
Electronic Preprint for Journal of Information Processing Vol.30

Regular Paper

ComposableThreads: Rethinking User-level Threads
with Composability and Parametricity in C++

Wataru Endo1,a) Shigeyuki Sato2,b) Kenjiro Taura2,c)

Received: May 1, 2021, Accepted: December 3, 2021

Abstract: User-level threading or task-parallel systems have been developed over decades to provide efficient and
flexible threading features missing from kernel-level threading for both parallel and concurrent programming. Some
of the existing state-of-the-art user-level threading libraries provide interfaces to customize the implementation of
thread scheduling to adapt to different workloads from both applications and upper-level systems. However, most of
them are typically built as huge sets of monolithic components which achieve customizability with additional costs
via concrete C APIs. We have noticed that the zero-overhead abstraction of C++ is beneficial for assembling flexible
user-level threading in a clearer manner. To demonstrate our ideas, we have implemented a new user-level threading
library ComposableThreads which provides customizability while minimizing the interfacing costs. We show that
the users can pick up, insert, or replace the individual classes of ComposableThreads for their own purposes. Com-
posableThreads offers several characteristic abstractions to build high-level constructs of user-level threading including
suspended threads (one-shot continuations) and lock delegators. We evaluate both the customizability and performance
of our runtime system through the microbenchmark and application results.

Keywords: user-level threading, fibers, work stealing, zero-overhead abstraction, composability, lock delegation

1. Introduction

As multi-core processors have become dominant in commod-
ity computer systems, it is increasingly important to use multi-
threading to accelerate programs. Most of the modern operat-
ing systems provide multithreading interfaces to user programs,
e.g., POSIX threads, which internally schedules threads inside
the kernel. Because kernel-level threading suffers from substan-
tial overhead via system calls, it is also common to develop
user-level threading runtime systems to handle fine-grained par-
allelism more flexibly.

There are many user-level threading systems that support
generic threading [16], [19], [20], [26]. It is also known that
specialized systems provide better performance in specific cases.
To fill the gap of these, Argobots [23] was designed as a stack-
able scheduler that can serve as a low-level threading and tasking
framework for both of the scenarios. Instead of providing a uni-
form scheduling policy such as random work stealing, Argobots
enables users to customize the scheduling policy for their own
purposes.

In addition to the scheduling policy, we have noticed other
demands to customize the default threading framework. First,
threading frameworks should provide structured components that
facilitate implementing different locking schemes because no

1 No affiliation. This work was done at Graduate School of Information
Science and Technology, The University of Tokyo

2 Graduate School of Information Science and Technology, The University
of Tokyo, Bunkyo, Tokyo 113–8656, Japan

a) endo.wataru@gmail.com
b) sato.shigeyuki@mi.u-tokyo.ac.jp
c) tau@eidos.ic.i.u-tokyo.ac.jp

locking scheme systematically performs the best in all cases [10].
However, existing threading libraries tend to hide their compo-
nents for implementing locking in the implementation details and
merely provide monolithic interfaces hard to customize. Second,
to improve the concurrency of I/O operations, it is common to
allocate a dedicated polling thread on top of user-level thread-
ing systems, where we require suspending and restarting it (as in
Ref. [7]). Existing threading libraries provide condition variables
for this purpose, but they are tightly coupled with mutexes and
add the synchronization overhead when the users implement their
own synchronization method for I/O delegation apart from the
mutexes. Third, programmers demand the profiling and logging
of user-level threading systems with minimal overhead because
the total performance of applications can suffer considerably from
the underlying threading layers. Although the hooks of injected
function pointers enable us to implement threading systems to be
customizable, the function-pointer-call overhead is not negligible
particularly when we would like to observe behaviors as close
to the original execution as possible. Therefore, existing thread-
ing systems often contain a bunch of C preprocessor macros and
conditionals for profiling and logging with minimal overhead,
making the code hard to customize. Finally, user-level thread-
ing can be extended to distributed-memory computing, namely,
distributed work stealing (e.g., Ref. [1]). Distributed work steal-
ing has the possibility of sharing many components with ordinary
shared-memory implementations, but the actual runtime systems
are entirely redeveloped in most cases.

We think that these problems conceptually arise from the same
cause: most of the existing threading systems cannot provide
useful abstractions to users without costs because they are hard-

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

coded in the C programming language. Since customizing a li-
brary inherently requires higher-order functions to be capable of
changing the behavior, existing threading systems either use func-
tion pointers with additional runtime costs or preprocessor magic
with production costs. Fortunately, generic programming in C++
enables us to develop zero-overhead abstractions demanded in
threading systems. Although there are some threading systems
written in C++ such as Intel TBB [11], they often focus on the
productivity in developing applications and not on that in devel-
oping threading systems. Our main concern is the following re-
search question: how can we design a composable and paramet-

ric user-level threading system without interfacing costs?

To answer this question, we have designed and implemented a
user-level threading library ComposableThreads in C++. Com-
posableThreads is a header-only library written in C++ which
extensively uses template meta-programming for customizability.
ComposableThreads is composable so that we can easily extend,
specialize, and exchange its components for different purposes
and platforms. The zero-overhead abstraction of C++ enables us
to create customizable threading libraries with minimal overhead.
Each component of ComposableThreads is also designed to stat-
ically check the types utilizing C++’s features.

Our main contributions are summarized as follows:
• We have designed and implemented a user-level threading

library ComposableThreads focusing on composability and
customizability (Sections 3 and 4). The source code of Com-
posableThreads is publicly available online *1.

• We experimentally demonstrate that our library can achieve
comparable performance to the other user-level threading li-
braries (Section 5).

• We give an actual case of extensive use of Compos-
ableThreads and show how well ComposableThreads works
for developing an elaborate system (Section 6).

2. Notions in User-level Threading and C++

There are two levels of parallelism in user-level threading li-
braries: a (user-level) thread and a worker. User-level threads
(ULTs), also called fibers, are lightweight threads under cooper-
ative scheduling managed by user-level runtime systems. Each
user-level thread has its own call stack. A worker (or an execu-
tion stream) is an object associated with a kernel-level thread that
concurrently schedules multiple ULTs.

User-level threading systems depend on the capability of user-
level context switching. Context switching transforms the current
state into a context, which can be a single C pointer to the top of
the call stack. The context enables us to resume itself on the cur-
rent thread, but it is insufficient for handling ULTs.

In this paper, we define a continuation as the reference to a sus-
pended ULT. Continuations allow accessing the saved contexts
of the corresponding ULTs. We only consider one-shot continu-
ations, which can be resumed only once, because it is costly to
resume the same continuation multiple times in C or C++.

In this paper, we assume APIs of ULTs shown in Fig. 1, which
are partly based on the C++ standard threading but designed for

*1 https://github.com/endowataru/composablethreads

Fig. 1 ULT APIs in C++.

Fig. 2 Concepts for special kinds of function types.

programming with explicit context switching and delegation.
This paper also assumes readers’ familiarity with C++ tem-

plate programming. In particular, we use the concepts [25] of
C++20 to describe the interfaces for templates. Figure 2 shows
concepts of special kinds of function types.

3. Design of ComposableThreads

3.1 Overall Design
The design of ComposableThreads has two key features:
• Policy-based parametrization [2] for everything;
• Higher-order interfaces at every level.
The former feature means that all the main components (shown

in Fig. 3) are defined as class templates parametrized with poli-
cies, which are instances to implement code fragments. This
policy-based design significantly facilitates extending, specializ-
ing, and exchanging the implementations of most of the compo-
nents for different purposes and platforms. This parametrization
is a zero-overhead abstraction because template parameters are
fixed at compile time.

