].
The boundary conditions become

Y(0, x⃗) = f̃pay(x⃗) := fpay((ex1 , ..., exd)T),

Y(τ, (x1, ..., xi−1, ui, xi+1, ..., xd)T)

= YUB
i (τ, x⃗∧i) := VUB

i (T − τ, (ex1 , ..., exi−1 , exi+1 , ..., exd)T),

Y(τ, (x1, ..., xi−1, li, xi+1, ..., xd)T)

= YLB
i (τ, x⃗∧i) := VLB

i (T − τ, (ex1 , ..., exi−1 , exi+1 , ..., exd)T).
(6)

B. Application of FDM to the BS PDE

FDM is a method for solving a PDE by replacing partial
derivatives with finite difference approximations. In the case
of (5), the approximation is as follows. First, letting ngr be a
positive integer, we introduce the grid points in the directions
of x⃗: for k =

∑d
i=1 nd−i

gr ki + 1 with k1, ..., kd ∈ [ngr − 1]0,

x⃗(k) := (x(k1)
1 , ..., x(kd)

d)T , x(ki)
i := li + (ki + 1)hi, hi :=

ui − li
ngr + 1

.

(7)

Namely, there are ngr equally spaced grid points in one direc-
tion and the total number of the grid points in D is Ngr := nd

gr,
except ones on the boundaries. For later convenience, we set
x(−1)

i = l1 and x(ngr)
i = h1. Hereafter, we assume that ngr is a

power of 2 for simplicity, whose detail is explained in Section
V, and define mgr := log2 ngr.

Then, (5) is transformed into the Ngr-dimensional ODE sys-
tem

d
dτ
⃗̃Y(τ) = F ⃗̃Y(τ) + C⃗(τ). (8)

with the initial value

⃗̃Y(0) = (Y(0, x⃗(1)), ..., Y(0, x⃗(Ngr)))T

= (f̃pay(x⃗(1)), ..., f̃pay(x⃗(Ngr)))T =: ⃗̃fpay. (9)

Here, ⃗̃Y(τ), F and C⃗(τ) are as follows. ⃗̃Y(τ) :=
(Ỹ1(τ), ..., ỸNgr (τ)) ∈ RNgr and its k-th element is an approx-
imation of Y(τ, x(k)). F is a Ngr × Ngr real matrix, which is
expressed by a sum of Kronecker products of ngr × ngr matri-
ces, that is,

F :=
d∑

i=1

σ2
i

2h2
i

I⊗i−1
ngr
⊗ D2nd ⊗ I⊗d−i

ngr

+

d−1∑
i=1

d∑
j=i+1

σiσ jρi j

4hih j
I⊗i−1
ngr
⊗ D1st ⊗ I⊗ j−i−1

ngr ⊗ D1st ⊗ I⊗d− j
ngr

+

d∑
i=1

1
2hi

(
r − 1

2
σ2

i

)
I⊗i−1
ngr
⊗ D1st ⊗ I⊗d−i

ngr
, (10)

D1st :=



0 1
−1 0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0


,D2nd :=



−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2


.

(11)
C⃗(τ) := (C1(τ), ...,CNgr (τ))T is necessary to take into account
the boundary conditions and its k-th element is

Ck(τ) =
d∑

i=1

σ2
i

2h2
i

[
δki,0YLB

i (τ, x⃗(k)
∧i) + δki,ngr−1YUB

i (τ, x⃗(k)
∧i)

]
+

d−1∑
i=1

d∑
j=i+1

σiσ jρi j

4hih j

[
−δki,0YLB

i (τ, x⃗(k)
∧i) − δk j,0YLB

j (τ, x⃗(k)
∧ j)

+δki,ngr−1YUB
i (τ, x⃗(k)

∧i) + δk j,ngr−1YUB
j (τ, x⃗(k)

∧ j)
]

+

d∑
i=1

1
2hi

(
r − 1

2
σ2

i

) [
δki,ngr−1YUB

i (τ, x⃗(k)
∧i) − δki,0YLB

i (τ, x⃗(k)
∧i)

]
.

(12)

Then, under the following assumption, we have a lemma on
the accuracy of the approximation (8).

IPSJ SIG Technical Report

ⓒ 2022 Information Processing Society of Japan 3

Vol.2022-QS-5 No.17
2022/3/25

Assumption II.1. Y(τ, x⃗), the solution of (5) and (6), is four-
times differentiable with respect to x1, ..., xd and there exist
ζ, ξ ∈ R such that

∀i, j, k, l ∈ [d], τ ∈ (0,T), x⃗ ∈ D̃,∣∣∣∣∣∣ ∂3Y
∂xi∂x j∂xk

(τ, x⃗)

∣∣∣∣∣∣ < ζ,
∣∣∣∣∣∣ ∂4Y
∂xi∂x j∂xk∂xl

(τ, x⃗)

∣∣∣∣∣∣ < ξ. (13)

Lemma II.1. Let Y(τ, x⃗) be the solution of (5) and (6), and
⃗̃Y(τ) be that of (8) and (9). Under Assumption II.1, if, for a
given ϵ ∈ R+,

hi ≤ min

 1
dσi

√
3ϵ

2ξT
,

1
σi

√
3ϵ
ζdT

 , i ∈ [d] (14)

then, for any τ ∈ (0,T), the inequality

‖⃗̃Y(τ) − Y⃗(τ)‖ <
√

Ngrϵ (15)

holds, where Y⃗(τ) = (Y(τ, x⃗(1)), ..., Y(τ, x⃗(Ngr)))T .

Lemma II.1 means that the root mean square of the differ-
ences between Ỹi(τ) and Y(τ, x⃗(i)) is upper bounded by ϵ.

