環境反射型空中像光学系における 反射面に対する空中像の特性の定式化

星彩水^{1,a)} 小泉 直也^{1,b)}

概要:空中像はエンタテインメントを提供するための技術として挙げられる.光沢素材を反射面として用 いると,空中像が飛び出す絵本などを実現できるが,この光沢面の物性と表示される空中像のボケや明る さの関係は定式化されていない.そこで反射面の物性値から,表示される空中像の輝度及びボケを定式化 した.その結果,反射面の光沢度から空中像の一部の輝度が求められること,写像性から空中像のボケが 求められることがわかった.これによって,どのような光沢素材が空中像提示への適用が可能かを容易に 調査できるようになり,例えば屋外環境などでの使用の可否調査などができると考えられる.

1. はじめに

空中像は、ある世界観に入り込むようなエンタテインメ ント体験を提供するための技術要素になりうる.空中像は あたかも実空間に映像が浮いているように見せる技術であ り、AR技術の1つに分類される.ヘッドマウントディス プレイなどの特殊な機器を装着する必要がなく裸眼で観 察できることから、複数人での体験にも対応可能である. 例えば著者は、ユニバーサル・スタジオ・ジャパンのウィ ザーディング・ワールド・オブ・ハリー・ポッターの一角 で、ペッパーズゴースト方式の空中像を用いて作中に登場 する空を飛び喋りだす手紙が再現されている様子を見て感 激した経験がある.このように、空中像を利用することで アニメーションやコンピュータグラフィックスでしか表現 できなかった体験ができる.

本研究では環境に設置された建材などを光学系の一部と して用いる環境反射型空中像光学系を扱う.この光学系 は、環境背景上に空中像を表示することができ、実世界と 空中像の融合が期待できる.我々はこの空中像を用いた飛 び出す絵本である PicPop を作成し、イラストを空中に浮 かぶ映像で演出する絵本が実現できた [1].

環境反射型空中像の特性は反射面の素材によって変わる ため,実際に表示してこの特性を測定しなければわからな い. 先に紹介した PicPop の反射面となる光沢紙を選定す るとき,あらゆる紙を用意して実際に環境反射型空中像を

1

世界観を作り出すために空中像を用いる際,その空間にあ るものを破壊することなく機能を満たす反射面を選択す ることは,空中像を表示する装置と多数の反射面のサンプ ルを用意する必要があるため手間がかかる.また,表示さ せる位置が決定している場合も,空中像の特性を調査する ために現場へ装置を持ち込む必要があり手間である.一方 で,表面の物性の計測器は小さく,持ち運ぶことができる ため,この計測値から空中像の特性が推定することが望ま しい.

表示して確認したため時間がかかった.同じように、ある

本論文では、反射面の特性から表示される空中像の特性 を得るための式を提案する.測定器で反射面の特性である 光沢度,拡散度、ヘーズ、写像性、BRDFを測定し、空中 像の特性である輝度とボケとの関係を調査した.一部の観 察角度で測定した反射面の光沢度から空中像の輝度が求め られた.また、測定した反射面の写像性から空中像のボケ が求められた.

今回の提案は、世界観を崩さないよう環境反射型空中像 光学系装置を設置するために役立つ.元ある面を反射面と して使用可能か容易に調査できるため、世界観が保たれた 場所に簡単に空中像を追加することができる.

2. 関連研究

2.1 環境反射型空中像光学系

空中像を表示するために,再帰透過光学素子(MMAP) を用いる手法がある [2]. MMAP はミラースリットが複 数並んだ 2 層のミラーアレイが直交する構造になってお り,光源からの光を図 1 のように面対称位置に空中像と して結像させる.これを用いたアプリケーションとして,

電気通信大学 The University of Flootre Commu

The University of Electro-Communications

a.hoshi@media.lab.uec.ac.jp
b) koizumi.naova@uec.ac.ip

Vol.2022-EC-63 No.13 2022/3/18

情報処理学会研究報告

IPSJ SIG Technical Report

図2 環境反射型空中像光学系の設計

MARIO[3] や HaptoMime[4], HaptoClone[5] などが挙げら れる.