The latter feature means that both high-level operations ex-
posed to users and low-level operations to implement high-level
ones are defined as higher-order functions (or corresponding
classes). Unlike common threading libraries, which provide first-
order APIs except for thread creation, ComposableThreads pro-
vides the higher-order API of delegation in the form of delegators,
which take user-defined code and delegate its execution to the in-
ternals of ComposableThreads. By designing most of the internal
interfaces as higher-order ones, ComposableThreads can handle
delegation uniformly with other threading functionality.

The following two subsections describe these key features
more concretely, and then the later subsections describe how
ComposableThreads deals with the notions of user-level thread-
ing.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 3 Dependency graph of the main component classes in Compos-
ableThreads.

3.2 Policy-based Design in C++
ComposableThreads extensively employs policy-based de-

sign [2], one of the generic programming techniques in C++.
There is a default policy class that can generate the default user-
level threading scheduler:

struct default_sct_policy {

template <typename P>

using log_aspect_t = basic_log_aspect <P>;

template <typename P>

using context_policy_t = context_policy <P>;

template <typename P>

using worker_deque_t = chaselev_worker_deque <P>;

template <typename P>

using worker_t = basic_worker <P>;

template <typename P>

using task_pool_t = basic_sct_task_pool <P>;

template <typename P>

using thread_t = basic_thread <P>;

template <typename P>

using mutex_t = basic_sct_mcs_mutex <P>;

template <typename P>

using scheduler_t = basic_sct_scheduler <P>;

/ / . . .
};

For example, the internal logging of the threading components
can be controlled via log_aspect_t in the policy class. Pa-
rameterization through template meta-programming brings zero-
overhead instrumentation of the components without the heavy
use of preprocessor conditionals because calling the functions in
the policy class is processed at compile time and can be com-
pletely inlined. This approach also applies to performance profil-
ing.

To customize some of the classes, users can define a derived
policy class:

struct my_sct_policy : cmpth::default_sct_policy {

template <typename P>

using worker_deque_t = my_worker_deque <P>;

};

With this derived policy, a new threading module can be in-
stantiated at compile time:

using my_sct_itf = cmpth::sct_itf<my_sct_policy >;

my_sct_itf::thread t(f);

t.join();

The rest of this paper explains the components as if they are
not using policy classes for brevity. The real implementation

provides most of the components as template classes, which can
change their policy classes.

3.3 Higher-order Context Switching
Context switching is the core functionality of user-level thread-

ing. Because of cooperative scheduling, every ULT API (not lim-
ited to yield()) implicitly involves context switching. Because
most of the APIs are first-order operations, they are commonly
implemented with lower-level first-order ones. In contrast, Com-
posableThreads implements context switching with lower-level
higher-order operations, which contributes to making it so modu-
lar and compact.

Figure 4 shows the context-switching functions of Compos-
ableThreads. The important difference from ordinary imple-
mentations is that these functions take a user-defined function
called on top of the call stack of another thread. This is similar
to call with current continuation of Scheme programming lan-
guage [22], but this context switching is a more low-level func-
tionality for efficient threading.

The idea itself, calling the function on another user-level
context in C/C++, is not novel; e.g., ontop_fcontext() in
Boost.Context [15]. However, such higher-order operations are
merely optional and provided for specific purposes in existing
threading libraries. Our key observation is that higher-order
context-switching primitives are practically inevitable for effi-
cient parallel implementation. This is because context switching
(i.e., taking the current continuation) and other operations with
the continuation should be atomically done. Although it is still
possible to guard the resources for saving continuations via mu-
texes, for example, such a method degrades the performance be-
cause it requires hardware atomic instructions by nature.

Instead of such costly interactions between threads, delegating
operations that eventually involve context switching to threads
is simpler and more efficient. Moreover, this delegating higher-
order primitive naturally leads to the implementation of the del-
egation API of ULTs. Everything thus becomes uniformly con-
nected.

Table 1 and Table 2 show the comparison of context switching
functionalities in different threading systems. For higher-order
switching functions provided by ComposableThreads, which
take user-defined functions executed on top of another call
stack, other libraries may or may not support them. In addi-
tion, as far as we know, no other threading systems support
cond_swap_context(), which is useful for implementing mu-
texes on user-level threading described later. ComposableThreads
does not support first-order functions without a function argu-
ment, but they can be emulated by passing a function that does
nothing in its body.

In detail, there are five context switching primitives:
• save_context() saves the current context and calls the

specified user-defined function with the saved context on a
new call stack area. If this function normally returns, the
saved context of the original thread is resumed.

• restore_context() abandons the current context and
calls the specified user-defined function on top of the next
thread’s context. After that, it resumes the context of the

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 4 Four context switching primitives of ComposableThreads. Each user-level thread has its own call
stack with multiple stack frames. A red zone is the special area of a call stack that may be used by
the program without adjusting the stack pointers.

Table 1 Support of higher-order delegating context switching functions in user-level threading systems.

ComposableThreads save_context() swap_context() restore_context()

MassiveThreads [19] Not supported *1 myth_swap_context_withcall() myth_set_context_withcall()

Boost.Context [15] Not supported ontop_fcontext() Not supported
Argobots [23] init_and_call_fcontext() Not supported Not supported
libfibre [3], [13] stackDirect() stackSwitch() Not supported
∗1 This is achieved via the combination of myth make context empty() + myth swap context withcall(). This functionality is impor-

tant for MassiveThreads because it employs a work-first policy.

Table 2 Support of first-order context switching functions in user-level threading systems.

ComposableThreads make_context() restore_context() + empty func. swap_context() + empty func.
MassiveThreads [19] myth_make_context_voidcall() myth_set_context() myth_swap_context()

Boost.Context [15] make_fcontext() Not supported jump_fcontext()

Argobots [23] make_fcontext() take_fcontext() jump_fcontext()

libfibre [3], [13] stackInit() Not supported Not supported

next thread.
• swap_context() saves the current context and calls the

user-defined function with the saved context on top of the
context of the next thread.

• cond_swap_context() saves the current context and calls
the user-defined function as in swap_context first. The dif-
ference is that it can change the next execution path by the
return value of the user-defined function. In other words,
this function conditionally swaps the context depending on
the function result.

• make_context() (not shown in Fig. 4) prepares a new con-
text for the resumption. This function does not switch the
current context by itself and returns the newly created con-
text.

3.4 States of ULTs
The states of the ULTs are mapped to different types. When

a ULT is initialized, its type is call_stack because it does not

contain any context. When one of the workers start executing
or resumes the ULT, the ULT is converted to the running ULT
(running_thread) of the corresponding worker. If the worker
switches to another ULT or the scheduler loop, its running ULT
is extracted as a continuation.

3.5 Workers
The interface of ComposableThreads exposes workers for flex-

ibility as Argobots does. In ComposableThreads, one worker
consists of the following components:
• A scheduler context that represents the context of the sched-

uler. It is initialized as a null context. When the scheduler
loop saves its continuation for resuming a ULT, the scheduler
context is saved to this member.

• The pointer to a running ULT. It is initialized as a dummy
pointer representing the scheduler thread.

• A worker deque that pools a set of resumable ULTs. Because
resumable ULTs must be suspended, each worker deque

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

stores a list of continuations.
Because the worker itself does not need to be aware of the under-
lying real thread, it is not included as a data member.

