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Abstract: For a connected graph G = (V,E) and s, t ∈ V , a non-separating s-t path is a path P between
s and t such that the set of vertices of P does not separate G, that is, G − V (P ) is connected. An s-t
path is non-disconnected if G − E(P ) is connected. The problems of finding shortest non-separating and
non-disconnecting paths are both known to be NP-hard. In this paper, we consider the problems from the
viewpoint of parameterized complexity. We show that the problem of finding a non-separating s-t path of
length at most k is W[1]-hard parameterized by k, while the non-disconnecting counterpart is fixed-parameter
tractable parameterized by k. We also consider the shortest non-separating path problem on several classes of
graphs and show that this problem is NP-hard even on bipartite graphs, chordal graphs, and planar graphs.
As for positive results, the shortest non-separating path problem is fixed-parameter tractable parameterized
by k on planar graphs and polynomial-time solvable on chordal graphs if k is the shortest path distance
between s and t.

1. Introduction

Lovász’ path removal conjecture states the following

claim: There is a function f : N → N such that for every

f(k)-connected graph G and every pair of vertices u and

v, G has a path P between u and v such that G − V (P )

is k-connected. This claim remains still open and some

spacial cases have been resolved [4, 14, 15, 20]. Tutte [20]

proved that f(1) = 3, that is, every triconnected graph

satisfies that for every pair of vertices, there is a path

between them whose removal results a connected graph.

Kawarabayashi et al. [14] proved a weaker version of this

conjecture: There is a function f : N → N such that for

every f(k)-connected graph G and every pair of vertices

u and v, G has an induced path P between u and v such

that G− E(P ) is k-connected.

As a practical application, let us consider a network

represented by an undirected graph G, and we would like

to build a private channel between a specific pair of nodes

s and t. For some security reasons, the path used in this

channel should be dedicated to the pair s and t, and hence

all other connections do not use all nodes and/or edges

on this path while keeping their connections. In graph-
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theoretic terms, the vertices (resp. edges) of the path

between s and t does not form a separator (resp. a cut)

of G. Tutte’s result [20] indicates that such a path al-

ways exists in triconnected graphs, but may not exist in

biconnected graphs. In addition to this connectivity con-

straint, the path between s and t is preferred to be short

due to the cost of building a private channel. Motivated

by such a natural application, the following two problems

are studied.

Definition 1. Given a connected graph G, s, t ∈ V (G),

and an integer k, Shortest Non-Separating Path

asks whether there is a path P between s and t in G such

that the length of P is at most k and G − V (P ) is con-

nected.

Definition 2. Given a connected graph G, s, t ∈ V (G),

and an integer k, Shortest Non-Disconnecting Path

asks whether there is a path P between s and t in G such

that the length of P is at most k and G − E(P ) is con-

nected.

We say that a path P is non-separating (in G) if

G − V (P ) is connected and is non-disconnecting (in G)

if G− E(P ) is connected.

Related work. The shortest path problem in graphs is

one of the most fundamental combinatorial optimization
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problems, which is studied under various settings. In-

deed, our problems Shortest Non-Separating Path

and Shortest Non-Disconnecting Path can be seen

as variants of this problem. From the computational com-

plexity viewpoint, Shortest Non-Separating Path

is known to be NP-hard and its optimization version

cannot be approximated with factor |V |1−ε in polyno-

mial time for ε > 0 unless P = NP [21]. Shortest

Non-Disconnecting Path is shown to be NP-hard on

general graphs and polynomial-time solvable on chordal

graphs [16].

Our results. We investigate the parameterized com-

plexity of both problems. We show that Short-

est Non-Separating Path is W[1]-hard and Short-

est Non-Disconnecting Path is fixed-parameter

tractable parameterized by k. A crucial observation

for the fixed-parameter tractability of Shortest Non-

Disconnecting Path is that the set of edges in a non-

disconnecting path can be seen as an independent set

of a cographic matroid. By applying the representative

family of matroids [10], we show that Shortest Non-

Disconnecting Path can be solved in 2ωk|V |O(1) time,

where ω is the exponent of the matrix multiplication. We

also show that Shortest Non-Disconnecting Path

is OR-compositional, that is, there is no polynomial ker-

nelization unless coNP ⊆ NP/poly. To cope with the

intractability of Shortest Non-Separating Path, we

consider the problem on planar graphs and show that it

is fixed-parameter tractable parameterized by k. This re-

sult can be generalized to wider classes of graphs which

have the diameter-treewidth property [8]. We also consider

Shortest Non-Separating Path on several classes of

graphs. We can observe that the complexity of Short-

est Non-Separating Path is closely related to that of

Hamiltonian Cycle (orHamiltonian Path with spec-

ified end vertices). This observation readily proves the

NP-completeness of Shortest Non-Separating Path

on bipartite graphs, chordal graphs, and planar graphs.