環境反射型空中像光学系の基本的な設計は MMAP を用 いて図2で表される [6]. 光源から出た光が MMAP を透 過し,反射面で反射された後に空中像として結像する.そ のため,反射面を背景として空中像が表示され,装置と空 中像をユーザーの視野内で離して配置することができる. この環境反射型空中像を用いたアプリケーションとして, Decowall[7] や Enchan Table[6], PortOn[8] が挙げられる.

2.2 像の特性

空中像の特性として,輝度,ボケが扱われることが多い.輝度とは観察者が対象を見たときの明るさを表す指標である.Yamamotoら[6]やKoizumiら[8]は表示された空中像について輝度で評価している.ボケとは表示の細かさを表す指標である.空中像のボケを評価する指標の1つとしてコントラスト伝達関数(MTF, modulation transfer function)がよく知られている.Osatoら[7]やKoizumiら[8],Kakinumaら[9]は表示した空中像について傾斜ナイフエッジ法を用いて MTF 曲線を求め,評価している.また,先行研究[10][11]では,表示した空中像のボケの評価のためにピーク信号対雑音比(PSNR, peak signal-to-noise ratio)を使用している

本研究では環境反射型空中像のボケの評価について PSNR を使用する. PSNR とは,信号が取る最大値とノイ ズの比率を表す指標である.基準となる画像との信号の差 によって求められる差分二乗平均 e²を用いて式(1)で求め られる.

$$PSNR = 10\log_{10}\frac{MAX}{e^2} \tag{1}$$

ただし、MAX は信号のピークを表す. e^2 は、N を画素数、 x[i], y[i]を基準となる画像および比較する画像の i 番目の 画素位置におけるグレースケール値として式 (2) で求めら れる.

$$t^{2} = \frac{1}{N} \sum_{i} (x[i] - y[i])^{2}$$
(2)

環境反射型空中像は光源からの光を MMAP 内と反射面で 反射させる必要があるため,基本的にボケは低くなる.そ のため MTF による評価では MTF 曲線が振動するエラー が起きてしまう.このことから,今回は幅広いボケを調 査するためにボケが低い像でも差が値として求められる PSNR を用いる.

2.3 反射面の特性

反射面の特性として、光沢度、拡散度、ヘーズ、写像性、 双方向反射率分布関数(BRDF、bidirectional reflectance distribution function)が挙げられる.光沢度は日本工業 規格に定められている光の映り込みの明るさを示す指標 である [12].拡散度はキヤノンが独自に定めた反射光の 広がり具合を示す指標である.ヘーズは国際標準化機構 (ISO, International Organization for Standardization)に 定められている光源の映り込み像周辺の拡散を示す指標で ある [13].写像性は日本工業規格に定められている表面で 反射して見える物体の像がどれほど鮮明に歪みなく見える かを示す指標である [14]. BRDF は光が入射したときにど の方向にどれだけの光が反射したかを表す反射光強度の角 度分布である.

本研究では BRDF を除き,光沢度,拡散度,ヘーズ,写 像性の4項目を反射面の特性として評価を行う.反射面を 評価するために BRDF のデータからシミュレーションす ることがよく知られている [15][16].しかし,反射面を正 確に再現するための BRDF のデータを取得するためには あらゆる向き,反射角度からの測定が必要であり,特殊な 機器を使わなければならない.対して,光沢度,拡散度, ヘーズ,写像性を取得できる計測器は多く市販されており, データの取得が容易である.そのため,他の項目を評価の ために使用する.

3. 環境反射型空中像の輝度

3.1 仮説

環境反射型空中像光学系における光源からの輝度の減 衰について,MMAPでの輝度の減衰と反射面での輝度の 減衰にわけられる.つまり,環境反射型空中像の輝度は, 光源の輝度に対するMMAPで結像された空中像の輝度を MMAP 輝度減衰率,光源の輝度に対する各反射面におけ る反射像の輝度を反射率としたとき式 (3) で求められる.