In addition, users can retrieve the current worker thread by
calling worker::get_cur_worker(). This is internally imple-
mented as a (kernel-level) thread-local storage shared by all of
the workers. Most of the methods of the worker class need to
be called from the associated kernel-level thread. For debugging,
their instances can be checked at runtime. One of the exceptions
is a thief function that steals the ULT from a remote worker.

Figure 5 shows the function dependency graph related to the
worker class. Based on the context switching functions, the
worker class implements several functions:
• wk.suspend_to_new() suspends the current context and

calls the specified function at the specified call stack. The
saved continuation is passed as an argument of the specified
function. This call stack is converted to a thread, which is
registered as the running task of the worker. This method
internally calls save_context().

• wk.exit_to_cont() abandons the current context and
calls the specified function at the specified continuation. Af-
ter the specified function returns, the thread of the specified
continuation is resumed and registered to the worker as its
running task. Because this function does not save the cur-
rent context, it is mapped to restore_context().

• wk.suspend_to_cont() suspends the current context and
calls the specified function at the specified continuation.
This is implemented on swap_context().

• wk.cond_suspend_to_cont() suspends the current con-
text, calls the specified function at the continuation, and then
conditionally resumes to the continuation. This method uses
cond_swap_context() for conditional context switching.

These function calls can be used for implementing the other func-
tions:
• wk.execute() resumes the specified continua-

tion from the scheduler thread. This method calls
wk.suspend_to_cont() with the function which stores
the previous context to the scheduler context.

• The functions wk.X_to_sched() first pop the scheduler
context and then call wk.X_to_cont() with the continua-
tion of the scheduler context.

3.6 Suspended Threads
A suspended thread (suspended_thread) is an object that

holds a continuation, which we introduce to implement variants
of synchronization objects. While a continuation is a low-level
object irrelevant to workers, suspended threads implicitly access
the workers to push and pop the ULTs. This feature extends the
synchronization mechanism called uncond variables introduced
by Fukuoka et al. [8] for implementing software communication
offloading with a ULT library MassiveThreads.

The interface of suspended threads is shown in Fig. 6. A sus-
pended thread is a first-class move-only object. The move-only
constraint guarantees suspended threads to be one-shot continu-
ations, while it allows us to pass them to functions as arguments
safely and efficiently. The default constructor initializes it as the

Fig. 6 Interface of class suspended thread.

empty state, which is not associated with any thread. When the
method of a suspended thread saves the continuation of the cur-
rent thread, it transitions to a non-empty state associated with the
continuation.

The methods of a suspended thread sth are described as fol-
lows:
• sth.wait_with() suspends the current thread and saves

its continuation to the suspended thread. It takes a user-
defined function which is invoked on top of the call stack
of the resumed thread with the specified pointer arguments.
The returned boolean from the function instructs whether the
worker actually saves the continuation or cancels it. If it is
canceled, the suspended thread remains empty.

• sth.notify() resumes the continuation associated with
the suspended thread. It will put the continuation into one of
the worker deques, which is (usually) owned by the caller’s
worker. sth.enter() also resumes the continuation and
works similarly as sth.notify(), but it differs in the ac-
tual behavior because it saves the continuation of the cur-
rent thread, put it into the deque, and then resumes the con-
tinuation associated with sth. Both sth.notify() and
sth.enter() are interchangeable if performance does not
significantly matter.

• sth.swap_with() first suspends the current thread and
saves its continuation as sth.wait_with() does. It also
resumes the continuation associated with the suspended
thread. The suspension can be canceled in the same way
as defined in sth.wait_with(). sth.swap() is an alter-
native of sth.swap_with() without the specified function.

• The observer function (i.e., casting to bool) returns the state
of the suspended thread. If a continuation is associated with
the suspended thread, the observer returns true.

Note that higher-order APIs sth.wait_with() and
sth.swap_with() are zero-overhead abstractions because
they take the code of argument functions via template parameters
at compile time.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 5 Function dependency graph related to the worker class.

3.7 Mutexes
Mutexes and condition variables have been implemented on

suspended threads. In addition to ordinary methods such as
lock() and unlock(), ComposableThreads’ mutexes introduce
unlock_and_wait() which saves the continuation to a sus-
pended thread while it also unlocks the mutex.

3.8 Delegators
A delegator is a class that synchronizes between producer and

consumer threads for a shared resource. The design of delega-
tors in ComposableThreads is based on suspended threads. Lock
delegation has many implementation options and is often tightly
coupled with threading as in mutexes because lock delegation is
a variant of realizing mutual exclusion. To separate the imple-
mentation of delegators from the underlying threading system,
suspended threads are useful again because they enable zero-
overhead manipulation of continuations while hiding the detail
of the threading system. As described in Section 4.5 later, the
examples of delegator implementations introduce a helper ULT
for lock delegation to maximize concurrency, which requires sus-
pended threads to efficiently handle the helper ULT.

We describe the interface of delegators here. To use delegators,
the users define a consumer class as follows:

class my_consumer {

using exec_ret = tuple<bool, suspended_thread >;

public:

using delegated_func_type = /∗ . . . ∗ / ;
exec_ret execute(delegated_func_type&);

suspended_thread progress();

bool is_active() const;

};

It is required for the consumer object c to have the following
methods:
• c.execute(): This method executes the delegated func-

tion specified as the argument. The first element of the re-
turn value is true if the delegated function is executed by
calling c.execute(). Otherwise, the delegator will try to
execute the delegated function again later. The second ele-
ment of the return value is a suspended thread which is re-
sumed by the delegator later. Instead of waking it up inside
execute(), returning this suspended thread may improve
the performance because the worker thread of the delegator
can directly switch to the returned suspended thread.

Fig. 7 Interface of template class delegator.

• c.progress(): The progress function of the consumer.
The return value of this method works in the same way as
c.execute().

• c.is_active(): This method returns true if the delegator
needs to invoke the progress of the consumer.

The interface of lock delegation producers is shown in Fig. 7.
The producer methods of a delegator d are described as follows:
• d.lock_or_delegate() tries to lock the delegator first.

If it succeeds, it will immediately return to the caller
returning true. Otherwise, it calls delegate_func to
delegate a function to the consumer and returns false.
delegate_func can return a pointer to a suspended thread
where the continuation of the caller thread is saved. If this
returned pointer is null, the continuation is not saved. If lock
acquisition succeeds, the caller thread needs to unlock the
same delegator after it completes its critical section. If not,
because the caller thread is not locking the delegator, it shall
not unlock it either.

• d.execute_or_delegate() first tries to lock the delegator

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

as d.lock_or_delegate() does. If it succeeds, it executes
imm_exec_func on the same thread, unlocks the delegator,
and returns true. If not, delegate_func is called for del-
egation and returns false. This method is convenient when
a caller can encapsulate the critical section as a function ob-
ject.

• d.lock() waits for the lock acquisition of a delegator
as in a normal mutex and d.unlock() releases the lock.
d.unlock_and_wait() works in the same way described
in the mutex interface. With these methods, it is apparent
that delegators simply extend the interface of mutexes.

The consumer thread for delegator d can be started by
d.start_consumer() and stopped by d.stop_consumer().

The delegator for the specific consumer my_consumer is in-
stantiated as delegator<my_consumer>.

4. Implementation of ComposableThreads

In this section, we describe the implementation of Compos-
ableThreads based on template metaprogramming. We follow
MassiveThreads [19] for the core techniques to implement thread-
ing. Here, we focus on how our implementation is composed.

