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Abstract: Regaining finger movement function is thought to be more challenging during rehabilitation because its 

muscle complexity. Thus, Fugl-Meyer Assessment (FMA) is employed by a doctor to evaluate manually the 

disability level of the finger movement. This will lead to subjectivity and risk of mistake during assessment. Thus, a 

system capable of predicting the disability level is required to aid the doctor in making more accurate judgement. 

This study aims to recognize the finger movement disability level based on Fugl-Meyer Assessment. The EMG 

recorded from 4 patients when they performed 7 movements based on FMA and extracting the time domain feature 

values. SVM and Random Forest were employed in classifying the disability level of each movement. SVM 

classifier could obtain better output in movement 4 which was 91.67% of accuracy and 0.78 of f1 score. 
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1. Introduction     

Muscle dysfunction is the most common type of disability after 

stroke. Muscle dysfunction leads to the risk of hand paralysis 

following hemiplegic stroke which usually associated with 

greater impairment, worse function, and lower health-related 

quality of life. The increase of unused muscle fiber as a 

consequence of muscle dysfunction leads to abnormal patterns of 

muscle activation, such as spastic co-contraction, which mostly 

contribute to the disabled condition [1], [2]. In the case of finger, 

disability condition is an important factor in the performance of 

muscle motor unit, because finger is used for many daily 

activities, especially the finger of dominant hand. People who 

suffer stroke on their dominant hand may affect their ability to 

perform daily tasks [3]． 

In order to restore the function of fiber muscle after stroke, 

rehabilitation process as the common procedure of regaining the 

muscle function should be performed [2], [4]. Rehabilitation is 

defined as the utilization of combined and coordinated use of 

medical, social, educational, and vocational measures for 

retraining a person to the highest possible level of functional 
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ability [4]. Fugl-Meyer Assessment of Upper Extremity 

(FMA-UE) is a common method to measure motor recovery of 

post-stroke subjects during rehabilitation process especially in the 

upper limb part, including hand evaluation. The process of 

FMA-UE assessment was performed by a doctor or 

physiotherapist by examining directly from the patients’ finger 

movement. This process raises the possibility of subjectivity and 

and risk of mistake during assessment. Another fact stated that 

studies in the field of clinical rehabilitation is believed to be 

difficult due to multiple variables that affect selection and 

outcome. Some of the problem limits the comparability of the 

rehabilitation value, which was caused by a descriptive studies 

and a lot of studies have inadequately matched or ill-defined 

control group [4]. This implies that the assessment of 

rehabilitation, including FMA-UE, needs to be conducted by a 

professionally trained physiotherapy or specialized doctor since 

the outcome of the assessment might be different.  

According to the problem, this research proposes a recognition 

method for post-stroke patients’ finger movement disability level 

based on Fugl-Meyer Assessment (FMA) using surface EMG. 

The proposed method aimed at assisting the doctor or 

physiotherapist in making more accurate judgment of the current 

patient’s condition. 

2. Related Research 

2.1 Automation of Fugl-Meyer Assessment 

 The difficulty on the rehabilitation process assessment had 

raised issues to the solution to overcome the problem. There are 
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several studies aimed to overcome the subjectivity and inflexible 

condition of this problem. One of the research was conducted in 

2014 from 24 inpatients with varying degrees of upper extremity 

hemiparesis following stroke [5]. The researchers employed 

accelerometer sensor on measuring the change of acceleration of 

the Shoulder-Elbow movement based on FMA. The patients were 

ordered to perform 4 tasks related the movement of 

Shoulder-Elbow. The first task is shoulder flexion through  the 

full available Range of Motion (ROM), elbow at 0o, forearm in 

mid-position. Second task is shoulder abduction through the full 

available ROM, elbow at 0o, and forearm in mid position. Third 

task is elbow at 90o, shoulder at 0o, pronation or supination of 

forearm was performed. The fourth task is the movement of hand 

to lumbar spine.  