(環境反射型空中像の輝度) = (光源の輝度)

×(MMAP 輝度減衰率)

×(反射率)

(3)

IPSJ SIG Technical Report

反射率について,反射面の光沢度からシュリックの近似 式で求め,理論値とすることを考える.シュリックの近似 式は光源を無偏光としたときの反射面の反射率を求めるた めの式であり,式 (4) で表される [17].

$$(\overline{\wp} \$) = f (\overline{m} f \times \overline{m})$$
$$= \left(\frac{n-1}{n+1}\right)^2 + \left(1 - \left(\frac{n-1}{n+1}\right)^2\right) (1 - \cos \theta)^5 \quad (4)$$

ただし, n は反射面の屈折率, θ は光が反射面に入射する 際の角度を表す.光沢度が式 (5) で求められることから, 光沢度から屈折率を求め,各入射角度 θ における反射率理 論値を求める.

ただし、ここでのガラスは屈折率 1.567 のものを指す.光 沢度から反射率理論値を求める際は入射角 60°で測定され た光沢度を用いる.これは光沢度において入射角 60°の値 を最初に見ることが一般的だからである.光沢度が低く、 反射率理論値が負の値になってしまう素材は理論値を用い た分析の際には除去する.

以上から,光源の輝度と MMAP 輝度減衰率が既知だと したとき,環境反射型空中像の輝度は反射面の光沢度から 式 (6) で求められると考えられる.

反射率理論値に対する反射率測定値や反射面の特性に対す る環境反射型空中像の輝度について回帰分析で求め,評価 する.

3.2 実験手順

反射面の特性について幅広く調査するため,73種の素材 を選定した.光沢感のある素材から表面が粗い素材,異方 性がある素材など特性の値に幅が出るよう,iPad,フロー リング材,壁紙サンプル,紙,アクリル板,ビームスプリッ ター,金属,大理石などを選定した.フローリング材や金 属などは光沢ポリマーを塗布したもの,金属は研磨したも のを素材の1つとして追加した.

反射面の特性を調査できる表面反射アナライザー RA-532H を用いて各項目について測定した.光沢度について 入射角 20°, 60°, 85°, 拡散度について入射角 20°, 60°, ヘーズについて入射角 20°, 写像性について入射角 60° に おけるスリット幅 0.25 mm, 0.5 mm, 1.0 mm, 2.0 mm の 項目でそれぞれ測定した. 今後光沢度についてそれぞれ光 沢度 20°, 光沢度 60°, 光沢度 85°, 写像性についてそれぞ

図3 輝度測定実験 (a) 光源の測定 (b) MMAP で結像された空中 像の測定 (c) 各反射面における反射像の測定 (d) 各反射面に おける環境反射型空中像の測定

れ写像性 0.25 mm,写像性 0.5 mm,写像性 1.0 mm,写像 性 2.0 mm と記述する.

光源, MMAP で結像された空中像, 各反射面における 反射像, 各反射面における環境反射型空中像の輝度を測定 した. 光源として使用したディスプレイにコピー用紙を貼 り付けることで無偏光光源とした. これは偏光成分によっ て反射特性が異なることを考えないためである. MMAP にアスカネット製の ASKA3D プレートを用いた. 輝度計 としてコニカミノルタ製の CS-150 を用いた.

それぞれの輝度について, 図 3 のように測定した. 光源 は測定する対象が輝度計と向かい合うよう傾けた. 各 θ_L の値について 25°-65°の範囲で 5° 毎に調査した. この範 囲は MMAP の視野角であり,実際に空中像が観察できる 範囲である. 輝度計は測定する対象から 1 m 離した. 環境 反射型空中像を表示する際は EnchanTable の設計を参考 にした [6].

3.3 結果

反射率理論値と反射率測定値の関係は図4で示されるように式(7)のように求められた.

 $(反射率測定値) = a \times (反射率理論値)$ (7)

a は反射率理論値に対する反射率測定値の割合である.各 θ_L における a の値と決定係数は表 1 のようになった.決 定係数について,特に 60° 付近で高くなった.

反射率測定値と環境反射型空中像の輝度の関係は図 5(a) で示されるように式 (8) のように求められた.