4.1 Context Switching for the x86-64 Architecture
Figure 8 shows the interface of the context switching policy.

Because we tried to hide architecture-specific issues from the
users of this policy, we suppose that this context switching policy
can be replaced easily with other implementations.

There are two technical points in this interface definition. First,
we can see that all of the parameters passed to the user-defined
function are pointers. This is because pointers can be efficiently
mapped to hardware integer registers in most of the processor
architectures. It is possible to pass multiple pointer parameters
as in MassiveThreads [19], and also, there is no limitation of its
count owing to variadic templates. Second, in context switch-
ing, it is possible to pass a pointer wrapped as transfer<T*>.
The return value of the user-defined function is transferred to
the next resumed context. We know that the same technique is
used in Boost.Context. Our interface adds the type safety be-
cause each context switching call requires that the equality of T
between context<T*> and transfer<T*>.

For the x86-64 architecture, we define the data structures for
context switching as follows:

struct context_frame {

void* rbp; void* rip; void* rsp;

};

struct x86_64_context_policy {

template <typename T>

struct context { context_frame* p; };

template <typename T>

struct transfer { T p0; };

template <typename T>

struct cond_transfer { T p0; int64_t flag; };

/ / other members . . .
};

To save the context efficiently in C or C++, it is neces-
sary to write architecture-specific assembly code. We use in-
line assembly as in MassiveThreads to minimize the interfac-
ing costs of context switching. We now show the function

Fig. 8 Interface of a context policy class.

save_context_void() for the x86-64 architecture, the type-
erased version of save_context():

using save_func_t =

transfer<void*> (*)(context<void*>, void*,

void*, void*, void*, void*);

transfer<void*> save_context_void(

void* sp, size_t size, save_func_t func,

void* arg1, void* arg2, void* arg3,

void* arg4, void* arg5) {

transfer<void*> ret;

/ / bind arguments to s p e c i f i c r e g i s t e r s
register void* arg4_r8 asm ("r8") = arg4;

register void* arg5_r9 asm ("r9") = arg5;

/ / a d j u s t the new s tack p o i n t e r
int64_t new_sp =

(reinterpret_cast <int64_t >(sp) & ˜0xF) - 0x8;

asm volatile (

"movq %%rsp, %%r15\n\t" / / prepare fo r saving
"andq $-0x10, %%rsp\n\t" / / a l i g n RSP
"subq $0x88, %%rsp\n\t" / / skip red zone
"pushq %%r15\n\t" / / save o r i g i n a l RSP
"leaq 1f(%%rip), %%rax\n\t" / / c a l c u l a t e RIP
"pushq %%rax\n\t" / / save resumed RIP
"pushq %%rbp\n\t" / / save RBP
"xchg %%rdi, %%rsp\n\t" / / swap s tack p t r s .
"pushq %%r15\n\t" / / save RSP to new s tack
"call %%rbx\n" / / c a l l user−def ined func t ion

"1:\n\t"

"popq %%rsp" / / r e s t o r e RSP
: / / output c o n s t r a i n t s
"+b"(func), "+D"(new_sp), "=a"(ret.p0),

"+S"(arg1), "+d"(arg2), "+c"(arg3),

"+r"(arg4_r8), "+r"(arg5_r9)

: / / no inpu t c o n s t r a i n t s
: "cc", "memory", "%r10", "%r11",

"%r12", "%r13", "%r14", "%r15" / / clobber a l l
);

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

return ret;

}

This function allows the number of pointer parameters up to
five. When exceeding, the wrapper function save_context()
automatically packs and unpacks the rest of the parameters.
The registers of the current context are saved as defined in
context_frame. Then, the stack pointer is swapped with the
next thread’s context and the user-defined function is invoked.

The important difference from the implementation of Mas-
siveThreads is that ours does not always save callee-saved reg-
isters but instead put every register into the clobbered list. This
is because compilers can detect whether the program needs to
save the registers or not. MassiveThreads’ context switching pes-
simistically saves all of the callee-saved registers, but when they
are not used in the user code, this is unnecessary. When we dis-
able inlining around this function, it will safely save all of the
callee-saved registers because the compiler knows that they must
be saved for the callee.

Restoring the context is implemented with only three instruc-
tions:

using restore_func_t =

transfer<void*> (*)(

void*, void*, void*, void*, void*, void*);

void restore_context_void(

context<void*> ctx, restore_func_t func,

void* arg0, void* arg1, void* arg2, void* arg3,

void* arg4, void* arg5) {

register void* arg4_r8 asm ("r8") = arg4;

register void* arg5_r9 asm ("r9") = arg5;

asm volatile (

"movq %[ctx], %%rsp\n\t" / / r e s t o r e RSP
"popq %%rbp\n\t" / / r e s t o r e RBP
"jmp %%rbx\n\t" / / c a l l user−def ined func .

: "+b"(func)

: [ctx] "g"(ctx.p), "D"(arg0), "S"(arg1),

"d"(arg2), "c"(arg3),

"r"(arg4_r8), "r"(arg5_r9)

: "cc", "memory"

);

}

This function simply restores the saved RSP and RBP and jumps
to the user-defined function. We intentionally used jmp be-
cause the return address is already recorded on top of the call
stack; it is the saved RIP of the resumed context (e.g., 1: of
save_context_void()). This is one of the hacks used in
ontop_fcontext() of Boost.Context to reduce one jump in-
struction.

Why do we put the frame pointer RBP exceptionally on top of a
saved context? It is because it contains the stack information for
the function invoked on top of the context. Although it is possi-
ble to correctly run the x86-64 programs without adjusting frame
pointers *2, it still helps debugging tools and enables us to show
backtraces correctly.

The remaining three functions are implemented in the com-
bination of these techniques. For cond_swap_context(), we
could not use the return address hack to implement conditional
context switching.

*2 -fomit-frame-pointer in GCC will skip adjusting the frame pointer.

4.2 Workers
We assume that the following members in the worker deque

class:

class worker_deque {

public:

void local_push_top(continuation cont);

void local_push_bottom(continuation cont);

continuation try_local_pop_top();

continuation try_remote_pop_bottom();

};

Three local functions are called by the same worker thread.
try_remote_pop_bottom() is called by thief worker threads.

Based on the worker deque class, the worker class is defined as
follows:

class worker : public worker_deque {

continuation sched_cont;

running_thread cur_th;

continuation local_pop_top() {

if (auto c = this->try_local_pop_top())

return c;

else return move(sched_cont);

}

public:

static worker& get_cur_worker();

template <typename Func, typename... Args>

worker& suspend_to_cont(

continuation next_cont , Args*... args)

requires returned_from_invocable <

worker&, Func, continuation , Args*...>;

template <typename Func, typename... Args>

worker& suspend_to_sched(Args*... args) {

return this->template suspend_to_cont <Func>(

this->local_pop_top(), args...);

}

/ / other members . . .
};

4.3 High-level Interface for Generic Threading
Creating and joining ULTs are considered primitive operations

for user-level threading systems. In ComposableThreads, be-
cause the worker class already defines most of the features nec-
essary for switching ULTs, the high-level functions for ULTs can
be implemented as simple wrapper functions with resource man-
agement.

First, we show that yield() can be simply implemented as
follows:

struct on_yield {

worker& operator() (worker& wk, continuation c) {

wk.local_push_bottom(move(c)); return wk;

}

};

void this_thread::yield() {

worker& wk = worker::get_cur_worker();

wk.suspend_to_sched <on_yield >();

}

yield() relinquishes the current worker thread. Returning to
the scheduler context implemented by suspend_to_sched() is
almost what yield() internally does, but it is still possible to
change minor behaviors such as where the continuation is pushed
to. In this implementation, the continuation is pushed to the bot-
tom of the worker deque (i.e., the thief side in work stealing), but
this is not the only choice; we can provide other implementations
by composing the primitive operations of the worker class.

