V7 b7 ¥ 116—-1
(1997. 9. 11)

Many—-sorted Propositional Dynamic Logic for
Paralle! Processing Environment
Wu Guoging ‘ Tetsuo Tamai
Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan 153

E-mail: wu@graco.c.u~tokyo.acjp . E-mail: tamai@graco.c.u—tokyo.ac jp

Abstract This paper presents a many-sorted propositional dynamic logic system (MPDL) describing
dynamic properties of programs in par.allel processing environment, and applies MPDL to describe a
practical example with respect to a distributed system. Differing from normal PDL, a new operator Gl is
used in the paper to describe relation between parallel programs. Finally, the paper simply discusses
consistency and completeness of MPDL.

keyword Many —sorted propositional dynamic logic, Configuration, Parallel processing

environment, Cooperation point.

1. Introduction

An important characteristic of the parallel processing environments ("PPE” for short) is that paralle!
executing programs not only can independently solve problems but also may jointly solve a complex
problem by means of cooperation. The characteristic gives rise to a new research topic for researchers
who studied propositional dynamic logic("standard PDL” for short) . In the past, standard PDL studied
dynamic properties of programs was confined to a objective fact , that is, there is only one processor in
the computer system and the processor only can exscute a action(instruction) of a program in many
concurrent executing programs (or processes) at a time. But , now many parallel executing programs in
PPE can execute different acts simultaneously at a time on separate processors. Hencs, it is obvious that
PDL for studying dynamic properties of programs in PPE must be different from standard PDL. For the this
reason, this paper is to be presented a many-sorted propositional dynamic logic system("MPDL” for short)
for PPE, and applies it to describe a practical example with respect to a distributed system.

2. Formal Parallel Processes Environment
For the convenience of description, we assume that there are k processors and may simultaneously
execute k programs in a PPE, and call ith parallel executing program in this PPS ith kind of program.

We now define the syntax of MPDL. Because standard PDL can be used to describe dynamic properties
of programs in ith processor, symbols we use in here are similar to [1] and [2], and express al. bl .. for ith
kind of atomic programs, Ai, B', ... for ith kind of atomic formulas or symbols of propositional variables. Two
underlying sets are defined as follows:

AP’ = { ¢, al, bi, .- ¥ (¢is idle program), AF' = { true, false, A', B, .--}.

We inductively define set of formulas, Fori, and set of programs, Prog), by the following rules, where a',

Bi...and X\, Yi, ... are compound programs and formulas, respectively.

Porgrams: (1) AP' ¢ Prog';

—-1-

() if @', B’ €Prog', then a'g’, a'uU B’, (a') e Prog', where
(@) = () V(@)U L = Ua').
~
Formulas: (1) AF' < For';
(2)if X', Y! eFor' and a' eProg’, then =X!, X' vY!, <a' > X' eFor'.

Kripke structure)/’ of ith kind of standard PDL is a triple (g, =, —), where
|=: AF' 2%, —— AP' 5255
i
Informally, S’ is a set of ith kind of program states. The function I= provides an interpretation for ith

kind of atomic formulas, that is, t € |=i (A}) means "Ai is true at the state ti or ti is satisfied with Ai in Mi”
and it may be expressed as M "t i|=i A’ . The function == provides an interpretation for the ith kind of
atomic programs, that is, (5,/') € ——(') means ” there is an execution of 4’ which begins in
4
state § and ends in state 7 ” and it may be expressed as s _.-)t
Note that the idle program ® does not result in a state change, that is, (yt,p) € 7> ().
Furthermore, symbol i in notion “ 7 ” may be omitted where it dose not resuit in misunderstanding .
According to the definition of ith kind of PDL, a program state f in PPE which is constituted by k
processors is made up of k kinds of program states, that is, [= (' t¥)and € 5. We also call 7
as a state configuration of PPE (“configuration” for short). By the definition of configuration an executing
sequence of PPE can be defined as follows:

Definition 1. An executing sequence T of PPE is either an infinite or a finite sequence of configurations,

s 7 g ky = . .
T= 4, t,..,where 1= (13,"',10) is the starting configuration and 7,,, is the next configuration of
Ij Let a= (al,az, . ak) and I, ——> 7, is an executing step in PPE, the executing step of ith kind

of program is — I, . It is obvious that at most k atomic programs can execute simultaneously in

each executing step.