For chordal graphs, we devise a polynomial-time algo-

rithm for Shortest Non-Separating Path for the case

where k is the shortest path distance between s and t.

Due to the space limitation, we just provide an outline

of the proof for each result.

2. Shortest Non-Separating Path

We discuss our complexity and algorithmic results for

Shortest Non-Separating Path.

2.1 Hardness on graph classes

We obverse that, in most cases, Shortest Non-

Separating Path is NP-hard on classes of graphs for

which Hamiltonian Path (with distinguished end ver-

tices) is NP-hard. Let G = (V,E) be a graph and s, t ∈ V

be distinct vertices of G. We add a pendant vertex p ad-

jacent to s and denote the resulting graph by G′. Then,

we have the following observation.

Observation 1. For every non-separating path P between

s and t in G′, V (G) \ V (P ) = {p}.
Suppose that for a class C of graphs,

• the problem of deciding whether given graph G ∈ C
has a Hamiltonian path between specified vertices s

and t in G is NP-hard and

• G ∈ C implies G′ ∈ C.
By Observation 1, G′ has a non-separating s-t path if and

only if G has a Hamiltonian path between s and t. This

implies that the problem of finding a non-separating path

between specified vertices is NP-hard on class C.
Theorem 1. The problem of deciding if an input graph

has a non-separating s-t path is NP-complete even on pla-

nar graphs, bipartite graphs, and chordal graphs.

The proof of the theorem is done by performing

a polynomial-reduction from Hamiltonian Cycle to

Hamiltonian Path (with specified end vertices) for pla-

nar graphs, bipartite graphs, and chordal graphs. Since

Hamiltonian Cycle is known to be NP-complete on

these classes of graphs [13, 17].

2.2 W[1]-hardness

Next, we show that Shortest Non-Separating Path

is W[1]-hard parameterized by k. The proof is done

by giving a reduction from Multicolored Clique,

which is known to be W[1]-complete [9]. In Multicol-

ored Clique, we are given a graph G with a partition

{V1, V2, . . . , Vk} of V (G) and asked to determine whether

G has a clique C such that |Vi∩C| = 1 for each 1 ≤ i ≤ k.

From an instance (G, {V1, . . . , Vk}) of Multicolored

Clique, we construct an instance of Shortest Non-

Separating Path as follows. Without loss of generality,

we assume that G contains more than k vertices. We add

two vertices s and t and edges between s and all v ∈ V1

and between t and all v ∈ Vk. For any pair of u ∈ Vi

and v ∈ Vj with |i − j| ≥ 2, we do the following. If

{u, v} ∈ E, then we remove it. Otherwise, we add a path

Pu,v of length 2 and a pendant vertex that is adjacent

to the internal vertex w of Pu,v. Finally, we add a ver-

tex v∗, add an edge between v∗ and each original vertex
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v ∈ V (G), and add a pendant vertex p adjacent to v∗.

The constructed graph is denoted by H.

Lemma 1. There is a clique C in G such that |C∩Vi| = 1

for 1 ≤ i ≤ k if and only if there is a non-separating s-t

path of length at most k + 1 in H.

Thus, we have the following theorem.

Theorem 2. Shortest Non-Separating Path is

W[1]-hard parameterized by k.

2.3 Graphs with the diameter-treewidth prop-

erty

By Theorem 2, Shortest Non-Separating Path

is unlikely to be fixed-parameter tractable on general

graphs. To overcome this intractability, we focus on

sparse graph classes. We first note that algorithmic meta-

theorems for FO Model Checking [11, 12] does not

seem to be applied to Shortest Non-Separating Path

as we need to care about the connectivity of graphs, while

it can be expressed by a formula in MSO logic, which is

as follows. The property that vertex set X forms a non-

separating s-t path can be expressed as:

conn(V \X) ∧ hampath(X, s, t),

where conn(Y ) and hampath(Y, s, t) are formulas in MSO2

that are true if and only if the subgraph induced by

Y is connected and has a Hamiltonian path between s

and t, respectively. We omit the details of these for-

mulas, which can be found in [6] for example*1. By

Courcelle’s theorem [5] and its extension due to Arnborg

et al. [1], we can compute a shortest non-separating s-t

path in O(f(tw(G))n) time, where n is the number of

vertices and tw(G) is the treewidth*2 of G. As there

is an O(tw(G)tw(G)3n)-time algorithm for computing the

treewidth of an input graph G [2], we have the following

theorem.