Although the help-first version of fork can be simply translated

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

to an invocation of local_push_top(), it is considered difficult
to implement the work-first version because it requires an efficient
combination of context switching and the user-defined computa-
tion. In our composable approach, the work-first fork() can also
be easily implemented as follows:

template <typename F>

struct on_fork {

worker& operator() (

worker& wk, continuation cont, F* func) {

wk.local_push_top(move(cont));

(*func)(); func->˜F();

this_thread::exit();

}

};

template <typename Func>

thread thread::fork(Func&& func) {

worker& wk = worker::get_cur_worker();

call_stack stk = call_stack_pool::allocate(wk);

thread ret{stk};

using F = decay_t<Func>;

F& sf = stk.construct <F>(forward<Func>(func));

wk.suspend_to_new <on_fork<F>>(move(stk), &sf);

return ret;

}

This function first allocates a call stack from the pool (if avail-
able) and then switches to the new stack via suspend_to_new().
Upon the new stack, the generated continuation is pushed to the
worker deque. Then, the user-defined function object is called
and destructed. Thanks to the generic programming techniques, it
is observed that both the thread management and the user-defined
computation are seamlessly combined as a simple code fragment.

Other functions including exit() and join() are imple-
mented similarly. Since these functions need to change the con-
trol flow based on the ULT state, they are slightly more compli-
cated than the previous ones.

4.4 Synchronization Objects
Mutexes can be implemented on suspended threads. Here, we

show how suspended threads can be used to implement mutexes
based on MCS locks [18]. We first define the queueing node class
mcs_node and the members of the mutex class:

struct mcs_node {

atomic<bool> ready; suspended_thread sth;

};

class mutex {

atomic<mcs_node*> tail; mcs_node* head;

public:

void lock(); void unlock();

void unlock_and_wait(suspended_thread&);

};

Then, the lock method is defined as follows:

struct on_lock {

bool operator() (worker& wk, mcs_node* prev) {

prev->ready.store(true, memory_order::release);

return true;

}

};

void mutex::lock() {

worker& wk = worker::get_cur_worker();

mcs_node* cur = mcs_node_pool::allocate(wk);

mcs_node* prev =

tail.exchange(cur, memory_order::acq_rel);

if (prev == nullptr)

prev->sth.wait_with <on_lock >(wk, prev);

head = cur;

}

This implementation first allocates a node and replaces the tail
pointer with the allocated one. When there is no other thread
locking (or waiting for locking) the same mutex, this method im-
mediately succeeds. Otherwise, the current thread waits for the
notification of the lock release. To accomplish this, the suspended
thread can be used as the notification mechanism.

To ensure that another thread that will notify the waiting thread
properly loads its continuation, this method sets the ready flag
on the function passed to wait_with(). Because the interface of
suspended threads allows user-defined functions for switching,
synchronization objects can be implemented apart from the detail
of other scheduling components.

The unlock method is also implemented with suspended
threads:

void mutex::unlock() {

worker& wk = worker::get_cur_worker();

mcs_node* cur = head; head = nullptr;

auto expected = cur;

if (!tail.compare_exchange_strong(

expected, nullptr, memory_order_release)) {

while (!cur->ready.load(memory_order::acquire))

/∗ busy wait ∗ / ;
cur->sth.enter();

}

mcs_node_pool::deallocate(cur);

}

This example uses enter() to wake up the waiting thread be-
cause it is usually preferable to execute the critical sections for
the mutex in the same worker thread for reusing the caches, but it
is technically possible to replace enter() with notify().
unlock_and_wait() is implemented similarly to unlock(),

but when the mutex is being unlocked, this method needs to atom-
ically save the continuation for the next acquirer thread. To ensure
that, the CAS operation for unlocking is issued inside the func-
tion passed to wait_with(). If the CAS operation succeeds,
this worker thread can immediately switch to another thread. If
it fails, this thread cancels the context switching and goes back
to the previous function body by returning false in the passed
function. The higher-order delegating nature of wait_with()
offers the ability to efficiently implement this complex switching
pattern.

With the above implementation of mutexes, condition variables
can also be implemented easily with suspended threads:

class condition_variable {

struct wait_entry {

wait_entry* next; suspended_thread sth;

};

mutex wait_mtx; wait_entry* wait_cur;

public:

void wait(unique_lock <mutex >& l) {

wait_entry e;

wait_mtx.lock();

e.next = wait_cur; wait_cur = &e;

l.unlock();

wait_mtx.unlock_and_wait(e.sth);

l.lock();

}

void notify_one() {

lock_guard <mutex> lk{wait_mtx};

if (wait_cur) {

wait_cur->sth.notify();

wait_cur = wait_cur->next;

}

}

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

};

It is necessary to correctly wait for the notification while unlock-
ing the mutex for guarding the entries for waiting threads. This
can be achieved by unlock_and_wait() implemented in mu-
texes.

The current implementation of barriers is a centralized barrier
that serializes all of the threads accessing the barriers. Central-
ized barriers can be implemented on top of mutexes and condition
variables.

4.5 Delegators
In our implementation of delegators, each delegator object has

its own user-level thread which can execute critical sections inde-
pendently from other threads. This strategy generalizes the soft-
ware communication offloading technique proposed in the pre-
vious work [7]. Assume the case when the lock acquisition is
contended:
(1) If the next acquirer thread needs to execute the critical sec-

tion, it always needs to wait for the current lock owner.
(2) If the owner thread needs to execute the critical sections of

other succeeding threads, the owner thread cannot return to
its execution and causes starvation.

Introducing a helper thread naturally solves this problem by re-
suming the helper thread when necessary. Because this approach
oversubscribes threads, it is only feasible with user-level thread-
ing.

When start_consumer() (described in Section 3.8) is called,
the delegator forks a consumer thread and saves its continuation
as a suspended thread for preparing the delegation. Producer
threads accessing the delegator resume the consumer thread if
necessary.

We provide two kinds of implementations: list-based (queue-
based) or circular buffer-based implementations. The list-based
implementation is similar to that of the mutexes presented above.
Another implementation based on circular buffers imitates the
method of Ref. [7]. These two implementations can be switched
without changing the users’ code because the delegator interface
is defined to be independent of the actual scheduling policy.

4.6 Delegating I/O
As an example of using delegators, we have implemented a

wrapper for the socket I/O functions. The delegation strategy
is useful to handle I/O polling separately from the application
threads.

Our I/O delegator wrapper uses the epoll functionality of
Linux, which enables users to scale monitoring multiple file de-
scriptors. When calling socket(), the wrapper registers the re-
turned file descriptor to its epoll instance. The file descriptor is
internally set to the non-blocking mode. When an application
thread issues I/O operations via read() or other system calls, it
may fail to execute the I/O operation immediately due to the er-
ror codes EAGAIN or EWOULDBLOCK. In that case, the application
thread tries to start polling on a delegator thread.