Support Vector Regression (SVR) was implemented to predict 

the feature values which were extracted from the accelerometer 

signal. Two kernels were applied which are RBF and polykernel 

to predict 14 selected features. The result showed that a 

comprehensive model, which was a leave-one-subject-out cross 

validation, output the best result of 2.1273 Root Mean Square 

Error (RMSE) score with 2.1594 standard deviation.  

Another research proposed an automated data acquisition 

system specifically for pinch assessment based on FMA protocol. 

They used Force Sensing Resistor (FSR) and Displacement 

sensor for Pinch and Grip Assessment [6]. The participants were 

50 right-handed healthy male students who has no prior history of 

upper limb injury and passed the health status questionnaire 

(SF-36). The paper stated that the subjectivity of the 

measurement could be removed by replacing the gentle pull from 

therapist with a linear actuator sub-system exerting a consistent 

amount of pulling force. However, the final judgment of the 

proposed system was on the therapist decision since a further 

study was needed to be conducted to investigate the slip onset 

and pinch-pulling force of the stroke patients. 

2.2 Utilization of Muscle Sensor on Fugl-Meyer Assessment 

An automated FMA assessing system for upper extremity 

motor function of post-stroke was conducted in 2019 [7]. They 

employed both kinematic information and myographic data from 

mechanomyography (MMG) sensor to build and learn the arm 

motor function using Support Vector Machine (SVM). 

Twenty-eight subjects with acute stroke were recruited and 

instructed to perform the movement task based on FMA-UE. The 

result for non-hand function showed that the combination of 

kinematic and myographic data achieved lower mean 

classification accuracy by 50.5% compared to 62.0% achieved 

from kinematic data only. The result of hand function tasks 

showed higher classification accuracy of 62.4% using 

myographic data only. 

 This result implies that kinematic sensors give better result on 

classifying the movement of non-hand tasks for Fugl-Meyer 

Assessment. However, for hand function task, the information of 

the muscle which was obtained from muscle sensor such as 

MMG is very important factor on improving the quality of the 

classification. Thus, in our study, we employed the 

Electromyography (EMG) sensors which measure the electric 

activity of the muscle to develop a recognition system to classify 

the disability level of hand function task that is post-stroke 

patients’ finger movements. 

3. Methodology 

3.1 Participants 

EMG data were collected from four subjects of stroke survivor．

The subject consisted of three males and one female in their 50s 

years. All subjects were partially disabled of one of their hands. 

Three subjects were disabled on their left hand and one subject on 

the right hand. The experiment was conducted with an assistance 

of a Doctor of Physical Medicine and Rehabilitation in the Dr. 

Soetomo General Hospital and followed the relevant guidelines. 

The environment of data collection experiment is shown in 

Figure 2. All experiment procedure was approved by the Ethical 

Committee of Dr. Soetomo General Hospital, Surabaya, 

Indonesia (No. 0776/116/3/VI/2021). 

3.2 Instruments 

EMG signal was collected using Two Myoware Muscle sensors 

(SparkFun Electronics, Niwot, CO, USA) which was attached at 

flexor digitorum muscle and extensor digitorum muscle as shown 

Figure 1. Location of Extensor Digitorum and 

Flexor Digitorum Muscle 

Figure 2. Data Collection Environment 
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in Figure 1. This EMG sensor was powered with a minimum of 

3.1V supply voltage and supported with differential amplifier 

adjustable gain of 201Rgain/1 kΩ via potentiometer [8]. Myoware 

has two EMG modes that is EMG Envelope and Raw EMG. For 

Raw EMG mode, the gain is not adjustable. Since Enveloped 

EMG was focused on amplitude analysis of muscular activation 

[9], this research implemented Raw EMG signal to analyze both 

time-domain and frequency-domain EMG signal. Raw EMG 

signal from MyoWare was simply a signal with 201 times 

amplification without filter. Thus, signal filtering is needed to 

obtain clean Raw EMG signal. 

