
Electronic Preprint for Journal of Information Processing Vol.30

Regular Paper

A NIC-driven Architecture for High-speed IP Packet
Forwarding on General-purpose Servers

Yukito Ueno1,3,a) Ryo Nakamura2 Yohei Kuga2 Hiroshi Esaki1

Received: May 31, 2021, Accepted: December 3, 2021

Abstract: We propose a high-speed packet forwarding architecture on general-purpose servers, in which a Network
Interface Card (NIC) drives packet forwarding by direct packet transfer to other NICs via a PCIe switch. The demand
for high-speed packet forwarding technology on general-purpose servers is increasing with the spread of networking
concepts such as Network Function Virtualization (NFV). However, the current architecture, which processes packets
by CPU, cannot achieve the similar degree of performance that hardware routers can provide because the processing
capacity of the CPU and the bandwidth of the main memory constrain the performance. Our proposed method, called
P2PNIC, overcomes this constraint by eliminating the CPU and the main memory from the entire packet forwarding.
In the P2PNIC architecture, a NIC determines to which NIC to forward the packets and directly transfers the packets to
the NIC over the PCIe. We evaluate the P2PNIC architecture by comparing it with the DPDK applications as examples
of the current architecture. The evaluation shows that the P2PNIC architecture achieves 3.44 times higher throughput
and up to 79% lower latency than the DPDK applications. This study offers a new approach in software-based network
infrastructure for achieving comparable performance with hardware routers in the future.

Keywords: Ethernet NIC, packet forwarding, PCIe, Peer-to-Peer DMA

1. Introduction

In commercial Internet Service Provider (ISP) networks, there
is a strong demand for faster IP router implementations, given
the continuous growth of Internet traffic. To meet this demand,
ISPs usually use hardware routers, which can accommodate sev-
eral tens of 100 Gbps ports. Hardware routers are composed of
multiple boards called linecards, connected by a switching fabric.
The linecard consists of integrated Ethernet ports and dedicated
ASICs, which have packet forwarding capacity at the rate of tens
of Tbps. The packet forwarding performance of hardware routers
is sufficient for the demand of today’s ISP backbone routers.

On the other hand, software routers have not yet achieved
the same level of performance as hardware routers, although re-
searchers and network service providers are actively pursuing
ways to accelerate them [2], [8]. The major reasons for the tech-
nical difficulties arise from the limitation of the processing ca-
pacity of the CPU and the bandwidth of the main memory on
general-purpose servers. In general-purpose servers used as soft-
ware routers, the Network Interface Card (NIC) receives packets
from the network and transfers the packets to the main memory
so that the CPU processes them, as shown on the left-hand side
of Fig. 1. For this architecture, which we refer to as CPU-driven
architecture in this paper, the bottleneck arises from the unavoid-

1 Graduate School of Information Science and Technology, The University
of Tokyo, Bunkyo, Tokyo 113–8656, Japan

2 Information Technology Center, The University of Tokyo, Kashiwa,
Chiba 277–0882, Japan

3 Innovation Center, NTT Communications, Minato, Tokyo 108–8118,
Japan

a) eden@g.ecc.u-tokyo.ac.jp

Fig. 1 The packet forwarding path of the current CPU-driven architecture
and the proposed P2PNIC architecture when the packets are incom-
ing from a NIC and forwarded to the other three NICs.

able involvement of the CPU and main memory in the packet for-
warding process. For example, the current fastest DDR SDRAM
standard has a bandwidth of 51.2 GB/s, which would accommo-
date eight 100 Gbps ports with four memory channels. Although
the bandwidth currently meets the level a single host would re-
quire, it is insufficient for the backplane capacity of the ISP back-
bone routers that accommodate several tens of 100 Gbps ports.

As a resolution of this bottleneck, we propose an IP router
architecture for general-purpose servers, called P2PNIC, which
achieves the packet forwarding without the involvement of CPU
and main memory. We also refer to this architecture as NIC-
driven architecture because the Ethernet NIC itself drives packet
forwarding; a NIC that received a packet (ingress NIC) deter-
mines a NIC that transmits the packet to the network (egress NIC)
by IP routing. Based on the determination, the ingress NIC trans-
fers the packet to the egress NIC via a PCIe switch, as shown on
the right-hand side of Fig. 1. By adopting the P2PNIC architec-
ture, the packet forwarding performance can be improved regard-

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 2 Comparison of the aggregate bandwidth of the Broadcom PEX series
PCIe switches and JEDEC DDR SDRAM standards. Because DDR
memory operates in half-duplex, the available bandwidth for packet
forwarding is calculated as half of its theoretical bandwidth.

less of the processing capacity of the CPU and the bandwidth of
the main memory. Instead of the performance limit of the CPU
and main memory, the aggregate bandwidth of the PCIe switches
on the server determines the performance of packet forwarding in
the P2PNIC architecture.

Figure 2 illustrates the advancements in the aggregate band-
width of the DDR memory and PCIe switches used in general-
purpose servers, revealing the potential for performance improve-
ment by the P2PNIC architecture. The current fastest PCIe switch
has more than 3 Tbps aggregate bandwidth, and it can accommo-
date up to 30 100 Gbps ports, which is higher than that of the
current fastest DDR SDRAM standard. Figure 2 also shows that
the aggregate bandwidth of PCIe switches has tended to improve
more rapidly in recent years compared with the DDR memory.
This is due to the emergence of applications such as machine
learning and data mining that require higher PCIe bandwidth for
direct communication between GPUs [24], [31]. Thus, the possi-
bility of significant improvement for the packet forwarding per-
formance on general-purpose servers exists if the main memory
can be eliminated in the process of packet forwarding.

In this work, we have implemented some variants of P2PNIC
architecture on Netronome’s SmartNICs [34] and conducted an
evaluation by comparing them with the DPDK applications as
examples of CPU-driven architecture. We extend our previous
work [43], which proposed the basic concept of the P2PNIC ar-
chitecture; whereas the previous method supports only forward-
ing packets to a single fixed port, this extended version supports
each NIC dynamically determining the destination port to which
to forward packets from multiple ports by IP routing. Moreover,
we have added measurements for the extension with several traf-
fic patterns that load multiple ports simultaneously and confirmed
that its throughput scales up to 160 Gbps at maximum. The eval-
uation shows that the P2PNIC architecture has 3.44 times higher
throughput and up to 79% lower latency compared with a DPDK
application in the highest load situation. The contributions of this
paper are as follows.
• We have proposed an architecture called P2PNIC, in which

a NIC directly communicates with other NICs to accelerate
packet forwarding inside general-purpose servers.

• We have demonstrated performance advantages of the
P2PNIC architecture, including throughput and latency com-
pared with DPDK applications in the evaluation.

• We have extended P2PNIC to support multiple Ether-
net ports and succeeded in scaling its performance up to
160 Gbps at maximum.

2. Related Work

Although hardware routers are used in ISP backbone networks,
the importance of software routers is increasing because it is a
fundamental technology for newer networking concepts such as
Network Function Virtualization (NFV). Software routers pro-
cess packets on general-purpose servers, and we refer to the cur-
rent architecture as CPU-driven architecture because all packets
are transferred to the main memory and processed by the CPU.
To date, the evolution of CPU and memory bandwidth and opti-
mizations by previous studies have improved the performance of
software routers based on the CPU-driven architecture. Never-
theless, the performance of CPU-driven architecture has not yet
caught up with the evolution of network link speeds. This sec-
tion reviews the advancements in hardware and software routers
and describes the limitation for performance improvement in the
CPU-driven architecture.

2.1 Hardware Routers
Hardware routers provide high bandwidth capacity on the peer-

to-peer communication form with multiple linecards and switch-
ing fabric [1], [45]. Nowadays, the bandwidth capacity of hard-
ware routers based on the switching fabric reaches as high as
160 Tbps [9]. The multiple linecards installed in a hardware
router process and transfer packets to other linecards through the
switching fabric independently. The distributed packet process-
ing and communication form in a single chassis contribute to the
total bandwidth in the equipment by allowing a large number of
linecards and the corresponding number of high-speed Ethernet
ports to be accommodated.

