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Abstract

The Quantum approximate optimization algorithm (QAOA) is a quantum algorithm that aims to
produce approximate solutions for combinatorial optimization problems. The quantum circuit parameters
of QAOA are optimized to find the optimal solution. Recent research found that, for the Max-cut problem,
the optimal parameters of the QAOA circuit for one graph with small number of nodes can be used for
another graph with larger number of nodes if their degrees have the same parity. In this paper, we
come up with the conjecture of the condition of parameter transfer for larger circuit Depth QAOA, and
numerically verify it for regular graphs.

I. Introduction

At the end of the 19th century, it was found
that classical theories could not explain micro-
scopic systems. Then through the efforts of
physicists, quantum mechanics was created in
the early 20th century to explain these phe-
nomena. As the investigation progressed, a
lot of theories and mathematical tools were
built by many famous scientists. Though, we
still do not fully comprehend the quantum na-
ture of reality. Applications based on quan-
tum mechanical laws, such as quantum com-
puting and other quantum technologies have
developed in the last 20 years.

Quantum computing is the study of the
information processing tasks that can be ac-
complished using quantum mechanical sys-
tems. Quantum computing has been shown
to solve problems that are hard to be solved
with a classical computer. A typical example
is Shor‘s algorithm [6] which is a polynomial-
time quantum computer algorithm for inte-
ger factorization. Furthermore, in 2014, the
quantum approximate optimization algorithm
(QAOA) was proposed by Farhi et al. [2] for

solving the classically NP-hard combinatorial
optimization problems, such as the Max-cut
problem.

QAOA is a quantum-classical hybrid al-
gorithm that the quantum circuits are con-
structed based on the set of variable param-
eters γ⃗ and β⃗. And these parameters are
optimized with a classical optimizer for the
highest energy quantum states, Recently, it
is proven for low depth QAOA circuits on 3-
regular graphs that fixed parameters could be
used for other instances that come from some
reasonable distribution [1]. Then, Galda et al.
analyze the transferability of parameters be-
tween two graphs [3]. They summed up some
laws of parameter transferring in the case of
depth 1.

In this work, we find that for general
graphs, when the depth of QAOA circuits ex-
ceeds 1, the number of cases of subgraphs
goes vast. It is hard to demonstrate or ver-
ify the rules which determine the transferabil-
ity quality. We do some experiments of pa-
rameter transferring and come up with some
conjectures which are presented in Section IV.
In the next section, we introduce some back-

1ⓒ 2022 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2022-QS-5 No.7
2022/3/24



ground of the QAOA and Max-cut problem.
In section III, we summarize previous work on
parameter transfer.

II. QAOA

The Max-cut problem is to cut the nodes of a
graph into two sets and make the edges be-
tween the nodes form the two sets as many
as possible. The classical objective function of
Max-cut problems can be written as:

C(z) =
1
2 ∑

j,k∈E
(1 − (−1)zj(−1)zk ) (1)

where z = z1z1 . . . zn is the bit string, E is the
set of edges in the graph. The target of Max-
cut problems is finding the bit string that max-
imizes the objective function. The bit string
z is mapped as the basis vectors |z⟩ of a 2n

dimensional Hilbert space in QAOA. The ob-
jective is converted into a diagonal Hamilto-
nian C that each basis state corresponds to an
eigenstate. The Hamiltonian of the Max-cut
problem is constructed as:

C =
1
2 ∑

j,k∈E
(I − ZjZk) (2)

where Zj and Zk are the Pauli Z operators
which act on jth and kth qubits. In this way,
C(z) = C|z⟩.

The QAOA circuit prepares a parameter-
ized state of the form:

|ψ(β⃗, γ⃗)⟩ = UB(βp)UC(γp) . . .

UB(β1)UC(γ1)H
⊗

n|0⟩
(3)

where UC(γ) = e−iγC, UB(β) = e−iβB, B =

∑n
j=1 σx the mixer Hamiltonian. H the opera-

tor to prepare the initial state 1√
2n ∑

z
|z⟩, and p

is the layer number of QAOA circuits which
also which is also known as depth. The objec-
tive function can be rewritten as:

Fp(β⃗, γ⃗) = ⟨ψ(β⃗, γ⃗)|C|ψ(β⃗, γ⃗)⟩ (4)

We can find the optimal parameters (β⃗ and
γ⃗) using a classical optimizer such that objec-
tive function Fp(β⃗, γ⃗) is maximized.

III. Parameter Transfer

For the Max-cut problem, the objective func-
tion Eq.4 can be written in the following form:

Fp(β⃗, γ⃗) = ⟨ψ(β⃗, γ⃗)|C|ψ(β⃗, γ⃗)⟩

=
1
2
⟨ψ(β⃗, γ⃗)| ∑

j,k∈E
(I − ZjZk)|ψ(β⃗, γ⃗)⟩

=
|E|
2

− 1
2 ∑

j,k∈E
⟨ψ(β⃗, γ⃗)|ZjZk|ψ(β⃗, γ⃗)⟩

=
|E|
2

− 1
2 ∑

j,k∈E
f jk

The f jk can be seen as an individual edge con-
tribution to the total objective function. Be-
cause f jk is local to only two qubits, most of
the gates in the circuit cancel out. The circuit
with the remaining gates that have not been
eliminated can be seen as the QAOA circuit
of the subgraph. These subgraphs include the
edges whose distance to node j and k is less
than p.