III. QUANTUM ALGORITHM FOR SOLVING ORDINARY
DIFFERENTIAL EQUATION SYSTEMS

In this section, we outline the algorithm of [10]. This is the
algorithm for solving the linear ODE system

d
dt

x⃗(t) = Ax⃗ + b⃗, (16)

with the initial condition x⃗(0) = x⃗ini. Here, x⃗(t) ∈ RN , A ∈
RN×N is a constant diagonalizable matrix, and b⃗ ∈ RN is a
constant vector. Suppose that we want to find x⃗(T) for some
T ∈ R+. The algorithm is based on the formal solution of (16)

x⃗(T) = eAT x⃗ini + (eAT − IN)A−1b⃗. (17)

In order to calculate this, we consider the linear equation sys-
tem on the tensor product space V := Rq+1 ⊗ RN , where the
former is the auxiliary space and the latter is the original space
on which A operates:

Cm,k,p(Aht)X⃗ = e⃗0 ⊗ x⃗ini + h
m−1∑
i=0

e⃗i(k+1)+1 ⊗ b⃗. (18)

Here, m, p, k are positive integers set large enough (see the
statement of Theorem III.1), q := m(k + 1) + p, ht = T/m,
X⃗ ∈ RN(q+1) and {⃗ei}i=0,1,...,q is an orthonormal basis of Rq+1.
For B ∈ RN×N , the N(q + 1) × N(q + 1) matrix Cm,k,p(B) is
defined as

Cm,k,p(B) :=
q∑

j=0

e⃗ je⃗T
j ⊗ IN −

m−1∑
i=0

k∑
j=1

e⃗i(k+1)+ je⃗T
i(k+1)+ j−1 ⊗

1
j
B

−
m−1∑
i=0

k∑
j=0

e⃗(i+1)(k+1)e⃗T
i(k+1)+ j ⊗ IN −

q∑
j=m(k+1)+1

e⃗ je⃗T
j−1 ⊗ I. (19)

Cm,k,p is designed based on the Taylor expansion of (17). The
solution of (18) can be written as

X⃗ =
m−1∑
i=0

k∑
j=1

e⃗i(k+1)+ j ⊗ x⃗i, j +

p∑
j=0

e⃗m(k+1)+ j ⊗ x⃗m, (20)

for some vectors x⃗i, j, x⃗m ∈ RN , and x⃗m becomes close to x⃗(T),
which we want to find. Note that x⃗m is repeated p times in the
solution X⃗, which enhances the probability of obtaining the
desired vector in the output quantum state of the algorithm.

Although the Cm,k,p(Aht) is an extremely large matrix, the
quantum algorithms for solving linear equation systems (QLS
algorithms)[13–15] can output the solution of (18) only with
complexity of O(logN), where N is the number of rows (or
columns) in Cm,k,p(Aht). The quantum algorithm in [10] lever-
ages the algorithm in [15]. In order to use it, [10] assumes that
the following oracles (i.e. unitary operators) are available:

• OA,1: this returns the column index of the l-th nonzero
entry in the j-th row of the matrix A

OA,1 : | j〉 |l〉 7→ | j〉 |ν(j, l)〉 (21)

• OA,2: this returns the (j, k) entry of the matrix A

OA,2 : | j〉 |k〉 |z〉 7→ | j〉 |k〉 |z ⊕ A jk〉 (22)

•

Ox⃗ini :

|0̄〉 |0〉 7→ 1
‖x⃗ini‖ |0̄〉 |x⃗ini〉

|1̄〉 |ψ〉 7→ |1̄〉 |ψ〉 for any |ψ〉
(23)

•

Ob⃗ :

|0̄〉 |ψ〉 7→ |0̄〉 |ψ〉 for any |ψ〉
|1̄〉 |0〉 7→ 1

‖b⃗‖
|1̄〉 |⃗b〉 . (24)

for b⃗ , 0. When b⃗ = 0, this is an identity operator.

Then, we present the theorem (Theorem 9 in [10]), which
states the query complexity of the algorithm.

Theorem III.1. (Theorem 9 in [10], slightly modified) Sup-
pose A = VDV−1 is an N × N diagonalizable matrix, where
D = diag(λ0, λ1, ..., λN−1) satisfies Re(λ j) ≤ 0 for any j ∈
0, 1, ...,N − 1. In addition, suppose A has at most s nonzero
entries in any row and column, and we have oracles OA,1,OA,2

as above. Suppose x⃗ini and b⃗ are N-dimensional vectors with
known norms and we have oracles Ox⃗ini and Ob⃗ as above.
Let x⃗ evolve according to the differential equation (16) with
the initial condition x⃗(0) = x⃗ini. Let T > 0 and g :=
maxt∈[0,T] ‖x⃗(t)‖/‖x⃗(T)‖. Then there exists a quantum algo-
rithm that produces a state |Ψ̃〉, which is ϵ-close to

|Ψ〉 :=
1√

〈Ψgar|Ψgar〉 + (p + 1)‖x⃗(T)‖2

|Ψgar〉 +
p(k+2)∑

j=p(k+1)

| j〉 |x⃗(T)〉


(25)
making

O
(
κV sT‖A‖ × poly

(
log

(
κV sT‖A‖

ϵ

)))
(26)

IPSJ SIG Technical Report

ⓒ 2022 Information Processing Society of Japan 4

Vol.2022-QS-5 No.17
2022/3/25

queries to OA,1, OA,2, Ox, and Ob. Here, κV = ‖V‖ ·
‖V−1‖ is the condition number of V, p = dT‖A‖e, k =
b2 logΩ/ log(logΩ)c, Ω = 70gκV p3/2(‖x⃗ini‖ + T‖b⃗‖)/ϵ‖x⃗(T)‖,
and |Ψgar〉 is an unnormalized state which takes the form
of |Ψgar〉 =

∑p(k+1)−1
j=0 | j〉 |ψ j〉 with some unnormalized states

|ψ0〉 , |ψ1〉 , ..., |ψp(k+1)−1〉 and satisfies 〈Ψgar|Ψgar〉 = O(g2(p +
1)‖x⃗(T)‖2).