Theorem 3. Shortest Non-Separating Path is

fixed-parameter tractable parameterized by the treewidth

of input graphs.

A class C of graphs is minor-closed if every minor

of a graph G ∈ C also belongs to C. We say that C
has the diameter-treewidth property if there is a function

f : N → N such that for every G ∈ C, the treewidth of G

is upper bounded by f(diam(G)), where diam(G) is the

*1 In [6], they give an MSO2 sentence hamiltonicity ex-
pressing the property of having a Hamiltonian cycle,
which can be easily transformed into a formula expressing
hampath(X, s, t).

*2 We do not give the definition of treewidth and (the opti-
mization version of) Courcelle’s theorem. We refer to [6] for
details.

diameter of G. It is well known that every planar graph G

has treewidth at most 3 ·diam(G)+1 [19]*3, which implies

that the class of planar graphs has the diameter-treewidth

property. This can be generalized to more wider classes of

graphs. A graph is called an apex graph if it has a vertex

such that removing it makes the graph planar.

Theorem 4 ([7, 8]). Let C be a minor-closed class of

graphs. Then, C has the diameter-treewidth property if

and only if it excludes some apex graph.

Theorem 5. Suppose that a minor-closed class C of

graphs has the diameter-treewidth property. Then,

Shortest Non-Separating Path is fixed-parameter

tractable parameterized by k on C.
The proof goes as follows. If the distance between s and

t is more than k, the instance is trivially infeasible. Sup-

pose otherwise. Then, every non-separating path between

s and t contains only vertices of distance at most k from s.

This implies that the vertices to which the distance from

s more than k is easily handled. From this observation,

we construct an equivalent instance of diameter O(k) and

by the diameter-treewidth property and Theorem 3, the

theorem follows.

2.4 Chordal graphs with k = dist(s, t)

In Section 2.1, we have seen that Shortest Non-

Separating Path is NP-complete even on chordal

graphs. To overcome this intractability, we restrict our-

selves to finding a non-separating s-t path of length

dist(s, t) on chordal graphs.

Theorem 6. There is a polynomial-time algorithm for

Shortest Non-Separating Path on chordal graphs,

provided that k is equal to the shortest path distance be-

tween s and t.

The idea of proving this theorem is as follows. In

chordal graphs, every shortest path between s and t that is

non-separating does not contain some minimal separators,

and we can show that this condition is also a sufficient con-

dition for such a path. Using nontrivial observations on

chordal graphs, we can find a shortest path that satisfies

this condition in polynomial time.

3. Shortest Non-Disconnecting Path

The goal of this section is to establish the fixed-

parameter tractability and a conditional lower bound

on polynomial kernelizations for Shortest Non-

Disconnecting Path.

*3 More precisely, the treewidth of a planar graph is upper
bounded by 3r + 1, where r is the radius of the graph.
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3.1 Fixed-parameter tractability

Theorem 7. Shortest Non-Disconnecting Path

can be solved in time 2ωknO(1), where ω is the matrix mul-

tiplication exponent and n is the number of vertices of the

input graph G.

The algorithm is based on representative families of ma-

troids due to [10]. It is well known that the set of edges of

a non-disconnected path forms an independent set in the

cographic matroid of G [18]. We give a dynamic program-

ming algorithm with the aid of representative families of

linear matroids.

3.2 Kernel lower bound

It is well known that a parameterized problem is fixed-

parameter tractable if and only if it admits a kernelization

(see [6], for example). By Theorem 7, Shortest Non-

Disconnecting Path admits a kernelization. A natural

step next to this is to explore the existence of polyno-

mial kernelizations for Shortest Non-Disconnecting

Path. However, the following theorem conditionally rules

out the possibility of polynomial kernelization.

Theorem 8. Unless coNP ⊆ NP/poly, Shortest Non-

Disconnecting Path does not admit a polynomial ker-

nelization (with respect to parameter k).

The proof of the theorem is done by showing

that Shortest Non-Disconnecting Path is OR-

compositional, and by [3], the problem does not admit

a polynomial kernelization unless coNP ⊆ NP/poly.
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