Finding shortest non－separating and non－disconnecting paths

Yasuaki Kobayashi ${ }^{1}$ Shunsuke Nagano ${ }^{1}$ Yota Otachi ${ }^{2}$

Abstract

For a connected graph $G=(V, E)$ and $s, t \in V$ ，a non－separating s－t path is a path P between s and t such that the set of vertices of P does not separate G ，that is，$G-V(P)$ is connected．An $s-t$ path is non－disconnected if $G-E(P)$ is connected．The problems of finding shortest non－separating and non－disconnecting paths are both known to be NP－hard．In this paper，we consider the problems from the viewpoint of parameterized complexity．We show that the problem of finding a non－separating s－t path of length at most k is $\mathrm{W}[1]$－hard parameterized by k ，while the non－disconnecting counterpart is fixed－parameter tractable parameterized by k ．We also consider the shortest non－separating path problem on several classes of graphs and show that this problem is NP－hard even on bipartite graphs，chordal graphs，and planar graphs． As for positive results，the shortest non－separating path problem is fixed－parameter tractable parameterized by k on planar graphs and polynomial－time solvable on chordal graphs if k is the shortest path distance between s and t ．

1．Introduction

Lovász＇path removal conjecture states the following claim：There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $f(k)$－connected graph G and every pair of vertices u and v, G has a path P between u and v such that $G-V(P)$ is k－connected．This claim remains still open and some spacial cases have been resolved［4，14，15，20］．Tutte［20］ proved that $f(1)=3$ ，that is，every triconnected graph satisfies that for every pair of vertices，there is a path between them whose removal results a connected graph． Kawarabayashi et al．［14］proved a weaker version of this conjecture：There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $f(k)$－connected graph G and every pair of vertices u and v, G has an induced path P between u and v such that $G-E(P)$ is k－connected．
As a practical application，let us consider a network represented by an undirected graph G ，and we would like to build a private channel between a specific pair of nodes s and t ．For some security reasons，the path used in this channel should be dedicated to the pair s and t ，and hence all other connections do not use all nodes and／or edges on this path while keeping their connections．In graph－

[^0]theoretic terms，the vertices（resp．edges）of the path between s and t does not form a separator（resp．a cut） of G ．Tutte＇s result［20］indicates that such a path al－ ways exists in triconnected graphs，but may not exist in biconnected graphs．In addition to this connectivity con－ straint，the path between s and t is preferred to be short due to the cost of building a private channel．Motivated by such a natural application，the following two problems are studied．
Definition 1．Given a connected graph $G, s, t \in V(G)$ ， and an integer k ，Shortest Non－Separating Path asks whether there is a path P between s and t in G such that the length of P is at most k and $G-V(P)$ is con－ nected．

Definition 2．Given a connected graph $G, s, t \in V(G)$ ， and an integer k ，Shortest Non－Disconnecting Path asks whether there is a path P between s and t in G such that the length of P is at most k and $G-E(P)$ is con－ nected．

We say that a path P is non－separating（in G ）if $G-V(P)$ is connected and is non－disconnecting（in G ） if $G-E(P)$ is connected．

Related work．The shortest path problem in graphs is one of the most fundamental combinatorial optimization
problems，which is studied under various settings．In－ deed，our problems Shortest Non－Separating Path and Shortest Non－Disconnecting Path can be seen as variants of this problem．From the computational com－ plexity viewpoint，Shortest Non－Separating Path is known to be NP－hard and its optimization version cannot be approximated with factor $|V|^{1-\varepsilon}$ in polyno－ mial time for $\varepsilon>0$ unless $\mathrm{P}=\mathrm{NP}$［21］．Shortest Non－Disconnecting Path is shown to be NP－hard on general graphs and polynomial－time solvable on chordal graphs［16］．

Our results．We investigate the parameterized com－ plexity of both problems．We show that Short－ est Non－Separating Path is W［1］－hard and Short－ est Non－Disconnecting Path is fixed－parameter tractable parameterized by k ．A crucial observation for the fixed－parameter tractability of Shortest Non－ Disconnecting Path is that the set of edges in a non－ disconnecting path can be seen as an independent set of a cographic matroid．By applying the representative family of matroids［10］，we show that Shortest Non－ Disconnecting Path can be solved in $2^{\omega k}|V|^{O(1)}$ time， where ω is the exponent of the matrix multiplication．We also show that Shortest Non－Disconnecting Path is OR－compositional，that is，there is no polynomial ker－ nelization unless coNP \subseteq NP／poly．To cope with the intractability of Shortest Non－Separating Path，we consider the problem on planar graphs and show that it is fixed－parameter tractable parameterized by k ．This re－ sult can be generalized to wider classes of graphs which have the diameter－treewidth property［8］．We also consider Shortest Non－Separating Path on several classes of graphs．We can observe that the complexity of Short－ est Non－Separating Path is closely related to that of Hamiltonian Cycle（or Hamiltonian Path with spec－ ified end vertices）．This observation readily proves the NP－completeness of Shortest Non－Separating Path on bipartite graphs，chordal graphs，and planar graphs． For chordal graphs，we devise a polynomial－time algo－ rithm for Shortest Non－Separating Path for the case where k is the shortest path distance between s and t ．
Due to the space limitation，we just provide an outline of the proof for each result．