図 4 $\theta_L = 60^\circ$ における反射率理論値と反射率測定値の関係

表 1	反射率理論値に対す	る反射率測定値の割合
-----	-----------	------------

$ heta_L$	а	決定係数
25°	1.703	0.733
30°	1.856	0.530
35°	1.965	0.304
40°	1.978	0.251
45°	1.905	0.418
50°	1.847	0.528
55°	1.744	0.687
60°	1.707	0.735
65°	1.594	0.739

表 2 各 *θ*_L において反射率測定値,反射率理論値と環境反射型空中 像輝度との関係を説明するための *α*, *β* の値

単度この国际を配明するための α , p の恒						
θ_L	α	決定係数	β	決定係数		
25°	1.146	0.695	1.886	0.333		
30°	0.854	0.949	1.618	0.585		
35°	0.718	0.877	1.570	0.681		
40°	0.645	0.788	1.496	0.738		
45°	0.663	0.844	1.416	0.772		
50°	0.756	0.864	1.528	0.766		
55°	0.957	0.958	1.722	0.780		
60°	0.960	0.966	1.667	0.776		
65°	1.004	0.949	1.629	0.757		

× (MMAP 輝度減衰率)

(8)

× (反射率測定值)

 $\times \alpha$

光源の輝度と MMAP 輝度減衰率は実験から求められた値 を使用した.補正係数 α と決定係数を表 2 にまとめた.決 定係数は全体的に高くなった.

反射率理論値と環境反射型空中像輝度の関係は図 5(b) で示されるように式 (9) のように求められた.

 図 5 (a)θ_L = 60°における反射率測定値と環境反射型空中像輝度の関係 (b)θ_L = 60°における反射率理論値と環境反射型空中 像輝度の関係

(環境反射型空中像の輝度) = (光源の輝度)

× (MMAP 輝度減衰率) × (反射率理論値) × β (9)

光源の輝度と MMAP 輝度減衰率は実験から求められた値 を使用した.補正係数 β と決定係数を表 2 にまとめた.決 定係数は 25° 付近を除き全体的に高くなった.

3.4 考察

反射率理論値と反射率測定値の関係について, $\theta_L = 60^\circ$, 65° が特に決定係数が高いのは,光沢度 60°のみを使用し て反射率理論値を算出したからだと考えらえる.このこと から,各 θ_L についてそれぞれ光沢度を得ることで,各角 度で算出した反射率理論値と反射率測定値の関係が説明で きる可能性がある.しかし,光沢度の値が小さいと反射率 理論値が負の値を取ることから,光沢度から反射率理論値 を求めるために用いたシュリックの近似式は今回は適切で はなく,他の式で代用する必要があることが考えられる.

環境反射型空中像輝度は調査した θ_L において反射率測 定値と関係があることがわかった.このことは表 2 よりど の θ_L においても決定係数が大きいことから説明できる. これにより仮説のように環境反射型空中像光学系におけ る光源からの輝度の減衰が MMAP 輝度減衰率と反射率か **IPSJ SIG Technical Report**

ら説明できることが示唆された. $\theta_L = 25^\circ$ において決定 係数が他より低いのは、MMAP の視野角の端にあたり、 MMAP への光の入射角度が大きくなり内での光の反射回 数が多くなることによって輝度測定の際に影響したからだ と考えられる.

環境反射型空中像輝度は調査した θ_L の小さいときを除き 反射率理論値と関係があることがわかった.このことは表 2より25°付近を除いた θ_L について決定係数が大きいこと から説明できる.これにより仮説のように環境反射型空中 像光学系における光源からの輝度の減衰が MMAP 輝度減 衰率と光沢度から説明できることが示唆された. $\theta_L = 25^\circ$ 付近において決定係数が他より低いのは、先ほどと同様、 MMAP への光の入射角度に影響されると考えられる.

以上から,特に $\theta_L = 35^\circ - 65^\circ$ の範囲において,環境反 射型空中像輝度は光沢度を用いた式 (10) で求められるこ とがわかった.

(環境反射型空中像の輝度)

=(光源の輝度)

× (MMAP 輝度減衰率)
×
$$\frac{(光沢度) \times (ガラスの反射率)}{100}$$

× β (10)

これは表 2 の決定係数に裏付けされており、 $\theta_L = 60^{\circ}$ 付近 での決定係数が高いことから説明できる.

4. 環境反射型空中像の PSNR

4.1 仮説

環境反射型空中像光学系における光源からの PSNR の 低下について, MMAP での PSNR の低下と反射面での PSNR の低下にわけられる.つまり,環境反射型空中像 の PSNR は MMAP で表示した空中像の PSNR を MMAP 空中像 PSNR,反射面に映した反射像の PSNR を反射像 PSNR としたとき式 (11) で求められと考えた.

