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single-board CNN inference. 
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Abstract: Intermittent executions and energy harvesting technologies are promising candidates to enable re­
newable energy on small-scale computer systems like single-board computers, making sustainable computing 
possible. In this work, we implemented an energy consumption prediction framework for each layer of CNN 
executing on single-board computers based on NeuralPower as the first step towards enabling energy-efficient 
intermittent execution of CNN inference on single-board computers. We found that layer hyperparame­
ters cannot explain all the variations in execution time and power consumption when the layer is executed. 
Model 's prediction can be improved with the knowledge of performance counter values, but these values are 
not available before a layer is executed. Furthermore, our analysis revealed that implementation optimization 
like sparse matrix multiplication might cause a layer's execution time and power to change with its input 
values . 

1. Introduction 

As the environmental impact of computing grows in con­

cern, energy harvesting-based small-scale intermittent com­

puting systems are gaining interest. Since such systems tend 

to follow the checkpoint-based execution model [10], [15], 

minimizing checkpoint overhead- which leads to longer ex­

ecution time and higher energy consumption-is a critical 

challenge. A promising solution is to skip a particular check­

point if there is enough energy to execute the following 

program partition, including the next checkpointing (i.e., 

the device can decide whether to perform particular check­

points) based on energy predictions. 

Reframing this approach to fit our interest to enable effi­

cient convolutional neural network (CNN) inference on a 

single-board computer, we propose a layer-wise selective 

checkpointing scheme with power/performance models. As 

the first step for this purpose, in this work, we implement a 

power/performance (or energy) prediction framework based 

on NeuralPower [4] and evaluate its accuracy. Precisely, it 

consists of an execution time model and a power consump­

tion model. The following assumptions are applied to sim­

plify the situation of intermittent computing. First , we tar­

get Raspberry Pi 4 as a single-board computer and assume it 

can be turned into an energy harvesting device by switching 

its power supply to an energy harvesting component and an 
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energy buffer. Second, correct execution of CNN inference 

can be achieved even when CNN is executed layer by layer. 

Third, Raspberry Pi 4, with energy harvesting capabilities, 

has sufficient energy to execute at least one layer of CNN 

when its energy buffer is full. 

The main difference between NeuralPower and our work 

is the platforms that execute the CNNs; while NeuralPower 

targets CPUs, single-board computers are our target plat­

form. Also, in addition to implementing and evaluating 

the prediction framework, supplementary analyses are per­

formed to identify the causes of prediction errors and the 

possible ways to improve the prediction. Our findings are 

as follows: 

( 1 ) We show that it is possible to estimate the execution 

time and power consumption of each layer of a CNN 

with its hyperparameters. 

( 2) However, our evaluation also shows that prediction with 

only layer hyperparameters is insufficient in use-cases 

where high precision of estimations is required . 

( 3) We found that knowledge of performance counters dur­

ing prediction can help reduce prediction error but is 

unavailable before executions. 

( 4) Our analysis revealed that implementation optimization 

that exploits the properties of input data and trained 

weight could affect the execution time and power con­

sumption. 

The rest of the paper is organized as follows . Section 2 

introduces related work. An overview of the methodology 

of execution time and power modeling is given in Section 3. 
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Section 4 describes the experimental setup used, while Sec­

tion 5 presents the evaluation results. Section 6 discusses 

the experimental results and future works. Finally, Section 

7 concludes this paper. 

2. R elated Work 

Both [9] and [1] presented a power model for Raspberry 

Pi 2 Model B based on linear regression that estimated the 

power consumption of Raspberry Pi. In both works, the 

power model translates CPU utilization and network uti­

lization into Raspberry Pi 2's power consumption. Tools 

like stress command, cpulimit, and iperf were used to mea­

sure the power consumption at different CPU and network 

utilization. However, we found out that different CNN lay­

ers consumed different amounts of power despite each exe­

cution having CPU utilization of near 100 %. This observa­

tion is likely due to the difference in how stress command 

and CNN's layer utilize the computing and memory com­

ponents of the single-board computer . Also, we found that 

stress command consumed more power when executed with 

performance governor mode than when executed with pow­

ersave governor mode on Raspberry Pi 4. As a reference, 

the performance governor mode tries to keep the CPU cores 

running at 1.5 GHz while the powersave governor mode tries 

to keep the operating frequency at 600 MHz. Based on these 

findings, the power consumption of newer single board com­

puters might be more complicated when we take different 

power modes (i.e., governor mode) into account. 