One of the factors that improves the performance of hardware
routers is the optimizations of the ASIC chip, an example of
which is the miniaturization of the manufacturing process and
the adoption of shared buffers. Broadcom’s Tomahawk 4 [4] is
one of the flagship switching ASIC chips processed by TSMC’s
7 nm process, which has a 25.6 Tbps throughput capacity. The
chip adopts a shared buffer architecture, in which all ports share
a single large pool for packet buffers. The shared buffer architec-
ture improves the tolerance for burst traffic while maintaining the
achievable throughput for all ports.

2.2 Software Routers
With the need for rapid deployment of new features that hard-

ware routers cannot provide—but that concepts such as NFV
can provide—software routers are actively studied and devel-
oped despite the spread of hardware routers. The Click Mod-
ular Router [22] builds a software router by composing simple
functions in the form of a graph. The Click Modular router has
been extended in subsequent studies because the abstraction al-
lows for both scalability and performance of software routers. An
example is RouteBricks [10], which achieves 35 Gbps throughput
on general-purpose servers by parallelizing router functionality
based on the Click Modular Router.

Another approach to improve the performance of software
routers is to use coprocessors to accelerate packet processing
in software routers. PacketShader [19] and subsequent stud-

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

ies [16], [42], [44] use GPUs to accelerate packet processing
as part of software routers. Adopting GPUs can improve the
throughput of the packet processing by exploiting their massive
parallelism while concealing the communication latency between
CPU and GPU by means of their batching manner. As a result,
PacketShader achieves 39 Gbps forwarding performance.

As a culmination of the technologies and studies mentioned
above, packet processing frameworks that focus on accelerat-
ing the I/O part of networking applications have been proposed.
DPDK [12] is one of the most popular packet processing frame-
works that provides a variety of packet processing libraries for
networking applications. Netmap [41] proposes a packet pro-
cessing framework by modifying in-kernel NIC device drivers
with supports for zero-copy, batching, and multiple queues.
These frameworks aim to accelerate various networking applica-
tions, whereas previous studies focused on accelerating software
routers [22].

A recent approach to reducing the pressure on the processing
capacity of the CPU and the bandwidth of the main memory is to
offload a part of the packet processing to SmartNICs. A Smart-
NIC is a NIC that has a high-speed Ethernet port, which is typ-
ically faster than 10 Gbps and provides a programmable mech-
anism to offload the part of the packet processing that the CPU
had processed. UNO [23] proposes a framework to offload packet
processing functions to SmartNICs transparently. Other propos-
als have been made to offload packet processing to SmartNICs
to speed up networking applications [27], [28], [32], [33]. The
common idea behind these technologies is to reduce data transfer
between the CPU and NIC by processing packets as close to the
network as possible.

2.3 The Problem of Packet Processing by CPU
Although the CPU and main memory are inevitable in CPU-

driven architecture, it is becoming clear that the degree of their
improvement cannot keep pace with the evolution of network link
speeds. In recent years, DDR memory has doubled in bandwidth
with each generation. However, as shown in Fig. 2, the bandwidth
of the DDR memory is unlikely to reach the level that can accom-
modate several tens of 100 Gbps ports within a few years. For ex-
ample, the current fastest DDR SDRAM standard (DDR5-6400)
with four memory channels cannot provide sufficient bandwidth
for more than eight 100 Gbps ports. Moreover, the processing
capacity of the CPU would be the next bottleneck for packet for-
warding in this architecture. According to the recent benchmark
of DPDK [35], accommodating a single 100 Gbps port requires
two CPU cores or more. Because the number of the CPU cores
used in the benchmark is 24, the CPU cannot accommodate more
than 12 100 Gbps ports. In addition, the increase in the process-
ing capacity of a single CPU core and the number of CPU cores
has stagnated [20].

In recent years, an approach to reducing the amount of traffic
that needs to be forwarded between the CPU and NICs at de-
vices closer to the network has been gaining attention. For that
purpose, techniques to offload packet processing to NICs are be-
ing actively studied and developed; these studies offload specific
applications (e.g., data analytics, transaction processing, and key-

value store [27]) or protocol stacks (e.g., IPsec [23] and TCP [32])
to NICs. With these techniques, a NIC modifies the content of the
packets to achieve the offloaded features and, if necessary, trans-
fers the processed contents to the CPU. This form of processing
reduces not only the load on the CPU but also the communication
amount between the CPU and NICs via PCIe.

However, except for primitive techniques such as IP checksum
offload, these techniques cannot be applied to IP routing across
NICs. The major reason is that modifying the content of the pack-
ets except for the IP header violates the design principle of IP that
IP routers provide datagram transport only. For example, Large
Receive Offload (LRO) improves the throughput of the TCP stack
at the end host by combining segmented TCP packets into a single
large packet in the NIC. However, if the technique is applied to
the intermediate IP routers, the routers can not restore the original
packets from the combined packets when sending them because
of the absence of original size information. Consequently, the
modification of the packet contents by the IP router would result
in unexpected problems in end-to-end communication.

3. P2PNIC Architecture

The rapid performance improvement of PCIe switches and the
remaining bottlenecks of software routers led us to the approach
of eliminating the CPU and the main memory from the entire
packet forwarding. Based on this approach, we propose a novel
packet forwarding architecture called P2PNIC. In this architec-
ture, the CPU and memory are not involved in packet forward-
ing. Instead, a NIC directly transfers packets to other NICs via
PCIe, as illustrated on the right-hand side of Fig. 1. Whereas the
CPU performs packet forwarding in the CPU-driven architecture,
the NICs perform packet forwarding in the P2PNIC architecture,
which we refer to as a NIC-driven architecture in this paper.

By completing the communication between NICs under a PCIe
switch, the P2PNIC architecture can overcome the limits of per-
formance improvement caused by the processing capacity of the
CPU and the bandwidth of the main memory. In addition, the
P2PNIC architecture can reduce the latency to forward a packet
by halving the number of packet transfers in the host. The CPU-
driven architecture requires at least two packet transfers between
the NIC and the main memory to forward a packet; one is from
the NIC to the main memory for processing the packet by the
CPU, and the other is from the main memory to the NIC to send
the packet to the network. In contrast, the P2PNIC architecture
requires a single packet transfer to forward a packet; the ingress
NIC decides to which NIC to send the packet, and then the NIC
transfers the packet to the egress NIC over PCIe. This effect
would be greater than the bare data transfer latency of PCIe be-
cause it also eliminates the processing for managing the packet
transfer, such as manipulating ring buffers.

To achieve direct packet transfer between NICs, the P2PNIC
architecture exploits the conventional data transfer method be-
tween CPU and NICs over PCIe called Direct Memory Access
(DMA). Although DMA is mainly used as the data transfer
method between NICs and the main memory, the PCIe specifi-
cation does not constrain the target memory region of the PCIe
transaction into the main memory. That is, if a memory region

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 3 Components and behavior of the CPU-driven architecture.

of a PCIe device is mapped into the physical address space, other
PCIe devices can issue DMA to the memory region of the PCIe
device. The DMA between PCIe devices is called Peer-to-Peer
DMA (P2P DMA), and the technique can be used with any PCIe
device, including commodity Ethernet NICs and SmartNICs in
principle, although recent studies focus on its application to GPU
and NVMe storage [3], [46]. The P2PNIC architecture is the first
scheme that applies the P2P DMA to packet forwarding between
Ethernet NICs to improve the performance of an IP router.

In the P2PNIC architecture, the configuration of PCIe on the
motherboard defines the performance limits of packet forward-
ing. In other words, the bottleneck shifts from the bandwidth
of the main memory to that of the PCIe bus. For example, the
upper limit of the aggregate bandwidth would be 3 Tbps for the
current highest grade PCIe switch [6]. Because it is expected that
the performance will continue to improve with the generation of
PCIe and its speed is faster than that of the DDR memory (Fig. 2),
the shift of the packet transfer path from the DDR memory to the
PCIe switch would be preferable for improving packet forward-
ing performance.

3.1 The Difference between CPU-driven and P2PNIC Ar-
chitectures

A major difference between the CPU-driven and P2PNIC ar-
chitectures is the placement of ring buffers for transferring pack-
ets. Commodity NICs send/receive packets through one or more
ring buffers allocated on the main memory, as shown in Fig. 3.
Each element of the ring buffer contains the metadata to describe
a single packet; the element is called a descriptor, and the en-
tire ring buffer is called a descriptor ring. The descriptor ring
for CPU–NIC communication is placed on the main memory and
updated by both the host CPU and NIC to synchronize the state
of packet sending and receiving. Inside the NICs, the controller
manages the manipulation of the descriptor rings and the packet
transfer to/from the main memory.