(環境反射型空中像の PSNR) = (MMAP 空中像 PSNR) × (反射像 PSNR) × (補正係数) (11)

ただし,他の要因でも PSNR の低下があると考え,単純な 積ではなく補正係数を入れることとした.

反射面での PSNR の低下について,反射面の写像性から 求めることを考える.写像性は反射面に映った像がどれほ ど鮮明であるかを求める指標であるため,像のボケが低下 することによる PSNR の値の変化と関係があると考えら れるからである.

以上から,基準と MMAP 空中像 PSNR が既知だとした

 図 6 PSNR 測定のための撮影 (a) 光源の撮影 (b) MMAP で結像 された空中像の撮影 (c) 各反射面における反射像の撮影 (d) 各反射面における環境反射型空中像の撮影

とき,環境反射型空中像の PSNR は反射面の写像性から算 出した反射像 PSNR を用いて式 (11) で求められると考え た.反射面の特性に対する環境反射型空中像の PSNR や 反射像 PSNR に対する環境反射型空中像の PSNR につい て回帰分析で求め,評価する.

4.2 実験手順

反射面についてはセクション3と同様のものを使用した. 4.2.1 データ取得のための撮影

光源画像を2パターン用意し,光源画像,MMAPで結 像された空中像,各反射面における反射像,各反射面にお ける環境反射型空中像をそれぞれ撮影した.光源画像とし てマットフォトペーパー MP101 で作成した白画像,マッ トフォトペーパー MP101 と遮光・吸光シート,スーパー ブラック IR で作成した白黒画像を用いた.光源画像に光 を当てるためのライトとして YONGNUO 製の YN900 を 用いた. MMAP にアスカネット製の ASKA3D プレート を用いた.カメラには SONY 製の ILCE-7M3 を用い,F 値 5.6, ISO 感度 50,シャッタースピードは各撮影におい て白飛びをしない限界値に設定した.また撮影時は振動で ぶれないよう 2秒タイマーを使用し,RAW 画像として保 存した.

それぞれの PSNR を測定するために図 **6** のように配置 し撮影した. θ_R は反射面を鏡としたときの空中像の輝度 が最も高くなる角度である 40° とした.カメラは測定する 対象から 1 m 離した.環境反射型空中像を表示する際は EnchanTable の設計を採用した [6].

4.2.2 撮影画像から PSNR の算出

撮影した RAW 画像を TIFF 画像に変換した. Python のモジュールの1つである rawpy の postprocess 関数を利

情報処理学会研究報告

IPSJ SIG Technical Report

図7 PSNR を算出するためのフロー

用した. このときガンマ補正をかけずに 16 bit/ch で保存 した.

正しく PSNR を算出するため, 3種類の画像を用い, 図 7 に従って処理した.1つ目は光源画像を白黒画像として直 接撮影した基準画像である.2つ目は各反射面について光 源画像を白画像として撮影した模様画像である.3つ目は 各反射面について光源画像を白黒画像として撮影した比較 画像である.基準画像と比較画像だけでは,実験者が見た ときは同程度のボケに見えるにも関わらず,反射面の模様 に影響を受け,大きく異なる PSNR が算出されることが あったため,模様画像を利用することで補正した.また, 画像の明暗の違いによっても間違った PSNR が算出され てしまうため,補正を行った.グレースケール画像として それぞれ読み込んだ.

基準画像のグレースケール値の補正を行い,図8(a)のように白黒補正基準画像とした.基準画像について元の TIFF 画像では全体的にグレースケール値が高く暗かったため,白部分と黒部分の境界(白黒境界)を見せる目的で 補正した.まず,画像内のグレースケール値の最小値*min* と最大値*max*を取った.次に,最小値が0に,最大値が 2¹⁶になるよう全体を補正した.補正前の画像のi番目の 画素位置におけるグレースケール値を*k*[*i*]とし,補正後の 画像のi番目の画素位置におけるグレースケール値を*k*'[*i*] として式(12)を使用して処理した.

$$k'[i] = (k[i] - min)\frac{2^{16}}{max - min}$$
(12)

比較画像を切り取り, グレースケール値の補正を行い, 図 8(b) のように白黒補正比較画像とした. PSNR は画像 間のグレースケール値の差が顕著に現れるため, 2 種類の 比較画像について, ボケが同程度であっても明るさが異な ると PSNR の値に差が出てしまう. そこで反射面の明暗 に関わらずボケのみで評価できるよう補正した. グレース ケール値の補正は比較画像の白黒境界を 100 pixel × 100 pixel で切り取り, その部分について式 (12) を用いて先述 と同様に行った. 切り取る大きさは,反射面が小さい場合 でも対応でき, ボケが小さい場合でも差が出る大きさとし て 100 pixel × 100 pixel に決定した.