Precious [12] presented an approach of a system that es­

timates execution time and power draw of convolutional 

and fully-connected neural networks that execute on Google 

Coral Edge TPU. We refer to how they generate neural net­

works to collect training data for execution time and power 

models. Section 3 explains the details about neural networks 

generation. There are two main differences between Precious 

and our work: estimation granularity and the hardware exe­

cuting the CNNs. From the perspective of estimation gran­

ularity, Precious estimated the execution time and power 

consumption for the whole neural network, while our models 

estimate each layer of a C . In addition , in Precious, the 

neural networks are executed on Google Coral Edge TPU 

(an accelerator), while we used Raspberry Pi 4 to execute 

the neural networks. NeuralPower [4] suggested a method­

ology to create an execution time and power consumption 

model for CNN inferences on GPU platforms. Unlike Pre­

cious, the estimation models in NeuralPower can predict the 

execution time and power consumption of each layer of a 

CNN. The prediction for a whole neural network is calcu­

lated from the predicted values of all the consisting layers. 

We refer to how they use a lasso polynomial regression model 

to relate layer hyperparameters to their execution time and 

power. 

[5] proposed CleanCut, a tool that assists programmers 

in splitting their programs into smaller tasks, such that for­

ward execution progress of the program is ensured when ex­

ecuted on energy harvesting devices. CleanCut showed the 
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Table 1: The hyperparameters of each layer that are used as 

the input features for the execution t ime and power model. 

input s ize (2D/1D) 
# channel 
# filters/ neurons 
kernel/pool size 
strides 
padding 

Conv. P ool. F lat . FC 

✓ ✓ ✓ ✓ 

✓ ✓ ✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

importance of knowing the energy consumption of program 

parts beforehand when execut ing programs on energy har­

vesting devices. Other works such as Layerweaver [11] and 

Neurosurgeon [8] showed how knowledge of resource utiliza­

tion (i.e., execution time and power consumption) allows 

efficient execution of CNN. Layerweaver used information 

about CNN's layers to increase the utilization of comput­

ing units in accelerators. Neurosurgeon utilizes information 

of CNN's layers to optimize distributed executions of CNN 

between mobile devices and cloud data centers for low la­
tency or low energy consumption. Distributed computation 

of CNN in Neurosurgeon also supports our assumption that 

CNN can be executed correctly even when executed layers 

by layers. 

3. M ethodology: Layer-leve l Execution 
Time and P ower Modeling 

Our work chose to model the execution time and power 

consumption of the convolutional layer (Conv.), max­

pooling layer (Pool.), flatten layer (Flat.), and fully con­

nected layer (FC). These layers construct CNN like LeNet, 

AlexNet, VGG16 and VGG19. Although newer CNN like 

ResNet and MobileNet, have more complicated building 

blocks that consist of multiple layers connected in a non­

sequential way. For instance, ResNet contains multiple 

residual units, where each residual unit is a small neural net­

work with a skip connection. The skip connection connects 

the input of the residual unit directly to its output without 

passing through the intermediate layers. This structure of 

residual unit goes against our assumption that CNN can be 

executed intermittently one layer at a time. So, we decided 

not to include these CNNs in our targets for modeling. 

We created an execution time model and a power con­

sumption model for each layer type, which takes the layer's 

hyperparameters as inputs. The use of layer hyperparam­

eters as the input allows us to estimate before executing a 

particular layer. Table 1 lists the hyperparameters that we 

use as the input features. Our experiments assume that the 

2-dimensional hyperparameters, like input size, kernel size, 
pool size, and strides, are squares. For example, LeNet, 

AlexNet , VGG 16, and VGG 19 use a square for their 2-

dimensional hyperparameters. 

We used a polynomial regression model to relate the 

layer's hyperparameters with execution time and power con­

sumption. A polynomial regression model contains interac­

tion terms formed by the multiplication of layer hyperpa­

rameters. These interaction terms can help explain the non-
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linear relationship between layer hyperparameters and the 

model's output (i.e., execution time and power consump­

tion) [4]. 

The execution time T of a layer can be expressed as: 

Dr 

T(x) = L c1 • II x;ij 
j i=l 

D r 

where x E lE.DriQiJ E N;'ij L QiJ S Kr. 
i=i 

The model is a Kr-th degree polynomial of x, where each 

element in x is the value of a hyperparameter. Different 

types of layers have different numbers of hyperparameters , 

thus different value of Dr. QiJ is the exponent for the hy­

perparameter, Xi in the j-th polynomial term. The j-th 

polynomial term TTf~1 x;'1 represents an interaction term 

between different hyperparameters Xi. c1 is the coefficient 

to learn from training data. 