The modifications from Theorem 9 in [10] are as follows.
First, in [10], it is assumed that we perform post-selection to
obtain |x⃗(T)〉 /‖ |x⃗(T)〉 ‖ (strictly speaking, a state close to it).
On the other hand, in Theorem III.1, the output state is not
purely |x⃗(T)〉 /‖ |x⃗(T)〉 ‖ but contains |x⃗(T)〉 as a part in addi-
tion to the unnecessary state |Ψgar〉. This is because, in this
paper, we use the algorithm of [10] as a subroutine in the
quantum amplitude estimation (QAE)[16, 17], as explained
in Section V, and the iterated subroutine in QAE must be an
unitary operation. This means that we cannot perform post-
selection, since it is a non-unitary operation. Note also that,
we do not perform amplitude amplification for |Ψ1〉, which is
done before post-selection in [10], and thus a factor g, which
exists in the expression of the complexity (112) in [10], has
dropped from (26) in this paper. Moreover, the meaning of
the closeness ϵ is different between Theorem III.1 in this pa-
per and Theorem 9 in [10]. In the former, ϵ is the closeness
between |Ψ̃〉 and |Ψ〉, which corresponds to δ in [10]. On the
other hand, Theorem 9 in [10] refers to the closeness of the
state after post-selection to |x⃗(T)〉 /‖ |x⃗(T)〉 ‖. This difference
also makes (26) different from (112) in [10].

IV. APPROXIMATING THE PRESENT DERIVATIVE
PRICE AS THE EXPECTED VALUE OF THE PRICE AT A

FUTURE TIME

As we explained in the introduction, we aim to calculate V0
as the expected value of the discounted price at some future
time. Concretely, we set tter ∈ (0,T) and calculate

V0 = e−rtter

∫
Rd
+

dS⃗ϕ(tter, S⃗)pNB(tter, S⃗)V(tter, S⃗), (27)

where ϕ(t, S⃗) is the probability density function of S⃗ (t), and
pNB(t, S⃗) is the conditional probability that the no event which
leads to extinction of the payoff happens by t given S⃗ (t) = S⃗ .
Although (27) holds for any tter, for the effective numerical
calculation, tter should be set carefully. Recalling our motiva-
tion to evade exponential complexity to read out V0, which is
explained in Section I, we want to set tter as large as possible.
On the other hand, there are some reasons to set tter small be-
cause of existence of boundaries. First, note that it is difficult
to find pNB(tter, S⃗) explicitly in the multi-asset case. However,
for sufficiently small tter, pNB(tter, S⃗) is nearly equal to 1, since
the payoff is paid at least if S⃗ (t) does not reach any bound-
aries and the probability that S⃗ (t) reaches any boundaries can
be neglected for time close to 0. Besides, note that we ob-
tain the derivative prices only on the points in boundaries by
solving PDE. For small tter, we can approximately calculate

V0 using only the information in boundaries, since the proba-
bility distribution of S⃗ (tter) over the boundaries is negligible.
In summary, we should set tter as large as possible in the range
of the value for which the probability distribution of S⃗ (tter) is
almost confined within the boundaries. For such tter, we can
approximate

V0 ≈ e−rtter

∫
D

dS⃗ϕ(tter, S⃗)V(tter, S⃗) = e−rT
∫

D̃
dx⃗ϕ̃(tter, x⃗)Y(τter, x⃗),

(28)
where τter := T − tter and ϕ̃(t, x⃗) is the probability density of
x⃗(t) under the BS model (3) and will be explicitly given later.

Considering the above points, we obtain the lemma, which
shows a criterion to set tter. First, we make an assumption,
which is necessary to upper bound the contribution from the
outside of the boundaries to the integral (27).

Assumption IV.1. There exist positive constants A0, A1, ..., Ad

such that, for any S⃗ ∈ D, fpay in Problem 1 satisfies

fpay(S⃗) ≤
d∑

i=1

AiS i + A0. (29)

That is, we assume that the payoff is upper bounded by some
linear function, which is the case for many cases such as cal-
l/put options on linear combinations of S 1, ..., S d (i.e. basket
options). Then, the following lemma holds.

Lemma IV.1. Consider Problem 1. Under Assumption IV.1,
for any ϵ ∈ R+ satisfying

log
(

Ãd(d + 1)
ϵ

)
> max

2
5

1 − 2r
σ2

i

 log
(

Ui

S i,0

)
,

2
5

1 − 2r
σ2

i

 log
(

S i,0

Li

) , i ∈ [d],

(30)

where Ã = max{A1
√

U1S 1,0, ..., Ad
√

UdS d,0, A0}, and

ϵ < 2d(d + 1) ×max{A0, A1S 1,0, ..., AdS d,0}, (31)

the inequality∣∣∣∣∣V(0, S⃗ 0) − e−rT
∫

˜̃D
dx⃗ϕ̃(tter, x⃗)Y(tter, x⃗)

∣∣∣∣∣ ≤ 2ϵ (32)

holds, where

tter := min


2
(
log

(
U1
S 1,0

))2

25σ2
1 log

(
2Ãd(d+1)

ϵ

) , ..., 2
(
log

(
Ud
S d,0

))2

25σ2
d log

(
2Ãd(d+1)

ϵ

) ,
2
(
log

(S 1,0

L1

))2

25σ2
1 log

(
2Ãd(d+1)

ϵ

) , ..., 2
(
log

(S d,0

Ld

))2

25σ2
d log

(
2Ãd(d+1)

ϵ

)
 . (33)

and

˜̃D :=
[
1
2

(
l1 + x(0)

1

)
,

1
2

(
x(ngr−1)

1 + u1

)]
× · · ·

×
[
1
2

(
ld + x(0)

d

)
,

1
2

(
x(ngr−1)

d + ud

)]
. (34)

IPSJ SIG Technical Report

ⓒ 2022 Information Processing Society of Japan 5

Vol.2022-QS-5 No.17
2022/3/25

Note that, in (32), the region of the integral is slightly different
from D̃, the interior of the boundary in the x⃗ domain. This is
just for interpreting the finite-sum approximation of the inte-
gral as the midpoint rule (see the proof of Lemma V.1 in [1]
for the detail).