Arduino UNO was used to receive the EMG signal from two 

Myoware sensors. Arduino Uno also provided the supply voltage 

for two Myoware sensors. Analog to Digital Converter (ADC) 

was implemented within Arduino UNO. In this study, a delay of 

10 ms was implemented during ADC process of EMG signal in 

order to avoid ADC overload. The EMG data was transferred 

directly to PC and saved into .csv file using PyCharm. PyCharm 

is an open-source Integrated Development Environment (IDE) for 

Python programming which was developed by JetBrains 

company. All data process and machine learning modelling were 

performed in Python environment.  

 Fugl-Meyer Assessment of Upper Extremity (FMA-UE) table 

for hand evaluation was employed to assess the condition of the 

of the subject’s finger movement. FMA is an assessment tools for 

clinical examination method that has been tested widely in the 

stroke subject population [1], [2] . The FMA-UE for hand 

evaluation assessed the condition of the subject’s finger 

movement into Full, Partial, and None [10]. The movements 

consisted of : 1) Mass Extension (ME), 2) Mass Flexion (MF), 3) 

Hook Grasp (HG), 4) Thumb Adduction (TA), 5) Pincher Grasp 

(PG), 6) Cylinder Grasp (CG), and 7) Spherical Grasp (SG) as 

shown in Figure 3． 

3.3 Data Collection 

Two MyoWare EMG sensors were attached at the extensor 

digitorum muscle and flexor digitorum muscle, which control the 

fingers’ extension and flexion movement．Then sensor attached at 

extensor digitorum muscle was assigned as Channel 1 (Ch1) of 

EMG and sensor at flexor digitorum muscle as Channel 2 (Ch2). 

The EMG signal was recorded when the subjects performed 7 

types of movement based on FMA-UE for hand evaluation. In 

this study, the fatigue condition of the muscle was avoided by 

implementing the rest condition after the movement. The doctor 

will assess the disability level of each movement using FMA-UE. 

The assessment from the doctor was used as a ground-truth in 

modelling the machine learning. During the experiment of 4 

subjects, there was no condition of None disability level obtained 

from all movements. The subjects only had Full and Partial 

Figure 3. Seven Finger Movements Based on Fugl-Meyer Assessment. 

Figure 4. EMG Signal and The Amplitude Response of 

Subject 1 Before Filter. 

Figure 5. EMG Signal and The Amplitude Response of 

Subject 1 After Filter. 
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disability level which also varied from each movement. In this 

study, we adopted the transition phase of the muscle contraction 

as a target class to be classified. The transition phase corresponds 

to a muscle fiber recruitment process which leads to the 

contraction phase of the muscle. Eventhough the transition phase 

is not correlated to the Fugl-Meyer Assessment output, this phase 

was also one factor that shows the contraction quality of the 

muscle [11].  

 As a consequence of 10ms delay in Arduino UNO, the 

obtained sampling rate from the sensor was 100Hz. This low 

frequency of sampling produces an EMG signal with a maximum 

frequency of 50Hz. Eventhough the obtained EMG signal has 

low frequency, this frequency is still included in the range of a 

common EMG signal which showed an ideal power with 

frequency range of 20-150 Hz [12]. 

3.4 Preprocessing 

The EMG data from each subject was then analyzed in the 

frequency spectrum to see whether the EMG data contaminated 

with the noise. The most common EMG signal contamination 

was caused by motion artifact, baseline, and powerline 

interference [13], [14]. In this study, powerline interference was 

ignored since the maximum frequency was 50 Hz. The range of 

baseline and motion noise ranged between 0-20 Hz. Thus, High 

Pass Filter (HPF) was performed to remove the existed noise. 