白黒補正基準画像に模様画像のグレースケール値の補正 を比較画像の補正時の値を基準に行った白黒補正模様画像 を合成し、図 8(d) のように白黒模様補正基準画像とした. 2種類の比較画像について、ボケが同程度であっても反射 面の模様が異なると PSNR の値に差が出てしまう. そこで 反射面の模様に関わらずボケのみで評価できるようにする ため、白黒補正基準画像に模様画像を重ね、模様の有無に よる結果の差を無くした.まず、比較画像のグレースケー ル値を補正した際に使用した最大値と最小値を用いて模様 画像のグレースケール値の補正を行い,図 8(c) のように白 黒補正模様画像とした.次に、白黒補正基準画像と白黒補 正模様画像を合成した. 白黒補正模様画像のi番目の画素 位置におけるグレースケール値を l[i],基準画像の i 番目の 画素位置におけるグレースケール値を s[i], 補正後の画像 の i 番目の画素位置におけるグレースケール値を s'[i] とし て式 (13) を使用して処理した.

$$s'[i] = \begin{cases} s[i] & (l[i] \ge s[i]) \\ l[i] & (l[i] < s[i]) \end{cases}$$
(13)

白黒模様補正基準画像内で,白黒補正比較画像の PSNR が最も高くなる位置での値を記録し,その反射面の PSNR とした.これは白黒模様補正基準画像の白黒境界と,白黒 補正比画像の白黒境界を一致させ正しく PSNR を算出する ための操作である.まず,白黒模様補正基準画像を任意の 位置において探索窓として 100 pixel × 100 pixel で切り取 り,その部分と白黒補正比較画像から PSNR を算出した. このとき OpenCV の PSNR 関数を用いた.次に,探索窓 を移動させながら PSNR を記録し,最も高い値をその反射 面の PSNR とした.ただし,最も高い PSNR を出した探索 窓の位置が白黒模様補正基準画像の白黒境界から外れてい た場合は,指定した白黒境界との PSNR 値をその反射面の PSNR とした.これは白黒補正比較画像の白黒境界があい まいになることで起こるため,疑似的に白黒境界を決定し PSNR を求めた.MMAP で結像された空中像,各反射面 IPSJ SIG Technical Report

色な提

における反射像,各反射面における環境反射型空中像を撮影して算出した PSNR をそれぞれ MMAP 空中像 PSNR, 反射像 PSNR 測定値,環境反射型空中像 PSNR とする.

4.3 結果

反射面の特性の 1 つである写像性と反射像 PSNR 測定 値の関係は式 (14) のように求められた.

(反射像 PSNR 測定値) =
$$0.515 \times (写像性 0.5 \text{ mm})$$

- $0.664 \times (写像性 1.0 \text{ mm})$
+ $0.304 \times (写像性 2.0 \text{ mm})$
+ 11.187
(14)

決定係数は 0.702 であり,各項目について 0.1%水準で有 意であった.反射面 PSNR 測定値を目的変数とし,写像 性 0.25 mm,写像性 0.5 mm,写像性 1.0 mm,写像性 2.0 mm をそれぞれ独立変数として回帰分析した際は写像性 0.25 のみ有意差がなかった.式 (14) から求められる反射 像 PSNR を反射像 PSNR 理論値とする.

反射像 PSNR 測定値と環境反射型空中像 PSNR の関係 は図 9(a) で表され,式 (15) のように求められた.

(環境反射型空中像の PSNR) = (MMAP 空中像 PSNR) × (反射像 PSNR 測定値) × 0.0125 + 10.655

(15)

決定係数は 0.604 であった.