The consumer class for I/O delegation is defined as follows:

class io_consumer {

using sth_list = vector<suspended_thread >;

unordered_map <int, sth_list> pends;

size_t num; int epfd;

public:

suspended_thread& make_pending(int fd) {

return pends[f.fd].emplace_back();

}

struct delegated_func_type {

int fd; suspended_thread sth;

};

tuple<bool, suspended_thread >

execute(delegated_func_type& f) {

make_pending(f.fd) = move(f.sth));

++num; return { true, nullptr };

}

suspended_thread progress() {

suspended_thread ret_sth;

epoll_event es[NUM_EVENTS];

int r = epoll_wait(epfd, es, NUM_EVENTS , 0);

for (int i = 0; i < r; ++i) {

if ((es[i].ef & (EPOLLIN|EPOLLIN)) != 0) {

auto& wake_list = pends[es[i].data.fd];

for (auto& sth: wake_list) {

--num;

if (ret_sth) sth.notify();

else ret_sth = move(sth);

}

wake_list.clear();

}

}

return ret_sth;

}

bool is_active() const { return num > 0; }

};

execute() consumes the delegated operation for I/O, which
simply pushes the continuation of the application thread.
progress() is enabled when there are any pending I/O opera-
tions and invokes epoll_wait()with an immediate timeout (the
fourth parameter). If there is an event notification on one of the
file descriptors, all of the suspended threads are resumed. One of
those resumed threads is returned directly as the return value of
progress() enabling the implementation of delegators to sus-
pend the delegator thread and switch to another immediately.

The producer class, which uses the consumer via a delegator
and is directly accessed by application threads, is defined as fol-
lows:

class io_producer {

io_consumer con;

delegator <io_consumer > del;

public:

ssize_t execute_read(int sockfd, /∗ . . . ∗ /) {
while (true) {

ssize_t ret = read(sockfd, /∗ . . . ∗ /);
if (ret == -1 && (errno == EAGAIN

|| errno == EWOULDBLOCK))

del.execute_or_delegate(

[=, this] () {

return &con.make_pending(sockfd); },

[=] (delegated_func_type& f) {

f.fd = sockfd; return &f.sth; });

else return ret;

}

}

};

execute_read() wraps the original read() system call as an
example. Other I/O functions are defined in the same manner.
When the actual system call fails, the producer informs the del-
egator thread to wait for the corresponding file descriptor. There
are two cases as described: whether the delegator thread is work-

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

ing or not. In either case, this wrapper function waits for the
completion of this application thread adding its continuation to
the pending list of the consumer object. This is accomplished by
returning the address of the (empty) suspended thread object to
the callee function implemented by the delegator class.

5. Evaluation

5.1 Experimental Settings
We have conducted two microbenchmarks to evaluate Com-

posableThreads. The first microbenchmark is the Fibonacci num-
ber calculation. The fib(n) microbenchmark calculates the n-th
Fibonacci number in parallel to measure the performance of the
primitive ULT features: creating and destructing ULTs.

The second microbenchmark is the fetch-and-add microbench-
mark. This benchmark creates multiple ULTs that execute critical
sections for incrementing the single shared integer variable. For
mutual exclusion, we tried the experiments either with a mutex or
a delegator. We measured the throughput with different numbers
of threads. The number of ULTs executing critical sections is set
to the same as the number of worker threads. We evaluated the
list-based implementation of delegators.

To evaluate the performance of I/O delegation, we used the web
server program of libfibre [3], [13], a user-level threading library
focused on accelerating I/O operations. This program uses ULTs
for multiplexing HTTP connections from clients. We modified
the original program for ComposableThreads because libfibre has
a different fiber interface from ours.

Table 3 shows the evaluation environment. We compared the
performance of the microbenchmarks with MassiveThreads and
Argobots. The experiments are conducted with almost the latest
versions of these libraries: MassiveThreads v1.0 and Argobots
with the commit hash 09ec354 *3. For the web server program,
we have also evaluated the original program with libfibre with
the commit hash 7367d83 *4.

Argobots provides the ability to select the scheduling policies
and pool implementations. For fair comparison, we set the sched-
ulers to the random work stealing mode. We allocated a FIFO
MPMC (multiple-producer multiple-consumer) worker deque for
each worker thread.

To generate the load for the web server program, we used
wrk [9], which was used in the paper of libfibre. Because our
evaluation environment had two NUMA nodes, we allocated one
NUMA node for the server and the other for the client. The
client program creates 28 threads and communicates with the lo-
cal server using 100 connections in total.

5.2 Microbenchmark Results: Fibonacci
Figure 9 shows the speedup comparison of calculating fib(45).

All of the speedup values are relative to the sequential execu-
tion time of ComposableThreads (147.4 seconds). The perfor-
mance of ComposableThreads was slightly slower than that of
MassiveThreads with high core counts. With 56 worker threads,
ComposableThreads was 21% slower than MassiveThreads. One
of the possible reasons is that the default policy of worker de-

*3 Committed on December 11, 2019.
*4 Committed on December 17, 2019.

Table 3 Evaluation environment (Oakbridge-CX [24]).

CPU Intel Xeon Platinum 8280
2.7 GHz (max. 4.00 GHz with Turbo boost)
26 cores × 2 sockets (Hyperthreading disabled)

Memory 192 GiB (DDR4)
OS CentOS Linux release 7.6.1810 (Core)
Compiler Intel C++ compiler 19.0.4.243

Fig. 9 Speedup comparison of fib(45).

Fig. 10 Speedup comparison of fib(34). The Y-axis is logarithmic.

ques in ComposableThreads, which can be replaced if necessary,
uses a balancing technique in memory pools (similar to Ref. [17])
for reusing call stacks to avoid resource imbalance. This tech-
nique adds overhead especially with a large number of threads.
Argobots could not execute fib(45) due to too much memory con-
sumption. We think that there is a problem in the memory pool
of Argobots for call stacks.

We also measured the execution time of fib(34) to compare
with Argobots as shown in Fig. 10. The sequential time of Com-
posableThreads is 0.737 second, which is too small for scaling
to many cores. The sequential performance of Argobots was
40.5 times slower than that of ComposableThreads. The parallel
speedup of Argobots is also apparently limited compared to the
other two systems. Although Argobots can work as a work steal-
ing scheduler, we can see that it is not optimized for this purpose
and exhibits a huge overhead for creating fine-grained threads. It
is also observed that ComposableThreads performs slightly better
than MassiveThreads with more than 30 cores in this configura-
tion.

5.3 Microbenchmark Results: Fetch-and-add
Figure 11 shows the throughput of critical sections using a sin-

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 11 Throughput of executing critical section for a mutex (or a delegator)
in the fetch-and-add microbenchmark.

gle mutex with varying numbers of threads. The throughput of the
single-threaded case is the best in all of the systems because it can
avoid synchronization between cores. In this microbenchmark,
Argobots performs better than others with small core counts, but
with more threads, ComposableThreads’ mutexes provide the sta-
ble throughput. Because the mutex implementations of both Ar-
gobots and MassiveThreads are based on spinlocks, the perfor-
mance in highly contended situations is degraded compared to
our queue locking approach. Since the mutex of MassiveThreads
scaled very poorly, we have omitted its result with more than six
threads.

Figure 11 also shows the throughput with a lock delegator. We
initially expected that introducing delegators would improve the
throughput of mutexes, but currently, they do not achieve better
performance using 3 threads or more. We are currently investi-
gating this result and suspecting that the resource management
for delegation entries is the bottleneck.

5.4 Application Benchmark Results: HTTP Server
Figure 12 shows the throughput of the HTTP server program.

The original implementation with libfibre was faster than our
modified version with ComposableThreads. Yet, our I/O dele-
gator scaled the I/O throughput up to 4.87 times using 8 threads
compared to the sequential one. From the result of the fetch-and-
add microbenchmark, we think that the delegator mechanism was
not the bottleneck of this benchmark. This result indicates room
for improvement in the implementation of the I/O delegator wrap-
per.