In the CPU-driven architecture, the device driver manages
NICs for sending and receiving packets. The workflow of the de-
vice driver can be classified into the initialization and packet I/O.
For the initialization, the device driver configures the NICs by set-
ting various parameters before it starts packet I/O. For example,
the device driver sets the starting address of the descriptor ring on
the main memory to each NIC, which is used by the NIC to up-

Fig. 4 Components and behavior of the P2PNIC architecture.

date the descriptor ring. After the initialization, the device driver
manages the packet I/O through the descriptor ring. For packet
receiving, the device driver informs the NIC of the memory ad-
dress of the packet buffer through the descriptor ring. When the
NIC receives a packet, if unused packet buffers remain, the NIC
transfers the content of the packet buffer to the main memory via
PCIe. After finishing the transfer of the packet buffer, the NIC
informs the device driver of the arrival of the new packet through
the descriptor ring. On the other hand, when sending, the de-
vice driver informs the NIC of the memory address of the packet
buffer waiting to be sent through the descriptor ring. When the
NIC detects the presence of the packets waiting to be sent, the
NIC retrieves the packets from the main memory to its packet
buffers via PCIe and sends the packets from its Ethernet ports.
The initialization and packet I/O are fundamental features in the
device driver for commodity NICs.

In P2PNIC architecture, NICs pass the packets to the destina-
tion NIC directly through the descriptor rings allocated on the
device memory inside the ingress and egress NICs, as shown in
Fig. 4. The descriptor ring is still required in the P2PNIC archi-
tecture as well as the CPU-driven architecture to pass the meta-
data of packets between the ingress and egress NICs. However,
in contrast to the CPU-driven architecture, the descriptor ring is
placed on the device memory of each NIC. The NIC that re-
ceived packets directly updates the descriptor ring placed on the
egress NIC through a PCIe switch to inform the egress NIC of
the presence of the newly arrived packets. In addition, the NIC
also transfers the contents of the packet buffer to the egress NIC
directly through the PCIe switch, as well as the update of the
descriptor ring. In this way, because all the information neces-
sary for packet forwarding is transferred under a PCIe switch, the
communication between NIC and main memory does not occur
in the packet forwarding.

The P2PNIC architecture also requires the device driver to ini-
tialize each NIC before starting packet forwarding, while the de-
vice driver is not involved in the packet forwarding process, un-
like the CPU-driven architecture. To achieve direct communica-
tion between NICs, each NIC has to know the physical addresses
of the packet buffers and descriptor rings of other NICs. There-
fore, the initialization includes informing each NIC of the phys-
ical addresses of other NICs’ packet buffers and corresponding
descriptor rings, for instance. On the other hand, after the initial-

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 5 Packet forwarding procedure of the P2PNIC architecture for DMA
Write.

ization, the packet forwarding is driven by each NIC without the
involvement of the device driver.

3.2 Methods for Direct Packet Transfer between NICs
In the P2PNIC architecture, the method to transfer the pack-

ets between NICs could be either DMA Write or Read. Figure 5
shows the packet forwarding procedure for the DMA Write ver-
sion of the P2PNIC architecture. To forward a packet, (1) the
NIC that received the packet issues a DMA Write to transfer the
packet to the device memory of the egress NIC. After finishing
the packet transfer, (2) the NIC notifies the egress NIC of the pres-
ence of the new packet by updating the egress NIC’s descriptor
ring. When the egress NIC detects the presence of the packet, the
NIC sends the packet via its Ethernet port. (3) The egress NIC
notifies the ingress NIC of the sending completion by updating
the ingress NIC’s descriptor ring. Both ingress and egress NICs
use DMA Write as the way to update the descriptor ring.

One concern about using DMA Write in conjunction with P2P
DMA is a possible DMA failure due to the congestion at the in-
termediate PCIe switches. In DMA between NICs, the required
bandwidth is not always ensured across the entire path between
the PCIe devices, while it is ensured between CPU and PCIe de-
vices. In the transaction layer of the PCIe, which adopts packet-
based communication, if data congestion occurs at a component
(e.g., PCIe switch) on the communication path, the component
may drop the PCIe packets called Transaction Layer Packets
(TLPs). To address this situation, either the detection of DMA
failure by dedicated mechanisms such as checksum at the PCIe
endpoint or the congestion control at intermediate PCIe compo-
nents is required.

As a way to maximize the performance in terms of throughput
and latency, this extended version of the P2PNIC architecture as-
sumes that the PCIe switch is equipped with the congestion con-
trol feature, which prevents the DMA failure due to TLP drop. In
fact, Broadcom’s PEX series, which is one of the most common
PCIe switches, provides this feature [5]. The PCIe switch for-
wards TLPs and holds them in internal buffers shared by all links
until the PCIe switch confirms successful transfer of the TLPs by
receiving acknowledgment packets from the destination PCIe de-
vice. When the buffers are exhausted in the PCIe switch due to
insufficient bandwidth on the destination PCIe device, the PCIe
switch will suspend the transmission of TLPs from the source
PCIe device by credit-based control. Therefore, if the source
PCIe device was a NIC in the P2PNIC architecture, the NIC stops
transferring TLPs of received packets to other NICs. In this way,
if all NICs are directly connected to this PCIe switch, the TLP
drop due to congestion and resulting DMA failure will not occur

Fig. 6 Packet forwarding procedure of the P2PNIC architecture for DMA
Read.

even for the DMA Write version of the P2PNIC architecture. If
the internal packet buffers in the NIC are also exhausted while
waiting for the resolution of the buffer exhaustion at the PCIe
switch, the ingress NIC drops packets at the Ethernet controller
for the receiving port, as is the usual behavior of NICs.

Another method for packet transfer between NICs is based on
DMA Read. Figure 6 shows the packet forwarding procedure for
the DMA Read version of the P2PNIC architecture. The major
difference from the DMA Write version is that the egress NIC
retrieves the content of a packet buffer, whereas the ingress NIC
transfers the content in the DMA Write version. Upon receiving
a packet, (1) the NIC that received the packet informs the egress
NIC of the presence of the newly received packet through the de-
scriptor ring. When the egress NIC detects the presence of the
packet, (2) the NIC issues a DMA Read to retrieve the packet to
its device memory. After finishing the packet transfer, the egress
NIC sends the packet via its Ethernet port. (3) The egress NIC
notifies the ingress NIC of the sending completion through the
descriptor ring.

3.3 Supporting Multiple Ethernet Ports
In this work, we extend the P2PNIC architecture to support

multiple Ethernet ports by using multiple descriptor rings and
corresponding buffers in each NIC. To support multiple Ether-
net ports, there is a limitation on the scalability of the number
of NICs due to the capacity of the NIC’s device memory. In
the P2PNIC architecture, each NIC has to maintain a dedicated
descriptor ring per egress NIC because the ring buffer is a data
structure for a single reader and a single writer. In this design,
because each NIC needs to hold descriptor rings and buffers for
each of the other NICs, the limit of the number of accommo-
datable NICs could be constrained by the capacity of the NIC’s
device memory. However, the actual number will vary depending
on the condition, such as the link speed of Ethernet ports and the
implementation of the firmware for the NIC. In this work, we
demonstrate the feasibility of accommodating four 40 Gbps Eth-
ernet NICs while maintaining high throughput and low latency by
the P2PNIC architecture.

The P2PNIC architecture supports IP routing as a method to
organize multiple Ethernet ports. In the P2PNIC architecture, an
ingress NIC has to determine the direction to which to forward
a packet because it forwards a packet to the egress NIC directly,
whereas the CPU plays that role in the CPU-driven architecture.
Therefore, a NIC that received a packet performs Longest Pre-
fix Matching (LPM) to determine to which NIC to forward the
packet before starting the procedure to transfer the packet. After
the LPM is finished, the NIC starts transferring the packet to the

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

NIC that the result of LPM indicates.