Definition 2. For PPE which has k parallel exscuting programs , Kripke structure M corresponding to it
is a triple (S|=,—), where S is a set of configurations and S = §* X gz X ..X gt . Let Q= {1.2..... K},

1,6, € Sand 1, =(t1,-,t}), [, = (t},,t}) X is a formula of MPDL(defined in next section) and x' is
ith kind of formula appearing in X. Symbol ” |= ” means that f|= X in M if and only if 3i€q, (
Mt |="X'). Symbol “— “ means that {, —— f, if and only if Vi €Q(t; —=— 1}),

To reduce difficulties in resolving complex problems and improve efficiency , some parallel executing
programs in PPE are required to cooperate. So these programs shall communicate each other or share
resources at some point of time . We call this point of time cooperative point. To describe this cooperative

point, a new relation Ri is used in structure M, that is, for any € Siand ti€S), ti Ri ¢ means that there
is a cooperation between ith program at position ti and jth program at position ti in a configurations f = (

t...., ti..., ti..., t) . For example, ith program at position t' makes a request to jth program at position t for

cooperation, or jth program at position ti reports cooperative result to ith program at position t. Hence

structure M has to be expanded as follows:

M=(S,|=, -, [Ri}ije})

where S, |=, —, are defined as befors. For Ri, Vi, jEQ. RIS Six Si) and Ri has following properties:
Leti, jh€EQi, tES, HESI, T =(t!, o g, o i 19,

(1) Ri -Rih € Rih;

(2) when p=torp=(t),if(tRip) then p=t;

(3) t Rii ¢ if and only if ("iff” for short) Jj#i (ti=t*A t Rit).

According to relation Ri, new operator Gii is defined as follows:
Definition 3. For any i, j€Q, if X € For! . then GiiX € For' and
ME=6YX iff MY, t'|= 61X iff 3¢t RY I AM, = X)

Furthermore, we define that Wi = _Gi—X.
3. Axiom System of MPDL

Definition 4. Lst Prog and For are sets of programs and formulas of MPDL, respectively. Prog and For

are defined inductively by the following rules:
prog: (1) VieQy(Prog’ cProg),
) if al,---,akeProg, thena:(al,'--,ak) eProg,
Q) if —(1p1 'k ok — .1 1 k k
a,p € Prog, thenaf=(a B, -,a" ") eProg, auB=(a UB",---,a” UB") e Prog,
* * * *
@" =ah’, @, @*)*)eprog.
For: (1) VieQ, (For' ¢ For),
(2)if X,,X, € Forand a €Prog, then X, vX,,~X, <a>X e For,
(3) i,je Qy, if X eFor’ and GYX eFor' , then GYX & For.

Now, we use the structure M to interpret sgmantics of Prog and For:
Let 7,7 €S, a,B eProg, ', B eProgi, X' eFor',ie Q. X,Y € For,
(1) §—=>7 iff Vi(q' 2y); (sometimes M or M' appearing ahead of "|=" will be omited)
@ G257 iff F eSG—2>F and F —L>F) iff I eSVi(g' —%>r' andr’ —E 51"
@) §—2L5F iff §—2>7 or —LT iff Vilg' —Z >t org' —E 51y,
@ §—= 5T iff 3,7, eS@=F —2>F —% > —E 57 =7)

iff 3%, T, eSVi(g =rf —Zspi 2, .2 sri =1y,

G) M, T|= X' iff 3 eS'M’, t' |= X');

6) f{=XvY iff =X or f=Y; (N t= =X iff I=X;
@) U= <a>X iff 3§1—2> G and §|=X); (9 1=GY X (same to definition3).
we also write [a]X = '\(a)—‘X and [a]X € For.

Definition 5. A formula X is true (or valid) in M, that is, M |= X, iff V7 e S(M.7 |= X).

Based on previous definitions, described semantics and Segerberg axiom system, the axiom system of

MPDL can be defined as follows: Let kinds of «,8 XY have been determined and LIEQ,,

(1) foranyi all ith kind of propositional tautologic; (2) <aup>X= <a>X v <p>X]

(3) <a >false = false; @ <a>Xv V)= <a>Xv <a>J
(5) <aB>X = <a><g>X 6) <a'>X = Xv<a><a' >X; |
(M <a*>X o Xv<a'>=X a<a>X); ®) GiX o WiX;
© GIX v GYY = GIXvY), (10) G'G*X o G*X;
(11) G¥tme o v GYtrue ; 12) G'X o X.

i

The rules of inference are:

X, XoY
o= @

X X
—_—, 3) —— (j#1i).
(X 3 WK G=1)
For axioms (1) ~ (7), discussions of validity completely are the same as standard PDL besides kinds of

programs and formulas are considered. For example, let X&For and Xi is ith kind of formula in X and i€ Qi

for axiom (3):
Fl= <auB>X & 357 —22L>Gndl=X) & Fgvi —2E 5q' A g |= X7)

& WY —2>g)Ag' |= XV —Eg)ng = X)) & Tl= <a>Xv<p>X.