We should note that libfibre can avoid busy waiting when all of
the threads are waiting for I/O requests, whereas the current im-
plementation of ComposableThreads cannot. Implementing an
I/O-aware scheduling method for improving efficiency is left for
future work.

6. Use Case: A Distributed Shared Memory
Library

ComposableThreads was originally designed as the thread-
ing component of a distributed shared memory (DSM) library
MENPS [5], [6] and later separated as a standalone library. DSM
is a form of shared-memory systems implemented on top of
distributed-memory machines. MENPS was implemented in

Fig. 12 Throughput of HTTP server benchmark.

about 50 k LOC of C++ and composed of multiple library com-
ponents: the core library of DSM, the simple OpenMP runtime
system, the inter-node communication library [7], and Compos-
ableThreads. As in ComposableThreads, MENPS utilized pol-
icy classes for customizing its behavior. MENPS was able to se-
lect the underlying threading system at compile time through the
policy classes from ComposableThreads, MassiveThreads, and
kernel-level threading. ComposableThreads provided interface
classes for ULT libraries and kernel-level threading that imple-
ment the threading functions listed in Fig. 1, which enabled us
to easily switch the threading systems and debug the threading
behavior of MENPS.

There were three reasons why we introduced a new threading
library for building a DSM system. First, as described in Sec-
tion 4.5, inter-node communication offloading is closely related
to lock delegation, which necessitated the suspended threads as
a lightweight context switching mechanism. Second, to build a
purely library-based system without special compilers, MENPS
was implemented as everything-shared DSM [4] which places not
only global memory but also call stacks on the memory regions
shared via DSM. It was necessary for MENPS to invoke special
DSM operations for switching contexts from a normal call stack
to a shared call stack placed on DSM (and vice versa), which
could not be easily implemented in the existing libraries. To
implement this, the OpenMP runtime system of MENPS picked
up the context switching component of ComposableThreads de-
scribed in Section 4.1 to handle call stacks of application-side
threads with special care. Third, MENPS required an efficient
user-level threading library to schedule both application-side and
system-side threads concurrently. MassiveThreads was initially
used for handling systems-side threads, but ComposableThreads
superseded it. As a result, ComposableThreads sufficed all of the
requirements of MENPS for threading libraries.

ComposableThreads eventually served as a glue to connect dif-
ferent components seamlessly in MENPS. The beauty of Com-
posableThreads is best represented by the fact that it successfully
satisfied the three independent demands for building a DSM sys-
tem with minimal interfacing costs and code duplication. It ben-
efited particularly to profiling MENPS with MassiveLogger *5.
ComposableThreads enabled logging globally in a uniform man-

*5 https://github.com/massivethreads/massivelogger

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

ner like aspect-oriented programming, with a minimal perfor-
mance penalty. It thus met our desire for performance tuning.
Since the components of ComposableThreads were tested and
experimented with from multiple purposes within MENPS, we
could find and correct the interfacing issues in the early stage of
its development. We have also extracted and generalized useful
abstractions such as the suspended threads because we expected
that many scenarios in system programming require lower-level
threading abstractions without runtime costs than the existing
threading APIs.

Last but not least, we faced one downside of extensive use
of ComposableThreads in MENPS. ComposableThreads is a
header-only library full of templates. Almost all the compo-
nents are parameterized as templates and instantiated at com-
pile time to numerous classes and functions. This design in-
curs a long compilation time and sometimes unnecessarily ex-
pands the compiled code. We dealt with this problem by mak-
ing appropriate-grained modules composed of components of
MENPS and ComposableThreads as fully instantiated templates.
Such modules suppress code expansion because they are mono-
lithic and monomorphic. Moreover, they save compilation time
because the separate compilation of them is feasible. The down-
side of ComposableThreads thus has been manageable.

In summary, ComposableThreads worked for MENPS very
successfully, which deserves the justification of the design and
implementation of ComposableThreads.

7. Related Work

7.1 User-level Threading Systems
For supercomputers, it is common to develop user-level thread-

ing systems as work-stealing schedulers. The typical ex-
amples are MassiveThreads [19], Argobots [23], Qthreads [26],
Nanos++ [20], and libfibre [3], [13] *6.

Argobots can switch the implementations of several compo-
nents including schedulers and worker deques, but because those
components are separated as individual C modules and switched
with function pointers (like virtual function tables), they can
never be inlined and always suffer from function invocation over-
head beyond the modules. Shared pools are pessimistically im-
plemented with spinlocks because they cannot assume how the
other components are implemented, which results in poor scala-
bility shown in our evaluation.

MassiveThreads focused on improving the performance of
generic threading rather than parametricity. Although Mas-
siveThreads also implements an I/O wrapper, it is hard-coded in-
side the library and needs the configure option to be enabled.

Boost.Context is a context switching library in Boost, which is
used by Boost.Fiber [16]. Argobots also uses the modified ver-
sion of Boost.Context.

Unlike Argobots and MassiveThreads, libfibre dealt with
scheduling for applications in a shared computing environment
and so was designed to avoid busy waiting. We can implement
the core part of the libfibre scheduler, which consisted of local

*6 In Ref. [13], libfibre was called fred for anonymity reason. See the sup-
plementary material of Ref. [13] for the details: https://cs.uwaterloo.ca/
˜mkarsten/papers/sigmetrics2020 supplementary/

queues and a shared queue, on ComposableThreads by giving an
appropriate scheduler policy as scheduler t although we have
not done it yet. In contrast, it is nontrivial to implement the idle
sleep of libfibre on the current ComposableThreads.

7.2 Lock Delegation
ffwd [21] is a lock delegation method that uses dedicated

threads for executing critical sections. ffwd focused on increas-
ing the throughput of critical sections. The performance results
of ffwd were, in general, much faster than conventional methods
using spinlocks, queue-based locks, software transactional mem-
ory, and so on. This is because ffwd does not depend on any
atomic operations for mutual exclusion but on the round-robin
monitoring on dedicated spinning threads.

Klaftenegger et al. [14] proposed queue delegation locking to
implement lock delegation based on MCS locks and circular
buffers.

The main difference of our approach for lock delegation is sep-
arating the user-defined delegated operations from the detail of
thread schedulers.

8. Conclusions

ComposableThreads is a user-level threading library with
compile-time parametricity. ComposableThreads is implemented
as a C++ header-only minimal library that extensively uses zero-
overhead abstraction and static type checking for threading. In
this work, we have focused on the design of threading libraries
that facilitates the efficient plug-and-play of components and al-
lows us to integrate delegation APIs with common threading
functionality in a uniform manner. In the microbenchmark eval-
uation, it has been confirmed that the performance of Compos-
ableThreads was comparable to that of MassiveThreads.

ComposableThreads implements only a small set of user-level
threading features. To this library feasible for other purposes, it
is required to implement other missing features and evaluate with
other applications. Implementing tasklets (e.g., Refs. [12], [23])
or other acceleration techniques with the primitives of Compos-
ableThreads may also be interesting future work.

References

[1] Akiyama, S. and Taura, K.: Uni-Address Threads: Scalable Thread
Management for RDMA-Based Work Stealing, HPDC ’15: Proc.
24th International Symposium on High-Performance Parallel and Dis-
tributed Computing, pp.15–26, ACM Press (online), DOI: 10.1145/
2749246.2749272 (2015).