V. QUANTUM METHOD FOR DERIVATIVE PRICING BY
FDM

In this section, we finally present the quantum method for
derivative pricing by FDM. Our idea is calculating the present
derivative price V0 as (27), the expected value of the price at
the future time tter. As explained in Section IV, we approxi-
mate (27) as (28). In fact, we have to approximate (28) further,
since we obtain the derivative prices only on the grid points by
solving PDE using FDM. Therefore, we approximate (28) as

V0 ≈ e−rT
Ngr∑
k=1

pkỸk(τter) = e−rT p⃗ · ⃗̃Y(τter), (35)

where p⃗ := (p1, ..., pNgr)
T , and pk is the existence probability

of x⃗(tter) on the k-th grid point and explicitly defined soon.
Hereafter, we discuss how to estimate this inner product.

A. Generating the probability vector

Firstly, let us discuss how to generate p⃗, a vector which
represents ϕ̃(tter, x⃗), the probability distribution of x⃗(tter), as
a quantum state. As we will see below, although we aim to
generate a quantum state in which the amplitudes of basis
states are proportional to ϕ̃(tter, x⃗), we can apply the method
to generate a state in which amplitudes are square roots of
probabilities[4, 18], since ϕ̃(tter, x⃗) can be regarded as the
square roots of the probability densities under another distri-
bution.

Concretely speaking, we aim to generate the vector

p⃗ := (p1, ..., pNgr)
T , pk := ϕ̃(tter, x⃗)

d∏
i=1

hi (36)

where ϕ̃(t, x⃗), the probability density of x⃗(t), is given as

ϕ̃(t, x⃗) :=
1

(2πt)d/2
(∏d

i=1 σi

) √
det ρ

exp
(
−1

2
(x⃗ − µ⃗)TΣ−1(x⃗ − µ⃗)

)
(37)

with µ⃗ :=
((

r − 1
2σ

2
1

)
t, ...,

(
r − 1

2σ
2
d

)
t
)T

and Σ :=
(σiσ jρi j)1≤i, j≤d, that is, the density of the d-dimensional nor-
mal distribution with the mean µ⃗ and the covariance matrix
Σ. Actually, we generate this vector as a normalized quantum
state, that is,

|p̄〉 :=
Ngr∑
k=1

pk

P
|k〉 , P := ‖ p⃗‖ =

√√√ Ngr∑
k=1

p2
k . (38)

Here, note that (ϕ̃(t, x⃗))2 is φ(x⃗) times a constant independent
of x⃗, where

φ(x⃗) :=
1

(πt)d/2
(∏d

i=1 σi

) √
det ρ

exp

−1
2

(x⃗ − µ⃗)T
(

1
2
Σ

)−1

(x⃗ − µ⃗)

 ,
(39)

is the probability density for another d-dimensional normal
distribution. Therefore, | p̄〉 is approximately the state

|φ〉 :=
1
√

Q

Ngr∑
k=1

√
qk |k〉 , (40)

where φ(x⃗) is encoded into the square roots of the amplitudes.
Here, for k =

∑d
i=1 nd−i

gr ki + 1 with k1, ..., kd ∈ [ngr − 1]0,

qk :=
∫ x(k1+1)

1

x(k1)
1

dx1 · · ·
∫ x(kd+1)

d

x(kd)
d

dxdφ(tter, x⃗), (41)

which is close to φ(tter, x⃗(k))
∏d

i=1 hi, and

Q :=
∫ x

(ngr)
1

x(0)
1

dx1 · · ·
∫ x

(ngr)
d

x(0)
d

dxdφ(tter, x⃗), (42)

which is close to 1.
Then, the task is boiled down to generating |φ〉. This is done

by Algorithm 1, the multivariate extension of the method of
[18].

Algorithm 1 Generate | p̄〉
1: Prepare d mgr-qubit registers and initialize all qubits to |0̄〉, which

means the initial state is |0〉⊗d.
2: for i = 1 to d do
3: for j = 1 to mgr do
4: Using k1, ..., ki−1 indicated by the first, ..., (i−1)-th registers,

respectively, and k[1]
i , ..., k[j−1]

i , the bits on the first, ..., (j −
1)-th qubits of the i-th register, respectively, rotate the j-th
qubit in the i-th register as

|0̄〉 →
√

fi, j(k1, ..., ki−1; k[1]
i , ..., k[j−1]

i) |0̄〉

+

√
1 − fi, j(k1, ..., ki−1; k[1]

i , ..., k[j−1]
i) |1̄〉 .

This transforms the entire state into

1
√

Q

∑
k1 ,...,ki−1
∈[ngr−1]0

∑
k[1]

i ,...,k[j]
i

∈{0,1}

√
qi, j(k1, ..., ki−1; k[1]

i , ..., k[j]
i)

× |k1〉 · · · |ki−1〉 |k̃〉 |0〉⊗(d−i) ,

where k̃ is an integer whose mgr-bit representation is
k[1]

i · · · k
[j]
i 0 · · · 0︸︷︷︸

mgr− j

.

5: end for
6: end for

Here, note that |k〉 can be decomposed as

|k〉 = |k1〉 · · · |kd〉 , (43)

IPSJ SIG Technical Report

ⓒ 2022 Information Processing Society of Japan 6

Vol.2022-QS-5 No.17
2022/3/25

where each |ki〉 is a state on a mgr-qubit register (recall that
ngr = 2mgr), and |ki〉 can be further decomposed as

|ki〉 =
∣∣∣∣∣k[i]

i

〉
· · ·

∣∣∣∣∣k[mgr]
i

〉
, (44)

where we write the n-bit representation of i ∈ {0, 1, ..., 2n −

1} as i[1] · · · i[n] with i[1], ..., i[n] ∈ {0, 1}. Besides, note that
Algorithm 1 requires us to compute

fi, j(k1, ..., ki−1; k[1]
i , ..., k[j−1]

i) :=
qi, j(k1, ..., ki−1; k[1]

i , ..., k[j−1]
i , 0)

qi, j−1(k1, ..., ki−1; k[1]
i , ..., k[j−1]