4. Implementation

To show the feasibility of P2PNIC architecture and its perfor-
mance advantage compared with the applications of CPU-driven
architecture, we implemented two types of P2PNIC architecture
as separated SmartNIC firmware that varies according to whether
DMA Write or Read is used for the communication between
NICs as described in Section 3.2. We refer to the variation that
uses DMA Write as P2PNIC-Wr and DMA Read as P2PNIC-
Rd. In addition, we implemented an example firmware of CPU-
driven architecture based on P2PNIC-Wr and P2PNIC-Rd named
P2PNIC-Bn, which transfers packets once to the main memory.
The purpose of P2PNIC-Bn is to observe the performance impact
of the differences between CPU-driven and P2PNIC architectures
while minimizing implementational differences.

To implement the P2PNIC architecture, fine-grained control of
the NIC’s processing and its DMA engine is a mandatory feature.
As a SmartNIC that meets the requirements, we adopt Netronome
Agilio CX 2x40GbE NICs, which equip two 40 Gbps Ethernet
ports and provide programmability of its network processing unit
(NPU) called NFP-4000 by customized C in a firmware. Based
on the programmability of the NIC, the P2PNIC-Wr consists of
the 1,148 LoC of the firmware and the 12,728 LoC of the DPDK-
derived device driver for NFP-4000.

On the other hand, it is currently difficult to implement the
P2PNIC architecture on NICs other than Netronome’s Smart-
NICs. To implement the P2PNIC architecture, there are two con-
ditions: the performance of the hardware and its programmability.
As for hardware performance, other SmartNICs [7], [37] already
meet the requirements with components such as 100 Gbps Ether-
net ports, PCIe 4.0, and large device memory. Their large device
memory would be able to provide a larger number of the descrip-
tor rings than Netronome’s SmartNICs, for instance. However,
they do not expect and provide programmability for some usage
required to implement the P2PNIC architecture. The usage in-
cludes addressing all received packets by a programmable mech-
anism in the NICs, exposing their device memory to other PCIe
devices, and issuing DMA Read and Write autonomously to arbi-
trary addresses. Therefore, the enhancement of the programma-
bility is the condition to implement the P2PNIC architecture on
other NICs.

Because the P2PNIC architecture performs as an IP router, and
the CPU is not involved in packet forwarding in P2PNIC archi-
tecture, the NIC has to perform LPM to determine the direction to
forward the packet. For P2PNIC-Wr, P2PNIC-Rd, and P2PNIC-
Bn, we adopt the state-jump table [25] as the LPM method be-
cause of its ease of implementation and performance. In addition
to the LPM processing, the implementation supports the manda-
tory features required for actual IP routing, including TTL decre-
ment, checksum calculation, and MAC address rewriting.

As described in Section 3.1, the P2PNIC architecture requires
a dedicated device driver to initialize each NIC. In the initial-
ization process for each NIC, the device driver enables Ethernet
ports and the PCIe endpoint of each NIC. In addition, the de-
vice driver gathers physical addresses of the descriptor rings and

packet buffers allocated on the device memory of each NIC to in-
form each NIC of the physical addresses. We implemented the
device driver in the user-space of the Linux OS using the VFIO
mechanism [26]. The VFIO mechanism enables device drivers
in the user-space to have the same level of functionality in the
kernel-space by exporting access permission of PCIe devices to
user-space applications.

To reduce the overhead for DMA Write to update the descriptor
ring of the egress NIC on a per-packet basis, we adopt the batch-
ing manner. With the batching manner, the ingress NIC checks
the presence of the packet waiting to be processed after it pro-
cesses an arrived packet. If the next packet has already arrived,
the NIC holds off updating the descriptor ring until there are no
more packets to process or the specified number of pending pack-
ets is accumulated. The batching manner improves the through-
put by reducing the processing overhead to update the descriptor
ring while increasing the latency to forward a single packet due
to waiting for the processing of the next packet.

5. Evaluation

We evaluate the P2PNIC architecture from the following three
aspects by comparing it with the DPDK applications as examples
of the CPU-driven architecture.
• How do throughput and latency differ between CPU-driven

and P2PNIC architectures when transferring a single flow
with the minimum configuration? (Section 5.1 and Sec-
tion 5.2).

• How much does the throughput of the CPU-driven and
P2PNIC architectures scale with multiple Ethernet ports?
(Section 5.3).

• What are the characteristics of the CPU-driven and P2PNIC
architectures with respect to CPU usage and power con-
sumption? (Section 5.4).

The DPDK applications we used for the evaluation were
TestPMD [14] and L3FWD [13]. TestPMD forwards packets
without any processing on the packet data for the performance
test of device drivers in DPDK. On the other hand, L3FWD for-
wards packets based on IP routing.

For the evaluations, we used two hosts connected with four
40 Gbps Ethernet links with direct attach cables, as shown in
Fig. 7. One of the hosts is for generating and receiving test traffic,
and the other is for forwarding the traffic with the implementa-
tions of the P2PNIC architecture and DPDK applications. We re-
fer to these two hosts as tester and forwarder hosts, respectively.
When P2PNIC-Wr and P2PNIC-Rd run on the forwarder host,

Fig. 7 Measurement setup for the evaluation: two Napatech NT200A02
NICs were installed in the tester host, and four Netronome Agilio
CX 2x40G NICs were installed in the forwarder host. The two links
below were used for the measurements in Section 5.3.

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

the CPU and main memory are not involved in the packet for-
warding process because each NIC directly forwards packets to
other NICs through a PCIe switch. On the other hand, P2PNIC-
Bn and DPDK applications require the CPU and main memory
to forward every packet. Note that for the measurement with a
single flow, we used only two Ethernet ports for both tester and
forwarder hosts.

For each measurement, we used two Napatech NT200A02
NICs as the traffic generator and receiver installed in the tester
host. The NT200A02 NIC supports measuring the throughput at
a rate of over 40 Gbps for 64-byte packets and the latency with the
accuracy of several nanoseconds by utilizing its hardware. In the
forwarder host, we used a single Ethernet port of each Netronome
Agilio CX 2x40GbE NIC because this NIC does not provide suf-
ficient PCIe bandwidth for accommodating two 40 Gbps Ethernet
ports running at the wire-rate as its specification. The NICs in the
forwarder host were installed under the same PCIe switch. The
tester host was a machine based on the SuperMicro 4029GP-TRT
with two Intel Xeon Gold 6246R 16 core CPUs and four 16 GB
DDR4-2933 memories (two memory channels per CPU), and the
forwarder host was based on the SuperMicro 4029GP-TRT2 with
two Intel Xeon Gold 6246R 16 core CPUs, four 16 GB DDR4-
2933 memories (two memory channels per CPU), and two Broad-
com PEX 9797 PCIe switches. Note that the packet forwarding
performance of P2PNIC-Bn and DPDK applications could be im-
proved by the chipset’s feature called Data Direct I/O Technology
(DDIO) [21]. With DDIO, the chipset transfers received packets
to the last-level CPU cache before the CPU access them. We en-
abled DDIO in the forwarder host for all measurements.

For the configuration basis in this evaluation, all methods were
configured to maximize their throughput as long as there was no
significant latency increase. The parameters set on this basis were
the batch size of the NIC’s descriptor updating (8) in P2PNIC-Wr,
P2PNIC-Rd, and P2PNIC-Bn, and the number of queues (4), the
corresponding CPU cores (4), and the batch size of the CPU’s
processing (8) in P2PNIC-Bn and DPDK applications. We made
the implementation and parameters (e.g., the batch size) of the
P2PNIC-Bn and other P2PNIC methods as common as possible
to observe the bare impact of going through memory.

5.1 Throughput
To reveal the advantage of P2PNIC from the aspect of the

packet forwarding architecture, we evaluate the throughput of
the P2PNIC implementations and the DPDK applications. In this
section, we measure the throughput of unidirectionally forwarded
traffic between single fixed ports (1in-1out) to clarify the baseline
performance of each method. Each packet in the traffic has the
same destination IP address and 256 different source IP addresses
to utilize all CPU cores for the DPDK applications, which rely on
the Receive Side Scaling (RSS) feature of the NIC. We observed
the throughput for packets of 64, 128, 256, 512, 1,024, 1,280, and
1,518 bytes according to the hardware counter of the NIC for an
average of 10 seconds, excluding the 10 seconds before and after.
We indicate the theoretical maximum bandwidth for the packets
in Fig. 8, which is calculated by

Fig. 8 Throughput of unidirectionally forwarded traffic between single
fixed ports (1in-1out) along with the packet size for (a) without IP
routing and (b) with IP routing.