[2] Alexandrescu, A.: Modern C++ Design: Generic Programming and
Design Patterns Applied (2001).

[3] Barghi, S.: Improving the Performance of User-level Runtime Sys-
tems for Concurrent Applications, PhD Thesis, University of Waterloo
(2018).

[4] Costa, J.J., Cortes, T., Martorell, X., Ayguade, E. and Labarta, J.: Run-
ning OpenMP applications efficiently on an everything-shared SDSM,
Journal of Parallel and Distributed Computing, Vol.66, No.5, pp.647–
658 (online), DOI: 10.1016/j.jpdc.2005.06.018 (2006).

[5] Endo, W.: A Decentralized Implementation of Software Distributed
Shared Memory, PhD Thesis, The University of Tokyo (2020).

[6] Endo, W., Sato, S. and Taura, K.: MENPS: A Decentralized Dis-
tributed Shared Memory Exploiting RDMA, 4th IEEE/ACM Annual
Workshop on Emerging Parallel and Distributed Runtime Systems and
Middleware, IPDRM@SC 2020, pp.9–16, IEEE (online), DOI: 10.
1109/IPDRM51949.2020.00006 (2020).

[7] Endo, W. and Taura, K.: Parallelized Software Offloading of Low-

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Level Communication with User-Level Threads, HPC Asia 2018:
Proc. International Conference on High Performance Computing in
Asia-Pacific Region, Vol.Part F1346, pp.289–298, ACM Press (on-
line), DOI: 10.1145/3149457.3149475 (2018).

[8] Fukuoka, T., Endo, W. and Taura, K.: An Efficient Inter-Node
Communication System with Lightweight-Thread Scheduling, 2019
IEEE 21st International Conference on High Performance Comput-
ing and Communications; IEEE 17th International Conference on
Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), pp.687–696, IEEE (online), DOI:
10.1109/HPCC/SmartCity/DSS.2019.00103 (2019).

[9] Glozer, W.: wrk, available from 〈https://github.com/wg/wrk〉.
[10] Guerraoui, R., Guiroux, H., Lachaize, R., Quéma, V. and Trigonakis,

V.: LockUnlock: Is That All? A Pragmatic Analysis of Locking
in Software Systems, ACM Trans. Computer Systems, Vol.36, No.1,
pp.1–149 (online), DOI: 10.1145/3301501 (2019).

[11] Intel Corporation: Intel Threading Building Blocks, available from
〈https://www.threadingbuildingblocks.org/〉.

[12] Iwasaki, S., Amer, A., Taura, K. and Balaji, P.: Lessons Learned
from Analyzing Dynamic Promotion for User-Level Threading, SC18:
International Conference for High Performance Computing, Net-
working, Storage and Analysis, pp.293–304, IEEE (online), DOI:
10.1109/SC.2018.00026 (2018).

[13] Karsten, M. and Barghi, S.: User-Level Threading: Have Your Cake
and Eat It Too, Proc. ACM Meas. Anal. Comput. Syst., Vol.4, No.1,
pp.17:1–17:30 (online), DOI: 10.1145/3379483 (2020).

[14] Klaftenegger, D., Sagonas, K. and Winblad, K.: Queue Delegation
Locking, IEEE Trans. Parallel and Distributed Systems, Vol.29, No.3,
pp.687–704 (online), DOI: 10.1109/TPDS.2017.2767046 (2018).

[15] Kowalke, O.: Boost.Context, available from 〈http://www.boost.org/
doc/libs/1 63 0/libs/context/doc/html/index.html〉.

[16] Kowalke, O.: Boost.Fiber, available from 〈http://www.boost.org/
doc/libs/release/libs/fiber〉.

[17] Liétar, P., Butler, T., Clebsch, S., Drossopoulou, S., Franco, J.,
Parkinson, M.J., Shamis, A., Wintersteiger, C.M. and Chisnall, D.:
snmalloc: a message passing allocator, Proc. 2019 ACM SIGPLAN
International Symposium on Memory Management, ISMM 2019,
Singer, J. and Xu, H., (Eds.), pp.122–135, ACM (online), DOI:
10.1145/3315573.3329980 (2019).

[18] Mellor-Crummey, J.M. and Scott, M.L.: Synchronization with-
out contention, ASPLOS IV: Proc. 4th International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems, Vol.19, No.2, pp.269–278, ACM Press (online), DOI:
10.1145/106972.106999 (1991).

[19] Nakashima, J. and Taura, K.: MassiveThreads: A Thread Library
for High Productivity Languages, Concurrent Objects and Beyond,
Vol.8665, pp.222–238 (online), DOI: 10.1007/978-3-662-44471-9
(2014).

[20] Programming Models Group, Barcelona Supercomputing Center:
Nanos++, available from 〈https://pm.bsc.es/nanox〉.

[21] Roghanchi, S., Eriksson, J. and Basu, N.: ffwd: delegation is (much)
faster than you think, Proc. 26th Symposium on Operating Sys-
tems Principles - SOSP ’17, pp.342–358, ACM Press (online), DOI:
10.1145/3132747.3132771 (2017).

[22] Scheme Reports: Scheme Reports, available from 〈http://www.
scheme-reports.org/〉.

[23] Seo, S., Amer, A., Balaji, P., Bordage, C., Bosilca, G., Brooks,
A., Carns, P., Castello, A., Genet, D., Herault, T., Iwasaki, S.,
Jindal, P., Kale, L.V., Krishnamoorthy, S., Lifflander, J., Lu, H.,
Meneses, E., Snir, M., Sun, Y., Taura, K. and Beckman, P.: Argob-
ots: A Lightweight Low-Leve Threading and Tasking Framework,
IEEE Trans. Parallel and Distributed Systems (online), DOI: 10.1109/
TPDS.2017.2766062 (2018).

[24] Supercomputing Division, Information Technology Center, The
University of Tokyo: Introduction to the Oakbridge-CX Super-
computer System, available from 〈https://www.cc.u-tokyo.ac.jp/en/
supercomputer/obcx/system.php〉.

[25] Sutton, A.: Wording Paper, C++ extensions for Concepts, Technical
Report P0734R0 (Rev. N4674), ISO/IEC (2017).

[26] Wheeler, K.B., Murphy, R.C. and Thain, D.: Qthreads: An API for
programming with millions of lightweight threads, IPDPS ’08: Proc.
22nd IEEE International Parallel and Distributed Processing Sympo-
sium (online), DOI: 10.1109/IPDPS.2008.4536359 (2008).

Wataru Endo received his B.E., M.S.,
and Ph.D. from the University of Tokyo
in 2015, 2017, and 2020, respectively. He
is currently working as a professional en-
gineer.

Shigeyuki Sato is an Assistant Professor in the Graduate School
of Information Science and Technology at the University of
Tokyo. He received his Ph.D. from the University of Electro-
Communications in 2015. His research interest is in compilers
and parallel programming, especially, automatic parallelization,
program synthesis, high-level optimizations, domain-specific lan-
guages, parallel patterns, and tree/graph processing. He is also a
member of ACM and JSSST.

Kenjiro Taura is a Professor in the De-
partment of Information and Communi-
cation Engineering at the University of
Tokyo. He received his B.S., M.S., and
Ph.D. from the University of Tokyo in
1992, 1994, and 1997, respectively. His
major research interests spread parallel
and distributed computing, system soft-

ware, and programming languages. He is also a member of ACM,
IEEE, and USENIX.

c© 2022 Information Processing Society of Japan