The power consumption P of a layer can be expressed in 

a similar way: 

Dp 

F(x) = L z1 • II x'('ij 
j i=l 

D p 

where x E JE.DP;miJ E N;'ij L miJ S Kp. 
i=i 

The model is a Kp-th degree polynomial of x , where each 

element in x is the value of a hyperparameter. miJ is the 

exponent for the hyperparameter, Xi in the j -th polynomial 

term. The j-th polynomial term TTf:1 x7''1 represents an 

interaction term between different hyperparameters Xi. ZJ 

is the coefficient to learn from training data. 

3 .1 Creating t he Mode ls 
This subsection introduces the procedure to create the ex­

ecution time model and power model for each type of layer. 

The same procedure is taken to model execution time and 

power consumption for all four types of layers. First, 1-

layered neural networks are generated, executed, and mea­

sured (Section 3.1.1). Then, polynomial regression models 

of different degrees are used to fit the training data, and we 

selected the model with the lowest root-mean-square error 

(RMSE) (Section 3.1.2). As a result , a total of 8 polynomial 

regression models, one execution time model, and one power 

model for each layer type (e.g., convolutional, max-pooling, 

flatten , fully-connected layer) were created. 

3 .1.1 D ata Collect ion 
To create a regression model that can learn how different 

combinations of layer hyperparameters relate to the layer 's 

execution time or power consumption, we decided to use the 

measurements of different 1-layered neural networks as the 

training data of the regression model. We define 1- a lay­

ered neural network as a neural network that contains one 

intermediate layer (input and output are not counted as a 

layer). A 1-layered neural network's output is obtained af­

ter the only intermediate layer performs operations on the 
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Table 2: The values range of hyperparameters of each layer 

used in 1-layered neural network generation 
Conv. Pool. F lat . FC 

input size [16, 256] [16,256] [16, 256] [256 , 51200] 
# channel [l, 512] [64,512] [64,512] 
# filters [64,512] [16, 4096] 
kernel size [2 , 5] [2,4] 
strides [l , 5] [l, 3] 
padding (yes , no) (yes , no) 

neural network's input. We randomly generated a set of 

1-layered neural networks for layer type based on the hy­

perparameters value ranges listed in Table 2. For instance, 

if we want to generate a 1-layered neural network of type 

flatten randomly, we randomly choose an integer from 16 

to 256 as the input size and another integer from 64 to 512 

as the channel hyperparameter. The 1-layered neural net­

works generated were then executed on Raspberry Pi 4 and 

measured to obtain their average execution time- for one 

inference- and average power consumption. Details on how 

each measurement is performed can be found in Section 4.3. 

In our experiments, 180 1-layered neural networks were 

generated for each layer type (a total of 720 1-layered neu­

ral networks). The numbers of 1-layered neural networks 

can be changed to target more layer types or a wider range 

of layer hyperparameters. 

3. 1.2 Model Training and M o de l Select ion 
A polynomial regression model is used to model each layer 

type's execution time and power consumption. In addition, 

we also regularized the polynomial regression model with 

Lasso regression to perform automatic feature selection and 

obtain a sparse regression model [7]. The Lasso regression 

sets the coefficient of least important features to zero during 

the model's training process. 

While the polynomial regression model has degree K as 

a parameter that decides how many additional polynomial 

terms to include, Lasso regression has alpha a as a param­

eter that decides its tendency to set a coefficient to zero. 

To select suitable values for K and a, we used 5-fold cross­

validation to compare regression models with different val­

ues of Kand a. The values of Kand a that we considered 

were {1,2,3,4} and {l x 10- 10 ,1 x 10- 9 , 1 x 10- 8
, ... ,l} 

respectively. In detail , a 5-fold cross-validation randomly 

splits the training data set into five distinct smaller train­

ing sets called folds. It trains and evaluates the regression 

model 5 times, picking a different fold for evaluation after 

training on the remaining four-folds each t ime. As a re­

sult, a regression model with a specific K, a values will have 

five values of RMSE, and the final score of the regression 

model is equal to the mean of these five RMSEs. Then, we 

selected a combination of K , a values , such that the regres­

sion model with these parameter values has the lowest final 

score (i.e., mean RMSE from 5-fold cross-validation) . Note 

that, because layer's hyperparameters relate differently to 

execution time and power consumption, the K, a values for 

the execution time model and power model of a layer type 

will be different. F inally, the regression model is retrained 

 3

Vol.2022-ARC-248 No.13
Vol.2022-SLDM-198 No.13

Vol.2022-EMB-59 No.13
2022/3/10



IPSJ SIG Technical Report 

Power Supply: KIKUSUI PMX18-5A 

(a) Hardwares used in the experiment 

Supervising Device 

voltage, 
current 
sample 
via USB 

send 
command 
via USB 

Power Supply 
+ Voltage, Current 

Monitor 

_____ _ send message 
via socket 

supply 

Device Under Test 
(OUT) 

voltage and current--

(b) Devices connection and communication 

Fig. 1: Experiment setup 

Table 3: Softwares used in the experiments 
Role 
Raspberry Pi 4's OS 
Deep learning framework 
(inference) 