Because of limited space, we will only discuss those axioms with new operator Gi. For axioms(8)~(12):
fl= GiX = fl= GIX = I (¢RI atl|= X) = -3/ ('R At|= -X) = fl= =G'-X = f|l= W'X.
fl= GYXvG'Y <3 (RIF al= X) v RI Y A= Y) & W (R Y Atl|= XvY) @ fl= GY(X VD).
fl= GIGMX = 3 (R A= G™X) = 3/(¢ RV ¢/ AT R7 1 AlP|= X))

= 3P RI I At R ath= X) = 3¢ R P A= X) = F1= GX.
7|= Gitrue =3¢ (¢ RV 1'AP'|= true) = 3F'Fj #i(t) =t"'AF RV V/ At'|= tre)
= v (R A= te) = fl= v Gltrve.
P j#i

fl=G'X=>WER VAV X) = WE|=X) = f= X.

Lemma 1. Assume X is a formula of MPDL, A, .., Am are atomic formulas in X and have n kinds(n=
|QJ). M [= X, then there are at most n 7% 's (;=n, j=m) such that MY|= Aj.

Proof. By definition 5, M |= X iff Y7 e S(M, fi= X) . Furthermore, by 7=(tl,~--,tk) , there certainly
exists a ij so that M,t"|= 4, (4 is a atomic formula in X and ith kind). By 7 €SV . then

Mv,t¢= 4, Because configuration f ¢S is unrestricted, M “|= A, . When kinds of atomic formulas are
n, by i;=n, thus there are at most n s % 's corresponding to kinds. W

Theorem 1. Rules (1)~(3) of inference guard truth of formulas.

Proof. For the rule(1), assume that X and Y are ith kind of formulas, XDY is true and Y is false in M, that
is, for any state freS Mjl=X, M, f|=X>Y, M,fl==Y . By lemmal,
M. fl=X, M f'|=X>Y and Mi9ti|*Y_ Furthermore, if M',f' |= X, then M',t' |# —X so that
M ,ti]# X ‘D Y. This result is in contradiction with preconditions. Hence, A ,7|= 7 . When X and Y are

many-kinds of formulas (that is, X and Y are made up of many kinds of atomic formulas), we also can

similarly prove rule(1) by lemmat.

For the rule(2), assume that X is a ith kind of formula and true in M, that is, for any ¥ &S, Mi,ti I= X
so that Mi,til;& —X = for a € Prog’, M',t'|# <a>-X. = M' t|= ~<a>-X, that is, M‘,t" [:

[a]X . Let X is a many-kinds of formula and A,, ..., An are atomic formulas in X, by lemmal, there certainly

exists some structures M i corresponding with kinds of atomic formulas. For a configuration feS if
M,fl= X , then M= A{ A; is ith kind of formula and j=n). So Ml’tll’t_'Aj. Furthermore, for
aeProg, M’ ,F |# <a>X Thus, M,fl#=<a>-X sothat M7= [a]X.

For the rule(3), let X is a jth kind of formula and true in M, that is,
VieS(M,f|=X) = 3t/ (M7, t/|=X) = 3t/ (M ,t] |=-X) = =3t/ RY t/ AM 1! |= =X)
= M',t' |=-GY-X, that is , M,7 |= -Gi-X. By W¥X= ~Gi-X, M,7[=w9X. M

4. A Practical Example

In this section, we will discuss a practical example with respect to a distributed system using MPDL.
Example. Four programs are allowed to execute simultaneously in a distributed system. These programs
can communicate sach other by writing (or sending) or reading (or getting) mails and jointly solve a
complex problem. This system provides a additional memory (called CRAM) to be shared by the programs.
The CRAM is separated into many séctions (that is , mail~box) in fixed—length. Each program write mails in
or read mails from CRAM through the bus. The exclusive form is used in administration of the bus, that is,
the bus is occupied only by a program at a point of time. Assigned method of the bus is implemented by
hardware and ensured that the bus satisfies following fair condition:

If a program P wants to occupy the bus to write mails in (or read mails from) CRAM and CRAM is not full
(or not empty), then mails that P wants to write (or read) finally can be written in (or read from) CRAM.