2．Shortest Non－Separating Path

We discuss our complexity and algorithmic results for Shortest Non－Separating Path．

2．1 Hardness on graph classes

We obverse that，in most cases，Shortest Non－ Separating Path is NP－hard on classes of graphs for which Hamiltonian Path（with distinguished end ver－ tices）is NP－hard．Let $G=(V, E)$ be a graph and $s, t \in V$ be distinct vertices of G ．We add a pendant vertex p ad－ jacent to s and denote the resulting graph by G^{\prime} ．Then， we have the following observation．
Observation 1．For every non－separating path P between s and t in $G^{\prime}, V(G) \backslash V(P)=\{p\}$ ．

Suppose that for a class \mathcal{C} of graphs，
－the problem of deciding whether given graph $G \in \mathcal{C}$ has a Hamiltonian path between specified vertices s and t in G is NP－hard and
－$G \in \mathcal{C}$ implies $G^{\prime} \in \mathcal{C}$ ．
By Observation $1, G^{\prime}$ has a non－separating s－t path if and only if G has a Hamiltonian path between s and t ．This implies that the problem of finding a non－separating path between specified vertices is NP－hard on class \mathcal{C} ．
Theorem 1．The problem of deciding if an input graph has a non－separating s－t path is NP－complete even on pla－ nar graphs，bipartite graphs，and chordal graphs．
The proof of the theorem is done by performing a polynomial－reduction from Hamiltonian Cycle to Hamiltonian Path（with specified end vertices）for pla－ nar graphs，bipartite graphs，and chordal graphs．Since Hamiltonian Cycle is known to be NP－complete on these classes of graphs［13，17］．

2．2 W［1］－hardness

Next，we show that Shortest Non－Separating Path is W［1］－hard parameterized by k ．The proof is done by giving a reduction from Multicolored Clique， which is known to be W［1］－complete［9］．In Multicol－ ored Clique，we are given a graph G with a partition $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of $V(G)$ and asked to determine whether G has a clique C such that $\left|V_{i} \cap C\right|=1$ for each $1 \leq i \leq k$ ．

From an instance（ $G,\left\{V_{1}, \ldots, V_{k}\right\}$ ）of Multicolored Clique，we construct an instance of Shortest Non－ Separating Path as follows．Without loss of generality， we assume that G contains more than k vertices．We add two vertices s and t and edges between s and all $v \in V_{1}$ and between t and all $v \in V_{k}$ ．For any pair of $u \in V_{i}$ and $v \in V_{j}$ with $|i-j| \geq 2$ ，we do the following．If $\{u, v\} \in E$ ，then we remove it．Otherwise，we add a path $P_{u, v}$ of length 2 and a pendant vertex that is adjacent to the internal vertex w of $P_{u, v}$ ．Finally，we add a ver－ tex v^{*} ，add an edge between v^{*} and each original vertex
$v \in V(G)$ ，and add a pendant vertex p adjacent to v^{*} ． The constructed graph is denoted by H ．
Lemma 1．There is a clique C in G such that $\left|C \cap V_{i}\right|=1$ for $1 \leq i \leq k$ if and only if there is a non－separating s－t path of length at most $k+1$ in H ．
Thus，we have the following theorem．
Theorem 2．Shortest Non－Separating Path is W［1］－hard parameterized by k ．

2．3 Graphs with the diameter－treewidth prop－ erty

By Theorem 2，Shortest Non－Separating Path is unlikely to be fixed－parameter tractable on general graphs．To overcome this intractability，we focus on sparse graph classes．We first note that algorithmic meta－ theorems for FO Model Checking［11，12］does not seem to be applied to Shortest Non－Separating Path as we need to care about the connectivity of graphs，while it can be expressed by a formula in MSO logic，which is as follows．The property that vertex set X forms a non－ separating $s-t$ path can be expressed as：

$$
\operatorname{conn}(V \backslash X) \wedge \operatorname{hampath}(X, s, t)
$$

where conn (Y) and hampath (Y, s, t) are formulas in MSO_{2} that are true if and only if the subgraph induced by Y is connected and has a Hamiltonian path between s and t ，respectively．We omit the details of these for－ mulas，which can be found in［6］for example＊${ }^{* 1}$ ．By Courcelle＇s theorem［5］and its extension due to Arnborg et al．［1］，we can compute a shortest non－separating $s-t$ path in $O(f(\operatorname{tw}(G)) n)$ time，where n is the number of vertices and $\operatorname{tw}(G)$ is the treewidth ${ }^{* 2}$ of G ．As there is an $O\left(\operatorname{tw}(\mathrm{G})^{\mathrm{tw}(\mathrm{G})^{3}} n\right)$－time algorithm for computing the treewidth of an input graph G［2］，we have the following theorem．