3.4.1 High Pass Filter (HPF) 

 The process of HPF for EMG data was implemented using 

the Python tools from the Scipy module. The Butterworth High 

Pass Filter was chosen with 5 filter order and 10 Hz of cut-off 

frequency. Figure 4 showed the EMG signal of the first Subject 

and its amplitude response and frequency. From the amplitude 

response, it is shown that the EMG signal was contaminated with 

a baseline noise which make the frequency below 1 Hz had a 

very high magnitude. However, after Butterworth HPF was 

performed, the noise was eliminated which was shown in the 

Figure 5. After filtering process, the EMG signal baseline was 

centered at 0 mV and the amplitude response showed no 

abnormal magnitude of the frequency. The filtered EMG data 

from all subjects were combined into one file with an order from 

the first subject, second subject, third subject, and fourth subject 

respectively.  

3.4.2 Data Split 

 In order to perform a proper data splitting of each movement 

and the corresponding disability level event, EMG data exporting 

based on the event was conducted to save each event into 

different file as shown in Figure 6. After the exporting process 

finished, data splitting was conducted into each file to split the 

data for classification process. Sklearn module of Python was 

employed to perform data splitting. The data was split into 50% 

or data train and 50% for data test. The splitting size was chosen 

in order to tolerate the small number of EMG data for transition 

class. The data splitting process was conducted without 

performing data shuffling, so that the EMG data was not 

decomposed into random and meaningless EMG data. 

3.4.3 Feature Extraction 

 In this study, time-domain and frequency-domain features 

were employed to obtain important feature value from EMG data. 

A total of nine time-domain (TD) features and one 

frequency-domain (FD) feature were extracted from 100 ms 

window size with 10ms window slide size. The features are mean 

absolute value (MAV), variance (VAR), root mean square (RMS), 

Figure 6. Process of Event Exporting into Different Files. (MET: 

Mass Extension Transition; MEF: Mass Extension Full; MFT: 

Mass Flexion Transition; MFF: Mass Flexion Full) 

Figure 7. Data Processing Steps. 
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waveform length (WL), Slope Sign Change (SSC), zero crossing 

(ZC), willison amplitude (WAMP), and Mean Power Frequency 

(MNF) [15]–[18]. These features were widely used to extract 

important values from EMG and improve the output of 

classification. After feature values was extracted, the data was 

standardized using Standard Scaler and concatenated into one 

train file and one test file.  

3.4.4 Classification 

 In this study, the classification was conducted by comparing 

the performance of two machine learning algorithms. Support 

Vector Machine (SVM) and Random Forest (RF) were employed 

to classify the disability level of the Subjects’ finger movement. 

SVM classifier was widely known of its ability to recognize 

complex pattern [19], [20]. As an ensemble machine learning, RF 

was the most popular classifer which also believed to be an 

efficient classifier and has a good performance in the field of 

EMG signal classification [21], [22].  

 In order to make the final output of each classifier focused on 

the disability level, we made a machine learning model based of 

each movement. However, the amount of data for each target 

class was unbalance which leads to a bad performance of the 

machine learning model. In order to overcome this problem, 

Smote filtering was performed to produce synthesis data so that 

the same amount of data is generated for each target class. On 

deciding the hyperparameters for SVM and RF, we followed the 

suggested parameters in [15] and tuned the parameters using 

ten-fold cross-validation randomized search process in the 

training dataset as shown in the Figure 7. The best parameter was 

chosen based on the f1 micro score. For SVM classifier, we 

adjusted the kernel (linear, polykernel, and rbf), polykernel 

degrees (1, 2, and 3), C value (1, 10, 100, and 1000), and gamma 

value (1, 0.1, 0.01, 0.001). For RF classifier, we adjusted the 

criterion parameters (gini and entropy) and number of trees (100, 

300, 500, 700, 1000). 

4. Results  

 We developed the machine learning-based classifier to 

recognize the disability level of the Subjects’ finger movements 

using SVM and RF. In this study the target classes which was 

learned and recognized by the employed machine learning model 

were Full, Partial, and Transition. Since FMA-UE for hand 

evaluation has None condition, we included the None class in the 

confusion matrix with zero value. The calculation of all 

performance metrics was conducted only for Full, Partial, and 

Transition class. 