Theoretical rate (Gbps)

=

(
Link speed (Gbps)

(Preamble, SFD, and IFG (bytes) + Packet size (bytes)) × 8

)

× (Packet size (bytes) × 8). (1)

Note that the aggregate size of Ethernet Preamble, Start Frame
Delimiter (SFD), and Inter-Frame Gap (IFG) is 20 bytes.

As a result, the throughput of P2PNIC-Wr with 64-byte and
128-byte packets outperforms other methods in both settings for
forwarding packets to a fixed port (Fig. 8 (a)) and by IP rout-
ing (Fig. 8 (b)). When the IP routing is enabled, P2PNIC-Wr
achieved 35.85 Mpps (60% of the wire-rate) for 64-byte pack-
ets and 33.78 Mpps (100% of the wire-rate) for 128-byte packets,
which is 1.50 times and 1.58 times higher than L3FWD, respec-
tively. Up to 1,024-byte packet size, P2PNIC-Wr, P2PNIC-Rd,
and P2PNIC-Bn show higher throughput than L3FWD.

There is a major performance gap between P2PNIC-Wr and
P2PNIC-Rd; the reason is that P2PNIC-Wr has a better balance
of the memory pressure and processing load between the ingress
and egress NICs. For P2PNIC-Wr, the ingress NIC executes
DMA Write to transfer a packet buffer, and the egress NIC ex-
ecutes busy-waiting to detect a newly transferred packet. On
the other hand, P2PNIC-Rd makes the egress NIC process both
DMA Read to retrieve a packet buffer and busy-waiting. There-
fore, the memory pressure and processing load are biased in the
egress NIC. In addition, the performance gap between P2PNIC-
Rd and P2PNIC-Bn shows the bare overhead to forward packets
through the main memory. The difference is small for the con-
dition below 40 Gbps but increases along with the traffic volume
(Section 5.3). L3FWD is based on the CPU-driven architecture
as with P2PNIC-Bn, but shows lower throughput; this is due to
the implementational differences between DPDK (L3FWD) and
ours (P2PNIC-Bn) in firmware and device drivers.

5.2 Latency
Latency is also a key metric for packet forwarding archi-

tectures, and thus we evaluated unidirectional latency on the
P2PNIC implementations and the DPDK applications. In this
section, the measurement for 1 Gbps background traffic of 64-
byte packets with IP routing is used as the baseline performance.
Comparing with the baseline performance, we observed the la-
tency characteristics of each method with several traffic patterns
that varied in the presence of IP routing, the amount of back-
ground traffic, and the packet size. Due to the limitation of

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 9 CDF of the unidirectional latency in the following conditions: (a)
1 Gbps background traffic of 64-byte packets with fixed destination
port, (b) 1 Gbps background traffic of 64-byte packets with IP routing
(all the following are with IP routing), (c) 10 Gbps background traf-
fic of 64-byte packets, (d) 1 Gbps background traffic of 1,518-byte
packets, and (e) 40 Gbps background traffic of 1,518-byte packets.

the NIC in the tester host, only 1 Kpps traffic was counted by
hardware timestamps, and other packets were forwarded without
counting. We observed the latency in the aggregation of 30 sec-
onds; thus, around 30,000 samples were counted for each mea-
surement.

For all measurements shown in Fig. 9, P2PNIC-Wr and
P2PNIC-Rd show lower latency than the methods of CPU-driven
architecture (i.e., P2PNIC-Bn, TestPMD, and L3FWD). In the
measurement for the baseline performance (Fig. 9 (b)), P2PNIC-
Wr has 24% lower latency than L3FWD at the 90th percentile
in 64-byte packets and 1 Gbps background traffic with IP routing.
In addition, by comparing the latency when the destination port is
fixed (Fig. 9 (a)) with that of the baseline performance (Fig. 9 (b)),
we confirm that the processing of the IP routing by the ingress
NIC increases the latency by 9% for P2PNIC-Wr at the 90th per-
centile. Nevertheless, the latency is still lower than that of the
CPU-driven architecture.

We also see that increasing packet size and traffic volume
change the distribution of latency but do not necessarily increase
the latency itself. From the comparison between latency of the
baseline performance (Fig. 9 (b)) and that with 10 Gbps back-
ground traffic (Fig. 9 (c)), the latency decreases by 22% at the
90th percentile. The reason for the decrease is that the P2PNIC
implementations adopt the batching manner to update descrip-
tors. With the batching manner, the egress NIC quickly detects in-
coming packets when the batch on the ingress NIC fills up quickly
by 10 times higher packet rate than that of the baseline. In ad-
dition, from the comparison between latency of the baseline per-

Fig. 10 The traffic patterns for 2in-2out, 2in-2out-mix, 4in-4out, and 4in-
4out-mix. Each flow was directed by destination IP addresses. In
the tests for 2in-2out-mix and 4in-4out-mix, flows destined for all
other ports were generated in addition to the flow for 2in-2out and
4in-4out, respectively.

formance (Fig. 9 (b)) and that with 1,518-byte packets (Fig. 9 (d)),
the latency decreases by 19% at the 90th percentile. In the con-
dition for Fig. 9 (d), by increasing the packet size from 64 bytes
to 1,518 bytes, the arrival rate of the packets becomes approxi-
mately 5% compared with the baseline condition. In such a low
packet rate, the latency to forward a packet is decreased because
the DMA queue for PCIe and the processing capacity in the NICs
have more room to operate. Moreover, the descriptor will be up-
dated without waiting for the batch to be filled because the de-
cision to wait for the next packet is based on whether the next
packet is incoming when the processing of one packet is finished.

The result with 1,518-byte packets and 40 Gbps background
traffic (Fig. 9 (e)) shows increased latency compared with that
with the same packet size and 1 Gbps background traffic
(Fig. 9 (d)). The increase of the latency in P2PNIC-Wr and
P2PNIC-Rd is due to the memory pressure and processing load
in the NICs. However, the increased degree of P2PNIC-Wr (1.57
times) is much lower than P2PNIC-Bn (3.80 times) and L3FWD
(5.13 times), and thus the latency of P2PNIC-Wr is 79% lower
than L3FWD at the 90th percentile.

5.3 Scalability with Multiple Ethernet Ports
In this section, we evaluate how the throughput of each method

scales with the numbers of Ethernet ports because it would reveal
the performance capacity of the CPU-driven and P2PNIC archi-
tectures. For the measurements, we prepared four traffic patterns:
2in-2out, 2in-2out-mix, 4in-4out, and 4in-4out-mix, as shown in
Fig. 10. The 2in-2out is unidirectional and consists of two flows,
where the tester host sends traffic to two ports in the forwarder
host simultaneously, and the forwarder host sends back the traf-
fic from another two ports to the tester host. For this pattern,
each packet in each flow has the same destination IP address and
256 different source IP addresses, as well as the measurement
in Section 5.1. The 2in-2out-mix is almost the same as the 2in-
2out, but the packets have the same percentage of two different
destination IP addresses that are directed to two outgoing ports
evenly. The purpose of the 2in-2out-mix pattern is to confirm
the performance when multiple flows merge into a single outgo-
ing port. The maximum aggregate throughput for 2in-2out and
2in-2out-mix is 80 Gbps. The 4in-4out and 4in-4out-mix are the

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 11 Aggregate throughput for (a) 2in-2out and (b) 2in-2out-mix traffic
patterns.

Fig. 12 Aggregate throughput for (a) 4in-4out and (b) 4in-4out-mix traffic
patterns.

bidirectional versions of 2in-2out and 2in-2out-mix, respectively,
where the traffic comes and goes out of the same four ports. For
the 4in-4out-mix, the packets have the same percentage of three
different destination IP addresses to direct them to the other three
ports. The maximum aggregate throughput for 4in-4out and 4in-
4out-mix is 160 Gbps. The theoretical maximum bandwidth for
the packets indicated in Fig. 11 and Fig. 12 is calculated by Equa-
tion 1 mentioned in Section 5.1.