Deep learning framework 
(network generation) 

Sampling program 

Analysis and modeling 

Software 
Ubuntu Server 20 .04.3 LTS (64-bit) 
TensorFlow Lite Runtime 
+ Python 3.8.10 
Keras 2.7 
+ TensorFlow 2.7 
+ Python 3.8.10 
Python 3.8.10 
+ Third-party libraries 
Python 3.8.10 
+ Third-party libraries 

using all the training data with the K, a values selected with 

cross-validation. 

4. Experiment Setup 

This subsection outlines information about the experi­

mental setup, including hardware, software, and experiment 

techniques. 

4 .1 H ard ware 

Figure la shows the hardware that is used in the experi­

ments and the setup where all hardware listed is visible, and 

Figure lb shows how devices connect and communicate with 

each other. The DC power supply (PMX18-5A) [6] outputs 

5.1 V and 3A to the Device Under Test (DUT) . It can also 

monitor the amount of voltage and current supplied to the 

DUT (i.e. , the single-board computer as a whole). The in­

stantaneous power consumption of DUT is later calculated 

using the equation P = V x I . 
The supervising device is connected to the DC power sup­

ply via USB, enabling communication. This setup allows us 

to run a program on the supervising device that performs 

voltage and current sampling by sending a command to the 

power supply at regular intervals. Even though we use Rasp­

berry Pi as the supervising device in our setup, any device 

that can execute the sampling program works fine . The soft­

ware requirements for the supervising device is explained in 

section 4.2. 

The DUT is the device that performs CNN inferences and 

is measured. The specification of the DUT used in our ex-
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Table 4: The specifications of the DUT 

CPU 
Main memory 
Secondary memory 

Raspberry Pi 4 Model B 
Quad core Cortex-A72 (ARM v8) 
8GB LPDDR4-3200 SDRAM 
64GB Micro-SD card 

periment is listed in Table 4. 

4. 2 Software 

Table 3 shows the software used in the experiments. Ten­

sorFlow Lit e (TFLite) Runtime [13] is used to execute neural 

networks inferences on a single thread on the Raspberry Pi 

4. The program for executing neural network inferences is 

written in Python 3 (3 .8.10). Note that TFLite runtime 

can only execute TFLite models. Hence, during neural net­

works creation, we converted the Keras model (neural net­

work generated with Keras API) to a TFLite model before 

running it on Raspberry Pi 4. When a Keras model is con­

verted to a TFLite model, optimization is performed on the 

neural network to reduce latency and memory usage with 

minimal loss in inference accuracy. There are several op­

timization techniques available during the conversion to a 

TFLite model [14] . We chose the default optimization tech­

nique, which quantized the weights of a neural network from 

floating points to 8-bit integers. These quantized weights are 

converted back to floating-point at inference before perform­

ing computations. 

Devices with Python 3 (3.8.10 or higher) and USB inter­

face can execute the sampling program. Figure 2 illustrates 

how the sampling program works. Socket communications 

between the supervising device and DUT are performed so 

that only the executions of the layer are measured. DUT 

will send a message to the supervising device right before 

and after measurement to ensure the measurement session 

is started and stopped at the right time. As a result, exe­

cutions unrelated to the layer's inference, for example, the 

loading of the layer into memory and the preparation of in­

put data before an inference, are not measured. 

We used Python third-party libraries to perform data 

analysis and modeling execution time and power consump-
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Power Supply Supervising Device Device Under Test 

,..!. 

send command 
to sample 

(timestamp, 

____ c~~r~~t_: _v~l~~g_el _ -), . . 
send commands at 

regular interval 

send command 
to sample 

(timestamp, 
current, voltage) 

-----------------> 

...,_ 

..... connect via socket 
~ 

--- --- -------- -> 
request to start 
measurement 

..... connect via socket 
: ________________ > 

request to stop 
measurement 

~ 

-'-

-

-

load 
neural network 

into memory 

generate input data 
and store it 
in memory 

execute for 30s 
and count ninference 

perform 

Tl.inference 
executions 

Fig. 2: A sequence diagram showing how sampling program 

only measure voltage and current during layer's executions. 

tion. For data manipulation and processing, we use NumPy 

and pandas libraries. For data visualization, we use mat­

plotlib and seaborn libraries. Finally, for training and eval­

uation of the regression model, we use scikit-learn library. 