4.1 Classifier Parameters 

 The established machine learning model was optimized by the 

best parameters which were determined using randomized search 

process based on the f1 micro score as shown in Table 1. The 

maximum value of C parameter for SVM classifier was 1000, 

meanwhile the gamma parameter varied in the set range from 1 

until 0.001. Degree parameter only worked for polykernel 

parameters, thereby only SVM model for movement 4, 5, 6, and 7 

output the degree parameter which was 2 and 3.  

Table 1. Best Parameters of SVM and RF for Each Movement 

Method Parameter 
Movement 

1 2 3 4 5 6 7 

SVM 

Kernel Linear Linear RBF Poly Poly Poly Poly 

C 1000 10 10 10 1000 10 1 

Gamma 0.001 1 0.1 1 1 1 1 

Degree 0 0 0 3 2 2 3 

RF 

Criterion Gini Gini Entropy Gini Gini Entropy Gini 

Number of 

Trees 
700 00 100 100 500 1000 700 

 

Table 2. Classifier Accuracies for Each Movement and Machine 

Learning Method 

Method 
Movement 

1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 

SVM 67.38 45.21 48.40 91.67 69.92 80.10 66.82 

RF 61.19 41.00 44.40 90.13 76.96 80.78 57.59 

 

Table 3. F1 Score for Each Movement and Machine Learning 

Method 

Method Movement 
 Target Class 

mean std 
Full Partial None Transition 

SVM 

1 0.60 0.58 0.00 0.99 0.72 0.23 

2 0.32 0.54 0.00 0.53 0.46 0.12 

3 0.54 0.52 0.00 0.18 0.41 0.20 

4 0.98 0.83 0.00 0.53 0.78 0.23 

5 0.85 0.20 0.00 0.00 0.35 0.44 

6 0.88 0.58 0.00 0.42 0.63 0.23 

7 0.76 0.74 0.00 0.19 0.56 0.32 

RF 

1 0.57 0.41 0.00 1.00 0.66 0.31 

2 0.29 0.45 0.00 0.88 0.54 0.31 

3 0.38 0.61 0.00 0.19 0.39 0.21 

4 0.99 0.70 0.00 0.57 0.75 0.22 

5 0.90 0.40 0.00 0.00 0.43 0.45 

6 0.89 0.60 0.00 0.59 0.69 0.17 

7 0.70 0.49 0.00 0.11 0.43 0.30 
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 In the RF parameters, the maximum number of trees was 1000 

which is obtained by movement 6. Entropy was the best criterion 

parameter of movements 3 and 6. Meanwhile, gini criterion was 

the best parameter for movement 1, 2, 4, 5, and 7. 

MOVEMENT 1 (SVM) MOVEMENT 2 (SVM) 

  

MOVEMENT 3 (SVM) MOVEMENT 4 (SVM) 

  

MOVEMENT 5 (RF) MOVEMENT 6 (RF) 

  

MOVEMENT 7 (SVM) 

 

 
Figure 8. Confusion Matrix for 7 Movements Based on Highest Accuracy from Each Classifier 
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4.2 Classifier Performance 

 Based on Table 2, the highest accuracy of 91.67% was 

obtained in movement 4 for SVM classifier and the lowest 

accuracy of 41.00% was obtained in movement 2 for RF. 

Correspond to the accuracy result, both machine learning models 

showed best performance on recognizing the disability level in 

movement 4, while poor performance occurred in movement 2 

and 3 with low accuracy score below 50%. In order to observe 

more regarding the performance of the machine learning model, 

the score of f1 is needed. 