From the comparison between the result of 2in-2out
(Fig. 11 (a)) and 4in-4out (Fig. 12 (a)), we can clearly see
the difference in scalability between the CPU-driven and the
P2PNIC architectures. In 2in-2out, the performance difference
between the methods of P2PNIC architecture (i.e., P2PNIC-Wr
and P2PNIC-Rd) and that of CPU-driven architecture (i.e.,
P2PNIC-Bn and L3FWD) is relatively close, as well as the
measurement in Section 5.1. When the packet sizes are 64, 128,
and 1,518 bytes, the throughput of P2PNIC-Wr are 1.58 times,
1.69 times, and 1.08 times higher than L3FWD, respectively.
By contrast, in 4in-4out, the difference of throughput between
the methods of CPU-driven and P2PNIC architectures increases
significantly. For 4in-4out, when the packet sizes are 64, 128,
and 1,518 bytes, the throughput of P2PNIC-Wr are 3.44 times,
3.30 times, and 2.32 times higher than L3FWD, respectively.
This result shows that the scalability limit of the CPU-driven
architecture is lower than that of the P2PNIC architecture.

Another noteworthy result is that P2PNIC-Wr achieves the
wire-rate for all measurements when the packet size is above
64 bytes. The result indicates that P2PNIC-Wr still has room for
more traffic volume, even when it forwards the maximum traffic
rate that can be generated by four 40 Gbps Ethernet ports.

There is no noticeable change in trend between 2in-2out
(Fig. 11 (a)) and 2in-2out-mix (Fig. 11 (b)) and between 4in-4out
(Fig. 12 (a)) and 4in-4out-mix (Fig. 12 (b)), except for P2PNIC-

Table 1 CPU usage per core of each method for forwarding 1,518-byte
packets in 40 Gbps.

P2PNIC-Wr P2PNIC-Rd P2PNIC-Bn L3FWD

CPU usage 0% 0% 100% 100%

Rd. In other words, methods other than P2PNIC-Rd can sup-
port the pattern of multiple flows merging at a single outgoing
port without significant overhead. For P2PNIC-Rd, the through-
put degradation occurs when the packet size increases because
it lacks the balance of memory pressure and processing load be-
tween ingress and egress NICs compared with P2PNIC-Wr, as
mentioned in Section 5.1. For example, in P2PNIC-Rd, the egress
NIC processes both DMA Read to retrieve a packet buffer and
busy-waiting. Moreover, the lack of balance strongly affects its
throughput when the egress NIC processes multiple descriptor
rings. This is because the number of available RISC processors
per descriptor ring at a time decreases compared with processing
a single descriptor ring.

5.4 CPU Usage and Power Consumption
We clarify the CPU usage and the associated power consump-

tion of the CPU-driven and P2PNIC architectures because these
characteristics would be a constraint in increasing the number of
Ethernet ports. We measured the CPU usage in 40 Gbps traffic
load with 1,518-byte packets using the sysstat [17] tool to con-
firm that the P2PNIC architecture achieves high-speed packet
forwarding on general-purpose servers without using the CPU.
In addition, we measured the power consumption of P2PNIC-
Wr and L3FWD with the same traffic pattern as in Section 5.1
and Section 5.3 to reveal how the load on the methods affects
their power consumption. For the measurement of the power
consumption, we sampled the instantaneous power consumption
value at one-second intervals in watts through the Intelligent Plat-
form Management Interface (IPMI). Although the accuracy of
the power consumption value read from IPMI is not sufficient for
high-resolution measurement, it can be used to grasp trends from
averages of samples taken at intervals of one second or more [18].
We observed the CPU usage and power consumption for an aver-
age of 10 seconds, excluding the 10 seconds before and after.

As shown in Table 1, P2PNIC-Wr and P2PNIC-Rd do not
show any increase in CPU usage, while P2PNIC-Bn and L3FWD
show 100% CPU usage. This is because P2PNIC-Wr and
P2PNIC-Rd forward packets without the involvement of the CPU
and main memory, whereas P2PNIC-Bn and L3FWD use busy-
waiting on the CPU to detect the arrival of packets. No use of
the CPU in the P2PNIC architecture is an architectural advantage
because it allows for scaling the number of Ethernet ports without
considering the lack of CPU resources.

Moreover, as shown in Fig. 13, the power consumption of
P2PNIC-Wr and L3FWD shows a significant difference. While
L3FWD consumes about 70–80W, P2PNIC-Wr consumes less
than 10W of power in addition to the idle power consumption. As
noted, the accuracy of IPMI is not sufficient for high-resolution
measurement and should be limited to understanding trends based
on averages over a few seconds. However, there is clearly a
difference in power consumption between the CPU-driven and

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 13 Power consumption during packet forwarding for 1,518-byte pack-
ets when the traffic pattern is 1in-1out, 2in-2out, and 4in-4out.

P2PNIC architectures. The power consumption of the P2PNIC
architecture would be lower than that of the CPU-driven architec-
ture even if the number of NICs in the P2PNIC architecture were
increased several times. The larger margin for power consump-
tion of P2PNIC-Wr is also an architectural advantage for scaling
the number of Ethernet ports.

6. Discussion

In this section, we discuss the limitation, extensibility, and ap-
plication of the P2PNIC architecture compared with existing ar-
chitectures.

6.1 Limitation on Scalability of Routing Table Size
The P2PNIC architecture has some limitations on scalability

due to the capacity of the device memory that the NIC can pro-
vide compared to the CPU-driven architecture. The most severe
constraint, when compared to the CPU-driven architecture, would
be the number of routes that the NIC can accommodate. In this
section, to reveal how many routes the NIC can accommodate,
we compared the routing table size and capacity of NIC’s device
memory. In addition, the capacity of NIC’s device memory could
also constrain the number of accommodatable NICs in a single
router, as mentioned in Section 3.3.

Figure 14 shows the routing table size of the LPM library in
DPDK called librte lpm, along with the number of routes. We
executed the routing table construction ten times for each num-
ber of routes, with the routes randomly selected from 841,941
routes that make up the Internet (BGP full route). The routes were
sampled from an actual ISP on September 6, 2021. In addition,
we show the capacity of the device memory that the Netronome
Agilio CX 2x40G NIC has. This NIC has several types of
SRAM-based cache memories called Internal Memory (IMEM)
and External Memory (EMEM). The SRAM-based cache mem-
ories are suitable to accommodate routing tables while maintain-
ing high performance in packet processing because of their low
access latency. However, these memories are not as large as
that of DRAMs due to memory density constraints and resulting
costs. Although some SmartNICs, including Netronome Agilio
CX 2x40G NIC, are equipped with large DRAMs, the DRAMs
are not suitable for accommodating routing tables because of their
longer access latency than SRAM-based cache memories.

As a result, we can clearly see that accommodating the entire
BGP full route requires a larger capacity of the device memory
than the SmartNIC has. The result means that the routing ta-
ble of the P2PNIC architecture is less scalable than that of the

Fig. 14 Routing table size of LPM library in DPDK along with the number
of routes. The routes are randomly selected from the BGP full route
of an actual ISP.

CPU-driven architecture. The routing table size of librte lpm ex-
ceeds the capacity of the IMEM (4 MBytes) for 60,000 routes.
The routing table size also exceeds the total capacity of two chips
of the EMEM (6 MBytes) for 80,000 routes. Based on the above
results, the P2PNIC architecture would be suitable for being used
in the underlay part of overlay networks by technologies such as
VxLAN [29] and Segment Routing [15]. These technologies have
been rapidly deployed for not only data centers but also the ISP
backbone networks in recent years [30]. The number of routes on
the underlay part is typically small because the part is responsible
only for reachability between the routers. On the other hand, the
routers in the underlay part are required to accommodate a large
amount of traffic between hosts in the overlay part of the net-
work. Therefore, for the routers in the underlay part, the packet
forwarding performance is more important than the scalability for
the number of routes.

6.2 Extensibility
In the P2PNIC architecture, flexibility on packet forwarding

(e.g., access control list and decapsulation/encapsulation for tun-
neling) can be achieved by implementing the features on NICs
as with IP routing. In addition, most stateful data plane features
(e.g., session-based firewall) can also be achieved by having only
one side of the NICs, either ingress or egress, manage their state.
However, some of the stateful features would require additional
consideration for state consistency between NICs. For example,
the traffic pattern where packets of a single session going from
and returning to different ports requires state consistency between
NICs. The consistency between NICs would not be achieved as a
feature of a single NIC but instead as a management feature over
multiple NICs in the equipment.