Theorem 3．Shortest Non－Separating Path is fixed－parameter tractable parameterized by the treewidth of input graphs．

A class \mathcal{C} of graphs is minor－closed if every minor of a graph $G \in \mathcal{C}$ also belongs to \mathcal{C} ．We say that \mathcal{C} has the diameter－treewidth property if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $G \in \mathcal{C}$ ，the treewidth of G is upper bounded by $f(\operatorname{diam}(G))$ ，where $\operatorname{diam}(G)$ is the

[^1]diameter of G ．It is well known that every planar graph G has treewidth at most $3 \cdot \operatorname{diam}(G)+1[19]^{* 3}$ ，which implies that the class of planar graphs has the diameter－treewidth property．This can be generalized to more wider classes of graphs．A graph is called an apex graph if it has a vertex such that removing it makes the graph planar．
Theorem 4 （［7，8］）．Let \mathcal{C} be a minor－closed class of graphs．Then， \mathcal{C} has the diameter－treewidth property if and only if it excludes some apex graph．
Theorem 5．Suppose that a minor－closed class \mathcal{C} of graphs has the diameter－treewidth property．Then， Shortest Non－Separating Path is fixed－parameter tractable parameterized by k on \mathcal{C} ．

The proof goes as follows．If the distance between s and t is more than k ，the instance is trivially infeasible．Sup－ pose otherwise．Then，every non－separating path between s and t contains only vertices of distance at most k from s ． This implies that the vertices to which the distance from s more than k is easily handled．From this observation， we construct an equivalent instance of diameter $O(k)$ and by the diameter－treewidth property and Theorem 3，the theorem follows．

2．4 Chordal graphs with $k=\operatorname{dist}(s, t)$

In Section 2．1，we have seen that Shortest Non－ Separating Path is NP－complete even on chordal graphs．To overcome this intractability，we restrict our－ selves to finding a non－separating s－t path of length $\operatorname{dist}(s, t)$ on chordal graphs．
Theorem 6．There is a polynomial－time algorithm for Shortest Non－Separating Path on chordal graphs， provided that k is equal to the shortest path distance be－ tween s and t ．
The idea of proving this theorem is as follows．In chordal graphs，every shortest path between s and t that is non－separating does not contain some minimal separators， and we can show that this condition is also a sufficient con－ dition for such a path．Using nontrivial observations on chordal graphs，we can find a shortest path that satisfies this condition in polynomial time．

3．Shortest Non－Disconnecting Path

The goal of this section is to establish the fixed－ parameter tractability and a conditional lower bound on polynomial kernelizations for Shortest Non－ Disconnecting Path．

[^2]
3．1 Fixed－parameter tractability

Theorem 7．Shortest Non－Disconnecting Path

 can be solved in time $2^{\omega k} n^{O(1)}$ ，where ω is the matrix mul－ tiplication exponent and n is the number of vertices of the input graph G ．The algorithm is based on representative families of ma－ troids due to［10］．It is well known that the set of edges of a non－disconnected path forms an independent set in the cographic matroid of G［18］．We give a dynamic program－ ming algorithm with the aid of representative families of linear matroids．

3．2 Kernel lower bound

It is well known that a parameterized problem is fixed－ parameter tractable if and only if it admits a kernelization （see［6］，for example）．By Theorem 7，Shortest Non－ Disconnecting Path admits a kernelization．A natural step next to this is to explore the existence of polyno－ mial kernelizations for Shortest Non－Disconnecting Path．However，the following theorem conditionally rules out the possibility of polynomial kernelization．
Theorem 8．Unless coNP \subseteq NP／poly，Shortest Non－ Disconnecting Path does not admit a polynomial ker－ nelization（with respect to parameter k ）．
The proof of the theorem is done by showing that Shortest Non－Disconnecting Path is OR－ compositional，and by［3］，the problem does not admit a polynomial kernelization unless coNP $\subseteq \mathrm{NP} /$ poly．