Brandao et al. [1] found that, if the 3-
regular graphs are large enough, the sub-
graphs corresponding to most of the edges are
the same. Therefore, the parameters of QAOA
circuits could be fixed in this case. Inspired by
this research, Galda et al. [3] come up with a
strategy that optimizes the QAOA for a small
graph which is called donor, then uses the
donor‘s parameters for a large graph, called
the acceptor. This process is known as param-
eter transfer. If the donor‘s parameters max-
imize the objective function of the acceptor‘s,
it is a successful optimal parameter transfer-
ability. They studied the conditions that op-
timized parameters for one graph could also
maximize the QAOA objective function for an-
other graph.

Galda et al. focus on the p = 1 case.
They found good transferability of parame-
ters was in even-to-even and odd-to-odd sub-
graphs. For the general random graph, they
did parameter transfer experiments between
55 subgraphs with the maximum degree less
than or equal to 6. The results show that
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Figure 1: Transferability map between 8-node 3- 4- 5- regular graphs and 64-node 3-regular graphs. Deeper blue
represents better transferability . 3- and 5- regular graph donors show better transferability than 4- regular
graph donors for 3-regular graph acceptors.

when the degrees of node j and k are both
odd or both even, the parameters of its sub-
graph show a good transferability for the sub-
graphs with the same characteristic. Also, it
works well between the subgraphs with mixed
degrees.

IV. Experiments

Based on the results from [3], we conjecture
that optimized parameters can be successfully
between regular random graphs which have
the same parity when p exceeds 1. We do a
brief series of experiments to verify this con-
jecture. We randomly generate 8-node 3- 4- 5-
regular graphs of 3 each as donors, and 10 64-
node 3-regular graphs as acceptors. We set p
as 2, and transfer the parameter from donors
to acceptors.

i. Details of Implementation

For the simulation of QAOA circuits, we
consider that, from the classical perspective,
QAOA consists of tensor calculations. This
is like some deep learning models, such as
Convolutional Neural Network. Usually, GPU
is used for accelerating computing for these
deep learning models. Inspired by this, we
use PyTorch [5] which is a widely used deep
learning framework to help to use GPU easily
to simulate the QAOA. We use an RTX 3080 Ti
graphic card which has 12 Gigabytes VRAM
that allows us to simulate 14 qubits. Coin-
cidentally, the largest subgraph of the graph
whose max degree is 3 includes 14 nodes
when p equals 2. Consequently, we could
simulate QAOA for large 3-regular random
graphs.

For the classical part of QAOA, we choose
to use the Nelder-Mead method [4], an algo-
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(a) Landscapes of Three 8-Node 3-Regular Graphs
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(b) Landscapes of Three 8-Node 4-Regular Graphs
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(c) Landscapes of Three 8-Node 5-Regular Graphs

0.0 0.64 1.28 1.92 2.56
1

0.
0

1.
28

2.
56

3.
85

5.
13

1

2=4.0321  2=1.8505  

30

40

50

60

70

0.0 0.64 1.28 1.92 2.56
2

0.
0

1.
28

2.
56

3.
85

5.
13

2
1=3.6212  1=1.0286  

30

40

50

60

70

32

37

44

54

16

47

15 6011

23
2155

13

17
4 48

36
46

0

62

29
43

56
57

25

1

35 8

50

6

38

7

51

10
31

24
30

59
61

27
5220

26

2

14

19

22

12
58

3

40

49

18

34

39

2841

9

45
33

63

5

53

42

(d) Landscape of One 64-Node 3-Regular Graph

Figure 2: Landscapes. Deeper red represents the higher energy of the prepared states.
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rithm for finding the minimum or maximum
of an objective function in a multidimensional
space, which has the advantage of not requir-
ing a derivable function and converging to a
local minimum relatively quickly.

In addition, we found that there are mul-
tiple close optimized expected values that cor-
respond to different sets of parameters for one
graph when p exceeds 1. For the ease of anal-
ysis, we fix the initial value of the parameters
to get similar optimized parameters.

ii. Results and Analysis

In this work, we use the transferability ratio
Fp(β⃗♯ ,γ⃗♯)

Fp(β⃗∗ ,γ⃗∗)
(β⃗♯ and γ⃗♯ are donor‘s optimized pa-

rameters) to evaluate the quality of the trans-
ferability.

As shown in Fig. 1, parameters from 3- and
5- regular graph donors work well on the 3-
regular graph acceptors, which is in line with
our expectations.

Since the parameter set is in a high-
dimensional space when p is greater than 1, it
is difficult to visualize the landscape. For this
reason, we change one set of γ and β of the
optimized parameters and fix the rest of the
parameters to get landscapes Fig.2. We can
see the maxima position of 8-node 3- 5- reg-
ular graphs and 64-node regular graphs are

very close. This explains why the parame-
ter transfer is successful. Meanwhile, 4- regu-
lar graphs show different contributions, which
further validates our conjecture.

V. Conclusion and Future Work

In this paper, we show that the parameter
transfer still has a good performance when p
equals 2. Therefore, the conjecture about pa-
rameter transfer in regular graphs also applies
to the case when p exceeds 1.

In the future, we will work on the pa-
rameter transfer between the general random
graphs. As shown in Table 1. when p exceeds
1, the number of kinds of subgraphs goes mas-
sive. Meanwhile, the subgraphs‘ node number
will go beyond common classical computers‘
simulation capacity. We think it will be a chal-
lenge to find or verify some parameter transfer
laws for general random graphs with larger p.

Table 1: Number of Subgraphs

p

Max Degree 1 2 3

2 3 5 6
3 9 527
4 19
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