For recent network equipment, OSes running on the CPU are
important to achieve qualitative aspects such as manageability,
portability, interoperability, and security. For example, an OS
controls dedicated hardware with switching chips for Ethernet
while managing routing protocols. The OS also provides man-
agement features such as logging and statistics for the equip-
ment. This approach has become mainstream with the rise of
networking OSes for white-box switches [36], [38], [39], and the
approach can also be directly applied to the P2PNIC architecture,
except that the switching chips become NICs. Adding a control
plane to the P2PNIC architecture would achieve the same level of
operational features and costs with the CPU-driven architecture
and white-box switches.

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

6.3 Impact on Other PCIe Communication
Because a NIC in the P2PNIC architecture forwards packets

over PCIe switches on general-purpose servers, it may occupy the
bandwidth of the PCIe switch and disrupt PCIe communication
by other devices such as GPU and NVMe storage. A solution to
this is devising the design of the PCIe topology. Because multiple
PCIe switches can coexist in a single general-purpose server, ac-
commodating NICs for the P2PNIC architecture and other PCIe
devices by different PCIe switches would eliminate the interfer-
ence with each other.

6.4 Application Area
The P2PNIC architecture can be a high-performance alterna-

tive to the CPU-driven architecture. For example, the P2PNIC ar-
chitecture can achieve high-performance packet forwarding with
more programmability than hardware-based network equipment.
The characteristic of the P2PNIC architecture is suitable for the
network operators who need high-performance and customized
IP routers, for instance. On the other hand, the development
cost for adding new features to the P2PNIC architecture would
be higher than that of the CPU-driven architecture because of the
need for NIC customization. With regard to this point, the devel-
opment cost of adding new features to NICs is decreasing with the
advent of SmartNICs such as those that can be programmed with
P4 [40] or run applications on general-purpose OSes by the em-
bedded CPUs [7], [37]. This means that the best choice depends
on the requirements of developers and operators, just as the white-
box switches have become an alternative to dedicated Ethernet
switches. The white-box switches can achieve the same perfor-
mance as dedicated Ethernet switches with a lower initial invest-
ment, but the operator may be burdened with a different operation
method from the traditional dedicated Ethernet switches [11].

7. Conclusion

In this paper, we have proposed the P2PNIC architecture,
which significantly improves packet forwarding performance on
general-purpose servers by eliminating CPU and main memory
from the packet forwarding path. In the P2PNIC architecture,
the NIC itself processes the packet forwarding procedure and di-
rectly transfers the packets to other NICs over PCIe. By adopting
this architecture, the throughput of packet forwarding on general-
purpose servers can scale beyond the processing capacity of the
CPU and bandwidth of the main memory, and the latency can be
significantly reduced. A key part of the P2PNIC architecture is
to apply P2P DMA to packet forwarding between Ethernet NICs,
which has not been achieved so far. As a result, P2PNIC-Wr,
which is one of the methods of the P2PNIC architecture, shows
3.44 times higher throughput and up to 79% lower latency than
L3FWD in the measurement for the highest load. The results
of this work will lay the foundation to make software-based net-
work infrastructure achieve performance comparable with hard-
ware routers.

Acknowledgments This work was supported by JSPS KAK-
ENHI Grant Number JP20K19781.

References

[1] Aweya, J.: Architectures With Bus-Based Switch Fabrics: Case Study-
Cisco Catalyst 6000 Series Switches, Wiley-IEEE Press (2018).

[2] Barbette, T., Soldani, C. and Mathy, L.: Fast Userspace Packet Pro-
cessing, Proc. ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS 2015), pp.5–16, IEEE (2015).

[3] Bergman, S., Brokhman, T., Cohen, T. and Silberstein, M.: SPIN:
Seamless Operating System Integration of Peer-to-Peer DMA Be-
tween SSDs and GPUs, ACM Trans. Comput. Syst., Vol.36, No.2,
pp.1–26 (2019).

[4] Broadcom Inc.: Broadcom Ships Tomahawk 4, Industry’s Highest
Bandwidth Ethernet Switch Chip at 25.6 Terabits per Second, Broad-
com Inc. (online), available from 〈https://jp.broadcom.com/company/
news/product-releases/52756〉 (accessed 2021-10-04).

[5] Broadcom Inc.: Dynamic Buffer Pool White Paper, Broadcom Inc.
(online), available from 〈https://docs.broadcom.com/docs/PEX8600
Dynamic Buffer Pool WP v1.0 17Oct07.pdf〉 (accessed 2021-10-
04).

[6] Broadcom Inc.: PEX88096: 98 lane, 98 port, PCI Express Gen 4.0
ExpressFabric Platform, Broadcom Inc. (online), available from
〈https://jp.broadcom.com/products/pcie-switches-bridges/
expressfabric/gen4/pex88096〉 (accessed 2021-10-04).

[7] Broadcom Inc.: Stingray PS250, Broadcom Inc. (online), available
from 〈https://docs.broadcom.com/doc/PS250-PB〉 (accessed 2021-10-
04).

[8] Brouer, J.D. and Høiland-Jørgensen, T.: XDP - challenges and future
work, Proc. Linux Plumbers Conference (LPC 2018) (2018).

[9] Cisco Systems Inc.: Cisco ASR 9000 Series Aggregation Services
Routers Data Sheet, Cisco Systems Inc. (online), available from
〈https://www.cisco.com/c/en/us/products/collateral/routers/asr-9000-
series-aggregation-services-routers/data sheet c78-501767.html〉 (ac-
cessed 2021-10-04).

[10] Dobrescu, M., Egi, N., Argyraki, K., Chun, B.-G., Fall, K.,
Iannaccone, G., Knies, A., Manesh, M. and Ratnasamy, S.: Route-
Bricks: Exploiting Parallelism To Scale Software Routers, Proc. ACM
Symposium on Operating Systems Principles (SOSP’19), pp.15–28,
ACM (2009).

[11] Doyle, L.: White-box switches yield initial savings but pose chal-
lenges, Network World from IDG (online), available from 〈https://
www.networkworld.com/article/3453828/white-box-switches-yield-
initial-savings-but-pose-challenges.html〉 (accessed 2021-10-04).

[12] DPDK Project: DPDK: Home, DPDK Project (online), available from
〈https://www.dpdk.org〉 (accessed 2021-10-04).

[13] DPDK Project: L3 Forwarding Sample Application, DPDK Project
(online), available from 〈https://doc.dpdk.org/guides/sample app ug/
l3 forward.html〉 (accessed 2021-10-04).

[14] DPDK Project: Testpmd Application User Guide, DPDK Project (on-
line), available from 〈https://doc.dpdk.org/guides/testpmd app ug/〉
(accessed 2021-10-04).

[15] Filsfils, C., Previdi, S., Ginsberg, L., Decraene, B., Litkowski, S. and
Shakir, R.: Segment Routing Architecture, RFC 8402 (2018).

[16] Go, Y., Jamshed, M.A., Moon, Y., Hwang, C. and Park, K.:
APUNet: Revitalizing GPU as Packet Processing Accelerator, Proc.
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI’17), pp.83–96, USENIX (2017).

[17] Godard, S.: Sysstat utilities home page, Sysstat utilities home page
(online), available from 〈http://sebastien.godard.pagesperso-orange.
fr〉 (accessed 2021-10-04).

[18] Hackenberg, D., Ilsche, T., Schöne, R., Molka, D., Schmidt, M. and
Nagel, W.E.: Power Measurement Techniques on Standard Compute
Nodes: A Quantitative Comparison, Proc. IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS
2013), pp.194–204, IEEE (2013).

[19] Han, S., Jang, K., Park, K. and Moon, S.: PacketShader: A GPU-
Accelerated Software Router, SIGCOMM Comput. Commun. Rev.,
Vol.41, No.4, pp.195–206 (2011).

[20] Hennessy, J.L. and Patterson, D.A.: A New Golden Age for Computer
Architecture, Comm. ACM (online), available from 〈https://cacm.
acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-
architecture/fulltext〉 (accessed 2021-10-04).