i)
(45)

for i ∈ [d] and j ∈ [mgr], where

qi, j(k1, ..., ki−1; b1, ..., b j) :=



∫ xR
1, j(b1,...,b j)

xL
1, j(b1,...,b j)

dx1
∫ x

(ngr)
2

x(0)
2

dx2 · · ·
∫ x

(ngr)
d

x(0)
d

dxdφ(t, x⃗) ; i = 1∫ x(k1+1)
1

x(k1)
1

dx1 · · ·
∫ x(ki−1+1)

i−1

x(ki−1)
i−1

dxi−1
∫ xR

i, j(b1,...,b j)

xL
i, j(b1,...,b j)

dxi
∫ x

(ngr)
i+1

x(0)
i+1

dxi+1 · · ·
∫ x

(ngr)
d

x(0)
d

dxdφ(t, x⃗) ; 2 ≤ i ≤ d − 1∫ x(k1+1)
1

x(k1)
1

dx1 · · ·
∫ x(kd−1+1)

d−1

x(kd−1)
d−1

dxd−1
∫ xR

d, j(b1,...,b j)

xL
d, j(b1,...,b j)

dxdφ(t, x⃗) ; i = d

, (46)

and

xL
i, j(b1, ..., b j) := x(kL)

i , kL :=


0 ; j = 0
b1 · · · b j 0 · · · 0︸︷︷︸

mgr− j

; j ∈ [mgr]

xR
i, j(b1, ..., b j) := x(kR)

i , kR :=


ngr ; j = 0
b1 · · · b j 1 · · · 1︸︷︷︸

mgr− j

+1 ; j ∈ [mgr]

(47)

for i ∈ [d], j = 0, 1, ...,mgr and b1, ..., b j ∈ {0, 1} (note that
q1,0 = Q). Such a fi, j can be actually computed as follows.
Neglecting the contribution from the outside of the boundary,
we see that

fi, j(k1, ..., ki−1; k[1]
i , ..., k[j−1]

i)

≈

∫ 1
2 (xL

i, j(b1,...,b j)+xR
1, j(b1,...,b j))

xL
i, j(b1,...,b j)

dxiφ
mar
i (xi; k1, ..., ki−1)∫ xR

i, j(b1,...,b j)

xL
i, j(b1,...,b j)

dxiφ
mar
i (xi; k1, ..., ki−1)

, (48)

where

φmar
i (xi; k1, ..., ki−1) :=∫ +∞

−∞
dxi+1 · · ·

∫ +∞

−∞
dxdφ((x(k1)

1 , ..., x(ki−1)
i−1 , xi, xi+1, ..., xd)T)

(49)

is the marginal density given by integrating out xi+1, ..., xd and
fixing x1, ..., xi−1. We can regard this as an univariate normal
distribution density function of xi (times a constant indepen-
dent of xi), and therefore compute (48) by the method pre-
sented in [4].

At the end of this subsection, let us evaluate the error of (35)
as an approximation for (28). As preparation, we evaluate the
normalization factor P as follows:

P2 =

Ngr∑
k=1

(
ϕx⃗(t, x⃗(k)

gr)
)2

 d∏
i=1

hi


2

≈
∏d

i=1 ∆i

(4π)d/2Ngr
√

det ρ
, (50)

where

∆i :=
ui − li
σi
√

tter
, i ∈ [d]. (51)

Besides, we make an additional assumption.

Assumption V.1. For Y(τ, x⃗), the solution of (5) and (6), and
ϕ̃(t, x⃗), the probability density function of x⃗(t) under the BS
model (3), there exists η ∈ R such that

∀i, j ∈ [d], τ ∈ (0,T), x⃗ ∈ D̃,

∣∣∣∣∣∣ ∂2

∂xi∂x j
(ϕ̃(T − τ, x⃗)Y(τ, x⃗))

∣∣∣∣∣∣ < η.
(52)

Then, we obtain the following lemma, which guarantees us
that we can approximate the integral by the finite sum over
the grid points.

Lemma V.1. Consider Problem 1. Under Assumptions II.1,
IV.1 and V.1, for a given ϵ ∈ R+ satisfying (30) and (31), if we
set

hi < h̃i := min

 (4π)d/8(det ρ)1/8

dσi(
∏d

i=1 ∆i)1/4

√
ϵ

2ξT
,

(4π)d/8(det ρ)1/8

σi(
∏d

i=1 ∆i)1/4

√
ϵ

ζdT
,

1(∏d
i=1(ui − li)

)1/2

√
24ϵ
dη

 (53)

for each i ∈ [d], the following holds∣∣∣∣e−rT p⃗ · ⃗̃Y(τter) − V0

∣∣∣∣ < 4ϵ, (54)

where p⃗ is defined as (36), ⃗̃Y is the solution of (8).

B. Generating the derivative price vector

Next, let us consider how to generate V⃗(tter), the vector
which encodes the grid derivative prices at tter. Precisely

IPSJ SIG Technical Report

ⓒ 2022 Information Processing Society of Japan 7

Vol.2022-QS-5 No.17
2022/3/25

speaking, since we solve (8), we actually obtain the vector
⃗̃Y(τter), which encodes the approximations of Y(τter, x⃗) on the
grid points. Furthermore, by the algorithm presented in Sec-
tion III, we obtain not ⃗̃Y itself but some quantum state like
(25), which contains a state corresponding to ⃗̃Y along with a
garbage state.

For the precise discussion, let us firstly make some assump-
tions in order to satisfy preconditions to use the quantum al-
gorithm. The first one is as follows:

Assumption V.2. C⃗(τ) in (8) is independent of τ.

Then, hereafter, we simply write C⃗(τ) as C⃗. We make this
assumption in order to fit the current setting to [10], which
considered solving (16) for constant A and b⃗ (note that F in (8)
is constant). Although C⃗(τ) is not generally time-independent,
the assumption is satisfied in some cases. For example, if a
boundary corresponds to a knock-out barrier, V(t, S⃗) = 0 on it.
Of course, there are many cases where C⃗(τ) is time-dependent,
and it is desirable to expend our method to such cases. We
leave this as a future work.