Now, we show some descriptions with respect to the bus:

Let OREC(F,, ..., Fn) means that F,, ...,F. are exclusive and Q«={ 1,2,3,4). For the bus, we assume bus is a
program administering CRAM and Cth kind. The set of propositional variables withvrespect to the bus is
AFe = { Idle, [ReqRi, ReqWi | i, j&Qu}, Write, Read, Empty, Full }. The members of AF® mean the bus is
idle, ith or jth kind of program made a request to the bus for reading or writing mails, the bus is writing or
reading mails, CRAM is empty or full, respectively.

For each kind of programs, they all relate to the bus when they want to read or write mails through the

bus. Furthermore, for any i€Q,, all requests of ith kind of programs that want to write (or read) mail in (or
from) CRAM must pass through the atomic program 2 (or aj,) to the bus. Thus, we also assume that
G°ReqW' and G°ReqR' are included in propositional set of ith kind of program. Note that

G°ReqW' and G °ReqR’' means the state that ith kind of program has send a request to the bus for write (or
read) mails and is waiting for respond of the bus.

By the description above, formal expressions with respect to the bus can be described as follows:

For the bus: 1) OREC(Idle, Write, Read); 2) OREC(Idle, [GIC true | i= Q4);

3) ReqWi D Write, ReqRi D Read; 4) Write V Read D —ldle.
For the administration of CRAM, we only discuss two cases that CRAM is full or empty :
5) Write > ~Empty, Read o —Full, 6) —(Full A Empty);
7 v RegW')AEmpty > Write; 8) v (ReqRi)AFuII > Read;
ieQ, ieQ,
9) 5 (RegW') A—Full > Write; 10) v (RegR') A—Empty > Read.
ieQ, g,

For the fair condition:
11) (<al >G* RegW' > false) o Full; 12) (<al >G* RegR' > false) > Empty
According to MPDL and formal description above, we discuss the activity problem of this system.
Propositionl. D = Idleo((A (=RegW’'WA(A (~RegRINV{(A (~RegW')) A Empty)
ieQy jeQ ieQy

k
v({(A (~RegR’)) A Full) is provable.
JEQy

D means: if the bus is idle, then either no any program request to write or read mails, or CRAM is

empty(full) but no any program request to write(read) mails.

Proof.
(1) (v RegW')A—Full o Write (by 9)) @) (v ReqgR/YA~Empty>5Read (by10))
ieQy ieQy

(3) ~Write > —((v RegW')a—Full) (by(l)) 4) —Write> A (=RegqW')v Full

ieQy ieQy
5) ﬁRead:m((.\é RegR’) A—~Empty) (by (2)) (6) —Read > A (=RegR’)v Empty

JeQy JeQ
(7) Write v Read > —Idle (by 4)) (8) Idle > —Write A—Read
@ Idle > (A (=RegW')VFul)A(A (—~ReqR’)v Empty)

1eQx 1€Qy

(lO)Idle:((.,a (—ﬂchW"))/\(VE,C\2 (ﬂRequ)))v((./a (ﬁRqu‘))AEmpzy)v(_,a (-~ RegR’)) AFull). B
1€Qy J€Qy 1EQy 1€Qk

Also, because of limited space, we will not attempt to discuss descriptions and proofs of other properties
with respect to this example system.
5. The Consistency and Completeness of MPDL

Let X be a many-kinds formula of MPDL and M is Kripke structure of MPDL.
Definition 6. MPDL is consistent, if there is not a formula X in MPDL such that both lmx and

I’;\‘,Eﬁz‘ —X where 'WX and |W =1X means that X and —X are provable in MPDL, respectively.

Below, “MPDL” in symbol * |55z “ will be omitted.

—6—

Theorem 2. For any formula X , if |— X, then M |= X

Proof. Because X is a many-kinds of formula, all axioms of MPDL is true in M and rules (1) ~ (3) of
inference can guard truth of formulas (by theorem 1), so when |—X is given , we can prove M |= X using
induction hypothesis for complexity of X. Il

Theorem 3. MPDL is consistent.