[21] Intel Corporation: Intel Data Direct I/O Technology, Intel Corporation
(online), available from 〈https://www.intel.com/content/www/us/en/
io/data-direct-i-o-technology.html〉 (accessed 2021-10-04).

[22] Kohler, E., Morris, R., Chen, B., Jannotti, J. and Kaashoek, M.F.:
The Click Modular Router, ACM Trans. Comput. Syst., Vol.18, No.3,
pp.263–297 (2000).

[23] Le, Y., Chang, H., Mukherjee, S., Wang, L., Akella, A., Swift, M.M.
and Lakshman, T.: UNO: Unifying Host and Smart NIC Offload for
Flexible Packet Processing, Proc. ACM Symposium on Cloud Comput-
ing (SoCC’17), pp.506–519, ACM (2017).

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

[24] Li, A., Song, S.L., Chen, J., Li, J., Liu, X., Tallent, N.R. and Barker,
K.J.: Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI,
NVSwitch and GPUDirect, IEEE Trans. Parallel Distrib. Syst., Vol.31,
No.1, pp.94–110 (2019).

[25] Li, Y., Zhang, D., Liu, A.X. and Zheng, J.: GAMT: A Fast and
Scalable IP Lookup Engine for GPU-based Software Routers, Proc.
ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems (ANCS 2013), pp.1–12, IEEE (2013).

[26] Linux Kernel Organization: VFIO - Virtual Function I/O, The Linux
Kernel Archives (online), available from 〈https://www.kernel.org/doc/
Documentation/vfio.txt〉 (accessed 2021-10-04).

[27] Liu, M., Cui, T., Schuh, H., Krishnamurthy, A., Peter, S. and Gupta,
K.: Offloading Distributed Applications onto SmartNICs using iPipe,
Proc. Conference of the ACM Special Interest Group on Data Com-
munication (SIGCOMM’19), pp.318–333, ACM (2019).

[28] Liu, M., Peter, S., Krishnamurthy, A. and Phothilimthana, P.M.: E3:
Energy-Efficient Microservices on SmartNIC-Accelerated Servers,
Proc. USENIX Annual Technical Conference (ATC 19), pp.363–378,
USENIX (2019).

[29] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, L.,
Sridhar, T., Bursell, M. and Wright, C.: Virtual eXtensible Local Area
Network (VXLAN): A Framework for Overlaying Virtualized Layer
2 Networks over Layer 3 Networks, RFC 7348 (2014).

[30] Matsushima, S., Filsfils, C., Ali, Z., Li, Z. and Rajaraman, K.: SRv6
Implementation and Deployment Status, Internet-Draft (2021).

[31] Mayer, R. and Jacobsen, H.-A.: Scalable Deep Learning on Dis-
tributed Infrastructures: Challenges, Techniques, and Tools, ACM
Comput. Surv., Vol.53, No.1, pp.1–37 (2020).

[32] Moon, Y., Lee, S., Jamshed, M.A. and Park, K.: Acceltcp: Ac-
celerating network applications with stateful TCP offloading, Proc.
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI’20), pp.77–92, USENIX (2020).

[33] Moro, D., Peuster, M., Karl, H. and Capone, A.: FOP4: Function Of-
floading Prototyping in Heterogeneous and Programmable Network
Scenarios, Proc. IEEE Conference on Network Functions Virtual-
ization and Software Defined Networking (NFV-SDN 2019), pp.1–6,
IEEE (2019).

[34] Netronome: Agilio CX SmartNICs, Netronome (online), available
from 〈https://www.netronome.com/products/agilio-cx/〉 (accessed
2021-10-04).

[35] NVIDIA Corporation: DPDK 21.02 Mellanox NIC Performance Re-
port, DPDK Project (online), available from 〈https://fast.dpdk.org/
doc/perf/DPDK 21 02 Mellanox NIC performance report.pdf〉
(accessed 2021-10-04).

[36] NVIDIA Corporation: NVIDIA CUMULUS LINUX, NVIDIA Cor-
poration (online), available from 〈https://www.nvidia.com/en-us/
networking/ethernet-switching/cumulus-linux/〉 (accessed 2021-10-
04).

[37] NVIDIA Corporation: NVIDIA Mellanox BlueField SmartNIC for
Ethernet, NVIDIA Corporation (online), available from 〈https://www.
mellanox.com/files/doc-2020/pb-bluefield-smart-nic.pdf〉 (accessed
2021-10-04).

[38] Open Compute Project: Open Network Linux, Open Compute Project
(online), available from 〈http://opennetlinux.org〉 (accessed 2021-10-
04).

[39] Open Compute Project: SONiC: Software for Open Networking in the
Cloud, Open Compute Project (online), available from 〈https://azure.
github.io/SONiC/〉 (accessed 2021-10-04).

[40] Pensando Systems: Pensando DSC-100 Distributed Services Card,
Pensando Systems (online), available from 〈https://pensando.io/
documents/pensando-dsc-100-distributed-services-card/〉 (accessed
2021-10-04).

[41] Rizzo, L.: netmap: a novel framework for fast packet I/O,
Proc. USENIX Annual Technical Conference (ATC 12), pp.101–112,
USENIX (2012).

[42] Sun, W. and Ricci, R.: Fast and flexible: Parallel packet processing
with GPUs and click, Proc. ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS 2013), pp.25–
35, IEEE (2013).

[43] Ueno, Y., Nakamura, R., Kuga, Y. and Esaki, H.: P2PNIC: High-
Speed Packet Forwarding by Direct Communication between NICs,
Proc. IEEE Conference on Computer Communications Workshops
(IEEE INFOCOM 2021 WKSHPS), pp.1–6, IEEE (2021).

[44] Vasiliadis, G., Koromilas, L., Polychronakis, M. and Ioannidis, S.:
GASPP: A GPU-Accelerated Stateful Packet Processing Framework,
Proc. USENIX Annual Technical Conference (ATC 14), pp.321–332,
USENIX (2014).

[45] Wu, W.: Packet forwarding technologies, CRC Press (2007).
[46] Zhang, J., Donofrio, D., Shalf, J., Kandemir, M.T. and Jung, M.:

NVMMU: A Non-Volatile Memory Management Unit for Hetero-
geneous GPU-SSD Architectures, Proc. International Conference

on Parallel Architecture and Compilation Techniques (PACT 2015),
pp.13–24, IEEE (2015).

Yukito Ueno is a Ph.D. course student at
the Graduate School of Information Sci-
ence and Technology, the University of
Tokyo, Japan. He received a Master’s de-
gree in Media and Governance from Keio
University, Tokyo, Japan, in 2016. He is
currently with the department of Innova-
tion Center in NTT Communications Cor-

poration. His research interests include network architecture and
software packet processing.

Ryo Nakamura received his Ph.D. de-
gree in information science and technol-
ogy from the University of Tokyo, Tokyo,
Japan, in 2017. He is a research associate
with the Information Technology Center
at the University of Tokyo. His research
interests include the networking aspect in
operating systems, network virtualization,

and network operation. He is a member of the IEICE and IPSJ.

Yohei Kuga received his Ph.D. degree in
media and governance from Keio Univer-
sity, Tokyo, Japan, in 2015. He is an Asso-
ciate Professor with the Information Tech-
nology Center at the University of Tokyo.
His current research interests are systems
aspects of networking hardware and high-
performance computing and networking.

He is a member of the IPSJ.

Hiroshi Esaki received his Ph.D. degree
from the University of Tokyo, Japan, in
1998. In 1987, he joined Research and
Development Center, Toshiba Corpora-
tion. From 1990 to 1991, he was with
Applied Research Laboratory, Bell-Core,
Inc., Murray Hill, NJ, USA, as a Residen-
tial Researcher. From 1994 to 1996, he

was with the Center for Telecommunication Research, Columbia
University, New York, NY, USA. Since 1998, he has been serv-
ing as a Professor with the University of Tokyo, and as a Board
Member of WIDE Project. He is currently the Executive Director
of IPv6 Promotion Council, the Vice President of JPNIC, IPv6
Forum Fellow, the Director of WIDE Project, and the Chief Ar-
chitect of Japan Digital Agency. He is a member of the IEICE
and IEEE.

c© 2022 Information Processing Society of Japan