写像性から求められる反射像 PSNR 理論値と環境反射 型空中像 PSNR の関係は図 9(b) で表され,式 (16) のよう に求められた.

(環境反射型空中像の PSNR) = (MMAP 空中像 PSNR)

$$+9.733$$

(16)

決定係数は 0.592 であった.

4.4 考察

写像性と反射像 PSNR 測定値の関係について,写像性 0.25 mm との関係が薄いのは,写像性 0.25 mm の値に差 がでなかったことが原因だと考えられる.写像性 0.25 mm はボケが高い反射像を表示する反射面に差を出すための値 である.今回の実験では表面が滑らかな素材に対して粗い 素材の数が多かったことから写像性 0.25 mm の値が機能し

図 9 (a) 反射像 PSNR 測定値と環境反射型空中像 PSNR の関係
(b) 反射像 PSNR 理論値と環境反射型空中像 PSNR の関係

なかったと考えられる.ボケが高い反射像を表示する反射 面を素材として追加することで,写像性 0.25 mm も反射像 PSNR 測定値を説明するための変数となる可能性がある.

今回調査した θ_R について反射像 PSNR 測定値から環境 反射型空中像の PSNR を説明できることがわかった. こ のことは式 (15) において決定係数が大きいことから説明 できる. これにより仮説のように環境反射型空中像光学系 における光源からの PSNR の低下について, MMAP での PSNR の低下と反射面での PSNR の低下から説明できる ことが示唆された. 式 (15) から,環境反射型空中像 PSNR は (反射像 PSNR 測定値) × (MMAP 空中像 PSNR)を 用いて単回帰で示せることがわかった. これは白黒画像に ブラーをかけていきながら PSNR を測定しても 0 に近づ くことは無く, 10 前後で横這いになることが原因だと考え られる.

今回調査した θ_R について反射像 PSNR 理論値から環境 反射型空中像の PSNR を説明できることがわかった.こ のことは式 (16) において決定係数が大きいことから説明 できる.これにより仮説のように環境反射型空中像 PSNR について, MMAP における PNSR の減衰率と反射面の写 像性から説明できることが示唆された.

以上から、今回調査した θ_R について環境反射型空中像 の PSNR は写像性を用いて求められることがわかった.式 (14) から反射像 PSNR を求め、式 (16) に代入することで 求められる.

5. 考察

環境反射型空中像の特性である輝度と PSNR は、それ ぞれ反射面の特性である光沢度と写像性から求められるこ とがわかった.ただし輝度の場合は $\theta_L = 35^{\circ}-60^{\circ}$, PSNR の場合は $\theta_R = 40^{\circ}$ での結果である.また、光源、光源と MMAP のみで表示された空中像についてそれぞれ輝度と PSNR が既知であることが条件である.

今回の結果を利用することで,元ある世界観に空中像を 付加することが容易になる.反射面の特性を調査するだけ でそこに表示される空中像の輝度や PNSR を知ることが でき,空中像を表示することに適した場所であるか判断す ることができる.空中像の導入が容易になることで世界観 を構築する要素として空中像が使用でき,エンタテインメ ント体験の向上に繋がると考えられる.

リミテーションとして,環境反射型空中像の特性につい て一部の入射角度でしか定式化できていないことが挙げら れる.輝度について,光沢度 60° だけでなく他の角度につ いても値がわかれば定式化できる可能性がある.またボケ についても,他の角度から撮影して分析することで定式化 できると考えられる.

今後は、分析方法の改善と環境反射型空中像をシミュ レーションするためにシミュレーターでの反射面の再現を 目指す.回帰分析を用いて評価したが、最適な分析方法を 見つけるために他の方法も試す必要があると考えている. また、今回の結果と空中像の見た目を再現するシミュレー ターを組み合わせることで、異なる反射面に表示される空 中像の見た目が再現できるシステムの作成を考えている.

6. 結論

本研究では、反射面の特性が環境反射型空中像の特性で ある輝度と PSNR についてどのような関係を持つか調査 した.その結果、一部の観察角度について輝度と PSNR が それぞれ反射面の特性である光沢度と写像性と関係がある ことがわかった.これにより環境反射型空中像を既存の場 所に導入する際に手間であった特性の調査が容易になると 考えられる.

謝辞 本研究は JSPS 科研費 JP20H04223 の助成を受け たものです.