The second assumption is as follows:

Assumption V.3. For F in (10), the following oracles OF,1
and OF,2 are available:

OF,1 : | j〉 |l〉 7→ | j〉 |νF(j, l)〉 , (55)

where j ∈ [Ngr], l ∈ [sF], sF is the sparsity of F, and ν(j, l) is
the column index of the l-th nonzero entry in the j-th row,

OF,2 : | j〉 |k〉 |z〉 7→ | j〉 |k〉 |z ⊕ F jk〉 , (56)

where j, k ∈ [Ngr] and z ∈ R. Besides, for ⃗̃fpay in (9) and C⃗ in
(12), we know their norms and the following oracles O ⃗̃fpay

and
OC⃗ are available:

O ⃗̃fpay
:

|0̄〉 |0〉 7→
1
‖ ⃗̃fpay‖
|0̄〉 | ⃗̃fpay〉

|1̄〉 |ψ〉 7→ |1̄〉 |ψ〉 for any |ψ〉
, (57)

OC⃗ :

|0̄〉 |ψ〉 7→ |0̄〉 |ψ〉 for any |ψ〉
|1̄〉 |0〉 7→ 1

‖C⃗‖ |1̄〉 |C⃗〉
, (58)

for C⃗ , 0 and OC⃗ is an identity operator for C⃗ = 0.

Since F is explicitly given as (10), the sum of the Kronecker
products of tridiagonal matrices, construction of OF,1 and OF,2

is straightforward. On the other hand, ⃗̃fpay and C⃗ are highly
problem-dependent, and so are O ⃗̃fpay

and OC⃗ . Therefore, we
just assume their availability in this paper, referring to some
specific cases. Although the gate complexity for preparing a
state in which a general vector is amplitude-encoded is ex-
ponential in the qubit number [19], it can be efficiently per-
formed in the following cases.

• By the analogy with preparation of |p̄〉, we see that

we can prepare | ⃗̃fpay〉
‖ ⃗̃fpay‖

if we can analytically calculate

the integral of the square of f̃pay(x⃗). For example, it
is possible if f̃pay(x⃗) depends on only one of x1, ..., xd
(say x1) and has a simple form such as call-option-like
f̃pay(x⃗) = max{ex1 − K, 0}.

• If all boundaries correspond to knock-out barriers, C⃗ =
0⃗, and therefore OC⃗ is just an identity operator.

Then, we obtain the following lemma.

Lemma V.2. Consider the ODE system (8). Assume that As-
sumptions II.1, IV.1, V.1, V.2 and V.3 are satisfied. Let ϵ be
any positive real number satisfying (30) and (31), and ϵ′ be
any positive real number. Then, there exists a quantum algo-
rithm that produces a state |Ψ̃〉 ϵ′-close to

|Ψ〉 :=
1√

〈Ψgar|Ψgar〉 + (p + 1)‖⃗̃Y(τter)‖2

|Ψgar〉 +
p(k+2)∑

j=p(k+1)

| j〉 |⃗̃Y(τter)〉
 ,

(59)
where ⃗̃Y(τter) is a vector satisfying (54), making

O
(
C × poly

(
log

(
C
ϵ′

)))
(60)

queries to OF,1, OF,2, O ⃗̃fpay
, and OC⃗ . Here,

C := max


√∏d

i=1 ∆id2Ξσ2
maxτter

(4π)d/4(det ρ)1/4 , dη
d∏

i=1

(ui − li)

×κVd4σ2
maxτter

ϵ
,

(61)
κV = ‖V‖ · ‖V−1‖ is the condition number of V which di-
agonalizes F (i.e. VFV−1 is a diagonal matrix), σmax :=
maxi∈[d] σi, Ξ := max{ξ, ζ/d}, τter := T − tter, tter is defined
as (33), p := dτter‖F‖e, k := b2 logΩ/ log(logΩ)c, Ω =
70gκV p3/2(‖ f⃗pay‖ + T‖C⃗‖)/ϵ‖⃗̃Y(τter)‖, and |Ψgar〉 is an unnor-
malized state which takes the form of |Ψgar〉 =

∑p(k+1)−1
j=0 | j〉 |ψ j〉

with some unnormalized states |ψ0〉 , |ψ1〉 , ..., |ψp(k+1)−1〉 and
satisfies

〈Ψgar|Ψgar〉 = O(g2(p + 1)‖⃗̃Y(τter)‖2) (62)

with g := maxτ∈[0,τter] ‖⃗̃Y(τ)‖/‖⃗̃Y(τter)‖.

C. Proposed algorithm

Finally, based on the above discussions, we present the
quantum method to calculate the present derivative price V0.
Our strategy is calculating this as (35). More concretely, we
aim to subtract the information of p⃗ · ⃗̃Y(τter) from |Ψ〉 in (59),
the output state of the algorithm of [10].

IPSJ SIG Technical Report

ⓒ 2022 Information Processing Society of Japan 8

Vol.2022-QS-5 No.17
2022/3/25

In order to do this, we first modify the algorithm slightly.
That is, we aim to solve not (18) but the following one by the
QLS algorithm:

C̃m,k,p(Fht)X⃗ = e⃗0⊗ ⃗̃fpay+ht

m−1∑
i=0

e⃗i(k+1)+1⊗C⃗+
p+1∑
i=1

e⃗m(k+1)+p+i⊗γ⃗.

(63)
Here, m, p, k are integers defined in the statement of Lemma
V.2, q := m(k+1)+2p+1, ht = τter/m, X⃗ ∈ RNgr(q+1), {⃗ei}i=0,1,...,q
is an orthonormal basis of Rq+1, and γ⃗ := (γ, ..., γ)T ∈ RNgr for
some γ ∈ R+. Hereafter, we make the following assumption
on γ:

Assumption V.4. We are given γ ∈ R+ satisfying

1
2

Ȳ(τter) < γ < 2Ȳ(τter), (64)

with Ȳ(τter) :=
√

1
Ngr

∑Ngr

k=1(Y(τter, x⃗(k)))2.