 Table 3 shows f1 score of each disability level on each 

movement. Based on the mean of f1 score, SVM and RF 

classifier obtained the best f1 score in movement 4 which was 

complementing the accuracy score. Random Forest classifier 

showed better performance on classifying the disability level in 

movement 5 and 6. In movement 5, the accuracy of RF was 7.04 

higher than SVM, while the f1 score was 0.08 higher. In 

movement 6, the accuracy of RF was slightly higher than SVM 

which is 0.68, and the f1 score of RF was 0.03 higher than the 

SVM.  

5. Discussion 

 In this study, we developed a recognition method to recognize 

the disability level of post-stroke patients’ finger movement. Two 

machine learning method were implemented to classify three 

target classes for each movement. The SVM method achieved the 

highest accuracy and f1 score in the fourth movement (Thumb 

Adduction) of 91.67% and 0.78 respectively. This result implies 

that recognizing the disability level from post-stroke subjects’ 

finger movement is applicable.  

 The proposed method with low sampling rate of 100Hz with 4 

post-stroke patients was able to recognize each disability level of 

finger movements. In this study, the amount of data for each 

target class and each movement is unbalance especially for 

Partial and Transition. The transition class is a changing phase 

from rest condition to a contraction condition, called recruitment 

of motor unit process. The duration of transition phase of healthy 

person is very small, ranged from 80ms until 150ms [23].  

 Since the employed sampling rate in this study only able to 

capture 1 EMG data every 10ms, then only 8-15 EMG data 

correlated with transition phase will be captured. However, in the 

case of disabled muscle condition, the transition phase has the 

possibility to occur longer than normal muscle. In this paper, 

various f1 score for Transition target class was obtained. RF 

classifier could achieve the highest f1 score in classifying the 

Transition class of the first movement by 1.00. SVM was also 

able to achieve high f1 score in Transition class in the first 

movement by 0.99. However, a lot of transition class for other 

movements were poorly classified. Figure 8 showed that 

Transition class of SVM method for movement 2, 4, and 7 were 

biased mostly to the Full class. Similar condition happened for 

Transition class in RF classifier as shown in Figure 8. In 

movement 5, the transition class was misclassified as Full class, 

while in movement. Both SVM and RF classifier showed 0.00 f1 

score of Transition class as shown in Table 3. The similar 

condition occurred with Partial target class. Eventhough some of 

the predicted classes were misclassified as Full or Transition class, 

due to higher amount of data on the Partial class compared with 

Transition class, the result for f1 score is better than Transition 

class. Both SVM and RF classifier showed biased result of Partial 

class that varied to rather Full or Transition class.  

 In order to compensate the unbalance number of EMG data, 

especially for Transition target class, 50% data splitting was 

performed. The condition leads to small number of features 

learned by the employed machine learning model. Based on 

another study, the classifier was preferred to learn more features 

in order to output a good machine learning model by performing 

data splitting with 90% for train dataset and 10% test dataset [15]. 

The expected condition also requires the system to obtain more 

EMG data by increasing the sampling rate. Eventhough the 

sampling rate which was employed in this research is still 

included in the Nyquist frequency range of EMG [12], higher 

sampling rate is needed to collect more EMG data within 1s. 

6. Conclusion and Future Work 

 This research proposed a recognition method to recognize the 

disability level of the post-stroke patients’ finger movement 

based on Fugl-Meyer Assessment. In this research the SVM and 

RF classifier could detect all target classes which was Full, 

Partial, and Transition condition. The employed classifiers were 

optimized with the best parameters which was chosen by 10-folds 

cross validation (CV) of randomized search method. The SVM 

classifier achieved the highest accuracy and mean of f1 score on 

detecting the disability level of movement 4 (Thumb Adduction) 

by 91.67% and 0.78 respectively. RF classifer also achieved the 

highest accuracy on recognizing the disability level in movement 

4 with 90.13% accuracy score and 0.75 mean of f1 score. 

Collecting more EMG data from the post-stroke patients, 

especially patient with None disability level condition and 

employing higher sampling rate will be conducted for the next 

research. 
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