参考文献

- Ayami Hoshi, Shunji Kiuchi, and Naoya Koizumi. *PicPop: A Pop-up Picture Book Comprising Mid-Air Images*, pp. 1–4. Association for Computing Machinery, New York, NY, USA, 2021.
- [2] Otsubo Makoto. Optical imaging apparatus and optical imaging method using the same. U.S. Patent No.8, 702, 252, 2014.
- [3] Hanyuool Kim, Issei Takahashi, Hiroki Yamamoto,

Satoshi Maekawa, and Takeshi Naemura. Mario: Mid-air augmented reality interaction with objects. *Entertainment Computing*, Vol. 5, No. 4, pp. 233 – 241, 2014.

- [4] Yasuaki Monnai, Keisuke Hasegawa, Masahiro Fujiwara, Kazuma Yoshino, Seki Inoue, and Hiroyuki Shinoda. Haptomime: Mid-air haptic interaction with a floating virtual screen. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST '14, p. 663–667, New York, NY, USA, 2014. Association for Computing Machinery.
- [5] Yasutoshi Makino, Yoshikazu Furuyama, Seki Inoue, and Hiroyuki Shinoda. Haptoclone (haptic-optical clone) for mutual tele-environment by real-time 3d image transfer with midair force feedback. In *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*, CHI '16, p. 1980–1990, New York, NY, USA, 2016. Association for Computing Machinery.
- [6] Hiroki Yamamoto, Hajime Kajita, Naoya Koizumi, and Takeshi Naemura. Enchantable: Displaying a vertically standing mid-air image on a table surface using reflection. In Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces, ITS '15, p. 397–400, New York, NY, USA, 2015. Association for Computing Machinery.
- [7] Amika Sano and Naoya Koizumi. Mid-air imaging technique for architecture in public space. *Electronic Imaging, Stereoscopic Displays and Applications XXIX*, pp. 111–1–111–9(9), 2018.
- [8] Naoya Koizumi and Ayaka Sano. Optical system to display mid-air images on a glossy plane and remove ground images. *Opt. Express*, Vol. 28, No. 18, pp. 26750–26763, Aug 2020.
- [9] Ryota Kakinuma, Norikazu Kawagishi, Masaki Yasugi, and Hirotsugu Yamamoto. Influence of incident angle, anisotropy, and floating distance on aerial imaging resolution. OSA Continuum, Vol. 4, No. 3, pp. 865–878, Mar 2021.
- [10] Chao Gao, Xinzhu Sang, Xunbo Yu, Xin Gao, Jingyan Du, Boyang Liu, Li Liu, and Peiren Wang. Design, characterization, and fabrication of 90-degree viewing angle catadioptric retroreflector floating device using in 3d floating light-field display system. *Opt. Express*, Vol. 28, No. 17, pp. 24854–24873, Aug 2020.
- [11] Xin Gao, Xunbo Yu, Xinzhu Sang, Li Liu, and Binbin Yan. Improvement of a floating 3d light field display based on a telecentric retroreflector and an optimized 3d image source. *Opt. Express*, Vol. 29, No. 24, pp. 40125– 40145, Nov 2021.
- [12] 日本規格協会. 鏡面光沢度-測定方法. 日本工業規格 JIS Z 8741, 1997.
- [13] Paints and varnishes Determination of haze on paint films at 20°. Standard ISO 13803, International Organization for Standardization, 2014.
- [14] 日本規格協会. プラスチック-像鮮明度の求め方. 日本工 業規格 JIS K 7374, 2007.
- [15] 向川康博. 反射・散乱の計測とモデル化. 情報処理学会研 究報告. CVIM, [コンピュータビジョンとイメージメディ ア], Vol. 172, pp. h1-h11, may 2010.
- [16] Seung-Hwan Baek, Tizian Zeltner, Hyun Jin Ku, Inseung Hwang, Xin Tong, Wenzel Jakob, and Min H. Kim. Image-based acquisition and modeling of polarimetric reflectance. ACM Trans. Graph., Vol. 39, No. 4, July 2020.
- [17] Christophe Schlick. An inexpensive brdf model for physically-based rendering. *Computer Graphics Forum*, Vol. 13, No. 3, pp. 233–246, 1994.