This means that γ is comparable with the root mean square of
Y(τter, x⃗) on the grid points. Besides, the Ngr(q+1)×Ngr(q+1)
matrix C̃m,k,p(Fht) is now defined as

C̃m,k,p(Fht) :=
q∑

j=0

e⃗ je⃗T
j ⊗ INgr −

m−1∑
i=0

k∑
j=1

e⃗i(k+1)+ je⃗T
i(k+1)+ j−1 ⊗

1
j
Fht

−
m−1∑
i=0

k∑
j=0

e⃗(i+1)(k+1)e⃗T
i(k+1)+ j ⊗ INgr −

m(k+1)+p∑
j=m(k+1)+1

e⃗ je⃗T
j−1 ⊗ INgr . (65)

The solution of (63) is

X⃗ =
m−1∑
i=0

k∑
j=1

e⃗i(k+1)+ j⊗
⃗̃̃Yi, j+

p∑
j=0

e⃗m(k+1)+ j⊗
⃗̃̃Y(τter)+

p+1∑
j=1

e⃗m(k+1)+p+ j⊗γ⃗,

(66)

for some vectors ⃗̃̃Yi, j,
⃗̃̃Y(τter) ∈ RNgr , and ⃗̃̃Y(τter) becomes close

to ⃗̃Y(τter). Note that, in X⃗, ⃗̃̃Y(τter) and γ⃗ are repeated (p + 1)-
times. Then, applying the quantum algorithm, we can gener-
ate the quantum state |Ψ̃mod〉 ϵ-close to

|Ψmod〉 :=
1
Z

|Ψgar〉 +
p(k+2)∑

j=p(k+1)

| j〉 |⃗̃Y(τter)〉 +
p(k+3)+1∑

j=p(k+2)+1

| j〉 |⃗γ〉
 ,

Z :=
√
〈Ψgar|Ψgar〉 + (p + 1)‖⃗̃Y(τter)‖2 + (p + 1)Ngrγ2. (67)

Note that the query complexity for generating |Ψ̃mod〉 is (60),
similarly to |Ψ̃〉. This is because the complexity of the QLS
algorithm depends only on the condition number and sparsity
of the matrix and the tolerance[15], and the condition number
and sparsity of C̃m,k,p(Fht) is same as Cm,k,p(Fht).

Using |Ψ̃mod〉, we can estimate p⃗ · ⃗̃Y(τter). The outline is as
follows. First, we estimate the inner product

〈Π|Ψmod〉 =
√

p + 1
PZ

p⃗ · ⃗̃Y(τter), (68)

where

|Π〉 :=
1√

p + 1

p(k+2)∑
j=p(k+1)

| j〉 | p̄〉 , (69)

by estimating the amplitude of |0〉 |0〉 in U†
Π

UΨ̃mod,ϵ
|0〉 |0〉 using

QAE. Here, UΨ̃mod
and UΠ are the unitary operators such that

UΨ̃mod
|0〉 |0〉 = |Ψ̃mod〉 , (70)

and

UΠ |0〉 |0〉 = |Π〉 , (71)

respectively. Note that, if we can generate | p̄〉, we can
also generate |Π〉, since this is just a tensor product of

1√
p+1

∑p(k+2)
j=p(k+1) | j〉 and | p̄〉. Next, by QAE, we estimate the

probability that we obtain j ∈ {p(k+ 2)+ 1, ..., p(k+ 3)+ 1} in
the first register when we measure |Ψ̃mod〉, and then obtain an
estimation of γ

√
(p + 1)Ngr/Z. Finally, using E1 and E2, the

outputs of the first and second estimations, respectively, we
calculate

e−rTγ
√

NgrPE1

E2
(72)

as an estimation of e−rT p⃗ · ⃗̃Y(τter). We present the detailed
procedure is described as Algorithm 2.

Algorithm 2 Calculate e−rT p⃗ · ⃗̃Y(τter)
Require:

γ ∈ R+ satisfying (64).
ϵ ∈ R+ satisfying (30) and (31).
ϵ1, ϵ2 ∈ R+ satisfying (73). ϵΨ̃mod

∈ R+ satisfying (75).
Accesses to the oracle UΨ̃mod

such that (70) and (74) and its in-
verse.
Accesses to the oracle UΠ such that (71) and its inverse.

1: Estimate the amplitude of |0〉 |0〉 in the state U†
Π

UΨ̃mod
|0〉 |0〉 by

QAE with tolerance ϵ1. Let the output be E1.
2: Estimate the square root of the probability that we obtain either

of p(k+ 2)+ 1, ..., p(k+ 3)+ 1 when we measure the first register
of |Ψ̃mod〉 by QAE with tolerance ϵ2. Let the output be E2.

3: Output e−rT γ
√

NgrPE1

E2
=: ω, where P is given by (50).

Here, taking some ϵ ∈ R+, we require the tolerances ϵ1 and
ϵ2 in calculating E1 and E2 be

ϵ1 = O

 (2π)d/2
√

det ρϵ

g
(∏d

i=1 ∆i

)
V̄

 , ϵ2 = O
(
ϵ

gV0

)
(73)

respectively, where V̄(tter) :=
√

1
Ngr

∑Ngr

k=1(V(tter, S⃗ (k)))2 is
the root mean square of the derivative prices on the
grid points at time tter, and S⃗ (k) := (S (k)

1 , ..., S (k)
d)T :=

(exp(x(k1)
1), ..., exp(x(kd)

d))T for k =
∑d

i=1 nd−i
gr ki + 1 with

k1, ..., kd ∈ [ngr − 1]0. Besides, we require that

‖ |Ψ̃mod〉 − |Ψmod〉 ‖ < ϵΨ, (74)

IPSJ SIG Technical Report

ⓒ 2022 Information Processing Society of Japan 9

Vol.2022-QS-5 No.17
2022/3/25

where

ϵΨ = O (max{ϵ1, ϵ2}) . (75)

These requirements guarantee the overall error to be smaller
than ϵ. We formally state these points along with the com-
plexity of the procedure in Theorem V.1.