Proof. Assume MPDL is not consistent, then there are |—X and |[——X in MPDL simultaneously. By
theorem 2, there are also both M,7|= X and M,f|= —X . When X is a single kind or many-kinds of formula,

there is certainly i € Q, so that M',f'|=a' and M’ ,f'|==a' (@ s an ith kind of atomic formula

appeared in X). Thus @' and @' all hold at state ti simultaneously. A contradiction is produced. Similarly,

other kinds of atomic formulas appeared in X also can be proved. Hence, it is impossible that there are I

—X and |—=X in MPDL simultaneously. We can obtain the result that MPDL is consistent. ll
For the completeness of MPDL, we will use Kozen’s proof method[1] Because completeness of MPDL is

not focal point of this paper, we will only principally discuss some reviews with respect to MPDL. .

Definition 7. A formula X is consistent in MPDL, if X is provable and not |——X in MPDL.

Definition 8. Let W is a many—kinds of formula and consistent, a,8 €Prog, FL(W) is the smallest set of
formulas containing W so that:

(1) all of kinds of atomic formulas appeared in WEFL(W);

(2) if XV YEFLW), then XY EFL(W); 3) if X, <a>XEFLW), then XEFLW);

4) if < U B DXEFL(W), then <a>X, <8 >XEFLW);

(8) if Ca*>XEFLW), then X, < a > a*>XEFLW); (6) if <a BOXEFL(W), then <a>< B8 >XEFLW);

(7) if GIXEFL(W), then XEFLW). |

It is easy to see that FL(W) is finite.
Definition 9. Let FLIW) ={ X1,X» } and the configuration of FL(W) is Y1 AY2A .. AYa,, where each Ya
(h=n) is either X, or —X,. For the convenience of following proof and consistent with cbntents described

as before, we will use symbols ?,5,7 s e aﬂdti,f j, ... denote configurations of FL(W) and conjunction of
ith, jth, ... kind of formulas appeared in configuration ; such that 7= s A /A .., respectively.

For any X€FL(W) and 7, itis obvious that I-f 2 X or |-f =X because sither X or —X appears
in7. Wealsowrite 7< Yy ifl— 7> x.

Definition 10. Kripke structure of FL(W) is M' = (§', |=, —), where S’ is a set of configurations of FL(W)

”| I_”

(similar to S in M), meanings of symbols “|=” and “—" are similar to proceeding definitions. For any

kind of atomic formula A', fl=4" iff t< Al , and for any atomic program a=(a,a’,...d"), 1—2»§ iff

—T—

fan<a>§ is consistent.
Lemma 2. For any program «, If fA<a>4§ is consistent, then r —5q.
Lemma 3. For any <a>X&FL(W) and configuration i',, f< <a>X iff JUTI—o>9Ag<X).
Lemma 4. Let Y is a jth kind of formula. For any G/Y €FLW) and 7,
F<GYY iff (P RV A STY),
Lemma 5. For any formula X €EFL(W) and configuration f , f =X # F<x.

For proofs of lemma 2 — lemma 5, because axioms, definitions, rules of inference and constituted rules of

FL(W) defined as before , and induction hypothesis chiefly are used , we will omit details of proofs .

Now, we can easily prove the following theorem using the definitions and theorems above.

Theorem 4. MPDL is complete.

Proof. Since W is a many—kinds of formula of MPDL and consistent, By lemma 5, the completeness of
MPDL can be proved. l
6. Conclusion

Based on the standard PDL, this paper discussed MPDL which formally defined parallel processing
environment , and also applied MPDL to describe a simple practical example . Since our main research
objective is how to expand the standard PDL to MPDL so that we can study dynamic properties of
programs in parallel processing environment with MPDL, this research topic is how to expand functions of
PDL. We believe that contents of the paper will be helpful to formal researches with respect to parallel
processing environment . Also, we will further deal with other dynamic properties of programs in parallel

processing environment.

References

[1] Dexter Kozen, Rohit Parikh, An elementary proof of the completeness of PDL, Theoretical Computer
Science, 14(1981): pp113-118.

[2] Fischer M.J. and Ladher R.E., Propositional dynamic logic for regular program, J. Computer system

ScienceVol.18, No.2, 1979: pp194-211.

[3] Entalbert P., Many-Sorted Temporal logic for Multi—-Processes System, LNCS, 176, Berlin, Springer—

verlag,1984.
[4] K. Abrahamson, Modal Logic of Concurrent Nondeterministic Programs, LNCS, 70, 1979.
[5] Z. Manna and P.Wolper, Synthesis of Communicating Process from Temporal Logic Specification, ACM

Tran. on Programming Language and System, Vol.6, No.1,1984.