References

［1］Stefan Arnborg，Jens Lagergren，and Detlef Seese． ＂Easy Problems for Tree－Decomposable Graphs＂． In：J．Algorithms 12.2 （1991），pp．308－340．
［2］Hans L．Bodlaender．＂A Linear－Time Algo－ rithm for Finding Tree－Decompositions of Small Treewidth＂．In：SIAM J．Comput． 25.6 （1996）， pp．1305－1317．
［3］Hans L．Bodlaender，Rodney G．Downey，Michael R．Fellows，and Danny Hermelin．＂On problems without polynomial kernels＂．In：J．Comput．Syst． Sci． 75.8 （2009），pp．423－434．
［4］Guantao Chen，Ronald J．Gould，and Xingxing Yu．＂Graph Connectivity After Path Removal＂． In：Comb． 23.2 （2003），pp．185－203．
［5］Bruno Courcelle．＂The Monadic Second－Order Logic of Graphs．I．Recognizable Sets of Finite Graphs＂．In：Inf．Comput． 85.1 （1990），pp．12－75．
［6］Marek Cygan，Fedor V．Fomin，Lukasz Kowa－ lik，Daniel Lokshtanov，Daniel Marx，Marcin Pilipczuk，Michal Pilipczuk，and Saket Saurabh． Parameterized Algorithms．1st．Springer Publish－ ing Company，Incorporated， 2015.
［7］Erik D．Demaine and Mohammad Taghi Haji－ aghayi．＂Diameter and Treewidth in Minor－Closed Graph Families，Revisited＂．In：Algorithmica 40.3 （2004），pp．211－215．
［8］David Eppstein．＂Diameter and Treewidth in Minor－Closed Graph Families＂．In：Algorithmica 27.3 （2000），pp．275－291．
［9］Michael R．Fellows，Danny Hermelin，Frances A． Rosamond，and Stéphane Vialette．＂On the pa－ rameterized complexity of multiple－interval graph problems＂．In：Theor．Comput．Sci． 410.1 （2009）， pp．53－61．
［10］Fedor V．Fomin，Daniel Lokshtanov，Fahad Panolan，and Saket Saurabh．＂Efficient Computa－ tion of Representative Families with Applications in Parameterized and Exact Algorithms＂．In：J． ACM 63.4 （2016），29：1－29：60．
［11］Martin Grohe and Stephan Kreutzer．＂Meth－ ods for Algorithmic Meta Theorems＂．In：$A M S$－ ASL Joint Special Session．Vol．558．Contempo－ rary Mathematics．American Mathematical Soci－ ety，2009，pp．181－206．
［12］Martin Grohe，Stephan Kreutzer，and Sebas－ tian Siebertz．＂Deciding First－Order Properties of Nowhere Dense Graphs＂．In：J．ACM 64.3 （2017）， 17：1－17：32．
［13］Alon Itai，Christos H．Papadimitriou，and Jayme Luiz Szwarcfiter．＂Hamilton Paths in Grid Graphs＂．In：SIAM J．Comput． 11.4 （1982）， pp．676－686．
［14］Ken－ichi Kawarabayashi，Orlando Lee，Bruce A． Reed，and Paul Wollan．＂A weaker version of Lovász＇path removal conjecture＂．In：J．Comb． Theory，Ser．B 98.5 （2008），pp．972－979．
［15］Matthias Kriesell．＂Induced paths in 5－connected graphs＂．In：J．Graph Theory 36.1 （2001），pp．52－ 58.
［16］Xiao Mao．＂Shortest non－separating st－path on chordal graphs＂．In：CoRR abs／2101．03519 （2021）．arXiv： 2101.03519.
［17］Haiko Müller．＂Hamiltonian circuits in chordal bi－ partite graphs＂．In：Discret．Math．156．1－3（1996）， pp．291－298．
［18］James G．Oxley．Matroid Theory（Oxford Gradu－ ate Texts in Mathematics）．USA：Oxford Univer－ sity Press，Inc．， 2006.
［19］Neil Robertson and Paul D．Seymour．＂Graph mi－ nors．III．Planar tree－width＂．In：J．Comb．The－ ory，Ser．B 36.1 （1984），pp．49－64．
［20］William T．Tutte．＂How to Draw a Graph＂．In： Proceedings of the London Mathematical Society s3－13．1（1963），pp．743－767．
［21］Bang Ye Wu and Hung－Chou Chen．＂The approx－ imability of the minimum border problem＂．In： The 26th Workshop on Combinatorial Mathemat－ ics and Computation Theory． 2009.

[^0]: Kyoto University
 2 Nagoya University

[^1]: ＊1 In［6］，they give an MSO_{2} sentence hamiltonicity ex－ pressing the property of having a Hamiltonian cycle， which can be easily transformed into a formula expressing hampath (X, s, t) ．
 ＊2 We do not give the definition of treewidth and（the opti－ mization version of）Courcelle＇s theorem．We refer to［6］for details．

[^2]: ＊3 More precisely，the treewidth of a planar graph is upper bounded by $3 r+1$ ，where r is the radius of the graph．