Theorem V.1. Consider Problem 1. Assume that Assump-
tions II.1, IV.1, V.1, V.2, V.3 and V.4 are satisfied. Then, for
any ϵ ∈ R+ satisfying (30) and (31), Algorithm 2 outputs the
real number ω such that |ω − V0| = O(ϵ) with a probability
higher than a specified value (say, 0.99). In this procedure,
O

(D× poly
(
logD))

queries to OF,1, OF,2, O ⃗̃fpay
, and OC⃗ are

made, where

D := max


√∏d

i=1 ∆id2Ξσ2
maxτter

(4π)d/4(det ρ)1/4 , dη
d∏

i=1

(ui − li)


×max


(∏d

i=1 ∆i

)
V̄

(2π)d/2
√

det ρ
,V0

 × gκVd4σ2
maxτter

ϵ2 , (76)

σmax := maxi∈[d] σi, Ξ := max{ξ, ζ/d}, τter :=
T − tter, tter is defined as (33), ∆i is defined as
(51), g := maxτ∈[0,τter] ‖⃗̃Y(τ)‖/‖⃗̃Y(τter)‖, V̄(tter) :=√

1
Ngr

∑Ngr

k=1(V(tter, S⃗ (k)))2, and κV = ‖V‖ · ‖V−1‖ is the
condition number of V, which diagonalizes F.

Note that the upper bound of the complexity does not
have any factor like (1/ϵ)poly(d), which means the tremendous
speedup with respect to ϵ and d compared with the classi-
cal FDM. On the other hand, the exponential dependence on
d has not completely disappeared. In fact, there are factors
in the form of the d-times product of some numbers such as∏d

i=1(ui − li) and
∏d

i=1 ∆i. Recall that ui − li = log(Ui/Li) is
the width between boundaries in the direction of xi, the loga-
rithm of the i-th underlying asset price, and ∆i is that divided
by σi

√
tter, which roughly measures the extent of the proba-

bility distribution of xi at time tter. Therefore, these factors are
just logarithmic factors to the power of d. Also note that there
is a factor of O(d6), which is polynomial but rather strongly
dependent on d.

VI. SUMMARY

In this paper, we studied how to apply the quantum algo-
rithm of [10] for solving linear differential equations to pric-
ing multi-asset derivatives by FDM. FDM is an appropriate
method for pricing some types of derivatives such as barrier
options, but suffers from the so-called curse of dimensionality,
which makes FDM infeasible for large d, the number of under-
lying assets, since the dimension of the corresponding ODE
system grows as (1/ϵ)poly(d) for the tolerance ϵ, and so does
the complexity. We saw that the quantum algorithm for solv-
ing ODE systems, which provides the exponential speedup
with respect to the dimensionality compared with classical
methods, is beneficial also for derivative pricing. In order to
address the specific issue for derivative pricing, that is, ex-
tracting the present price from the output state of the quan-
tum algorithm, we adopted the strategy that we calculate the
present price as the expected value of the price at some appro-
priate future time tter. Then, we constructed the concrete cal-
culation procedure, which is combination of the algorithm of
[10] and QAE. We also estimated the query complexity of our
method, which does not have any dependence like (1/ϵ)poly(d)

and shows tremendous speedup with respect to ϵ and d.

We believe that this paper is the first step for the research in
this direction, but there remains many points to be improved.
For example, we should consider whether the assumptions we
made can be mitigated. For instance, although we assume
that C⃗(τ) is time-independent (Assumption V.2), some prod-
ucts do not fit to this condition: e.g., when we consider the
upper boundary condition in the case of the European-call-
like payoff fpay(S) = max{S − K, 0} with some constant K,
V(t, S) ≈ S − e−r(T−t)K and therefore Y(τ, x⃗) = erτV(t, S⃗) can-
not be regarded as constant for large S . In order to omit this
assumption, we might be able to extend the algorithm of [10]
so that it can be applied to time-dependent C⃗(τ). As a future
work, we will investigate the possibility of the quantum FDM
for the wider range of derivatives.

[1] K. Miyamoto and K. Kubo, IEEE Trans. on Quantum Engineer-
ing 3, 3100225 (2022)

[2] P. Rebentrost et al., Phys. Rev. A 98, 022321 (2018)
[3] N. Stamatopoulos et al., Quantum 4, 291 (2020)
[4] K. Kaneko et al., arXiv:2007.01467 (2020)
[5] S. Chakrabarti et al., Quantum 5, 463 (2021)
[6] D. J. Egger et al., IEEE Trans. on Quantum Engineering 1,

3101724 (2020)
[7] A. Bouland et al., arXiv:2011.06492 (2020)
[8] D. J. Duffy, “Finite Difference Methods in Financial Engineer-

ing: A Partial Differential Equation Approach”, Wiley (2006)
[9] D. W. Berry, Journal of Physics A 47, 10, 105301 (2014)

[10] D. W. Berry et al., Commun. Math. Phys. 356, 1057 (2017)
[11] T. Xin et al., Phys. Rev. A 101, 032307 (2020)
[12] A. M. Childs and J.-P. Liu, Commun. Math. Phys. 375, 1427

(2020)
[13] A. W. Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)
[14] A. Ambainis, 29th International Symposium on Theoretical As-

pects of Computer Science (STACS 2012), pp. 636 (2012)
[15] A. M. Childs et al., SIAM J. Comput. 46, 1920 (2017)
[16] G. Brassard et. al., Contemporary Mathematics, 305, 53 (2002)
[17] Y. Suzuki et al., Quantum Inf. Process. 19, 75 (2020)
[18] L. Grover and T. Rudolph, arXiv:quant-ph/0208112 (2002)
[19] M. Mottonen et al., Quant. Inf. Comp. 5, 467 (2005)

IPSJ SIG Technical Report

ⓒ 2022 Information Processing Society of Japan 10

Vol.2022-QS-5 No.17
2022/3/25