4.3 Measureme nt Techniques 

4.3.1 Sampling frequency 

The DC power supply we used monitors the voltage and 

current once every 25 ms, but we sampled once every 50 ms. 

When we tried to sample once every 25 ms, there were times 

when the measurement program failed to sample voltage and 

current . 

4.3.2 Number of inferences in a single measure­

ment session 

To create an execution t ime model and power model of one 

execution for each layer type, we first need to measure each 

layer's execution time and power consumption. However, 

the execution time of one layer is shorter than the sampling 

period of 50 ms. So, we execute the same layer with the 

same input data multiple times in a measurement session. 

The average execution time of one execution is t hen calcu­

lated by dividing the total execution t ime by the number of 

inferences. 

Precisely, for each layer, we first count the number of infer­

ences ninference executed in 30 s without measuring. Then, 

the same layer is executed for ninference times while its volt­

age and current are measured. ninference is a round-up value 

of ninference calculated using the equation below. Finally, 

@ 2022 Information Processing Society of J apan 

1-layered . B calculated 
neural network A - sampled t1mestamp , _► Im -- average execution time, 

(layer type X) current , voltage average power consumption 

hyper 
parameter ,------, 

neural network s _ sampled timestamp, 
values 1-layered B 

(layer type X) current , voltage -► Elli ------------------] 

hyper hyper hyper average average 
parameter parameter parameter execution power 

1 2 n time consumption 

► I<-
-► ~ 

training data for layer type X 

Fig. 3: Hyperparameters of 1-layered neural networks (type 

X) and measurement data form training data for layer type 

X 

rounding up of ninference is performed to ensure the execu­

tions of each layer are measured for at least 30 s. 

ninference = ( first digit of ninference + 1) 
* 10number of digit of ninference -1 

4.3.3 Reducing measurement noise 

To exclude the impact of dynamic frequency scaling on the 

execution time and power consumptions measurements, we 

set the operating frequency of Raspberry Pi 4 at 1.5GHz by 

setting the governer mode to performance mode using the 

cpufrequtils command. Although the performance governer 

mode will try to keep the operating frequency at 1.5 GHz, 

it will reduce when the SoC gets too hot. As a result, there 

exist short durations where Raspberry Pi is operating under 

1.5 GHz during the measurements. 

4.3.4 Data Preparation 

Figure 3 shows how we turn the measurement data into a 

layer type's training data. After the measurement of one 1-

layered neural network, a CSV file containing a series of (1) 

timestamps where each sample is taken, (2) current measure­

ments, and (3) voltage measurements were obtained. Us­

ing the equation below, we calculated the average execution 

time T;nference and average power consumption Anference . 

T measured is the total duration measured, and ninference is 

the number of inferences performed in T measured seconds. 

½, and I t, are the voltage and current measured at t ime 

ti , and Tsampling is the duration between 2 consecutive sam­

ples which is 50 ms in our case. The average execution t ime, 

average power consumption of a 1-layered neural network 

and its hyperparameters are treated as a row of data in the 

training set for that layer type. 

,ii Tmeasured 
.1. inference = 

ninfe rence 

1 
?inference = -,.,.,---­

J. measured 

n sample 

T, Pt,-1 + Pt , 
sampli ng 

2 
i=2 

where 1 S i S nsamplei Pt , = ½, X It , 
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3.5 - median 

Predictions on training data 
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3.3 3.4 
truevalues[W] 

Fig. 4: A graph showing the scatterplots on prediction values and truth values. 

5. Evaluation 

This section explains how we evaluate our execution and 

power consumption models and the evaluation results. First, 

Section 5.1 explains the evaluation metrics used, followed by 

evaluation results in Section 5.2. 

5.1 Evaluation M etrics 

Our evaluation used the following metrics to measure how 

much error is obtained during prediction. 

• root mean square error (RMSE) 

• root mean square percentage error (RMSPE) 

• mean absolute error (MAE) 

• mean absolute percentage error (MAPE) 

RMSE, RMSPE, MAE, and MAPE are four different er­

ror metrics used to measure the difference between the truth 

values and the regression models ' prediction values. 

In the equations above, y is the truth values while y is the 

predicted values. N is the number of truth values ( or pre­

dicted values), while Yi and 1/i represent each pair of truth 

values and predicted values, respectively. 

These error metrics can be categorized in two different 

ways, (1) absolute value or relative value, and (2) equal or 

non-equal weights placed on each error (prediction error). 

Both RMSE and MAE are absolute values, while RMSPE 

and MAPE are relative values. In other words, RMSE and 
MAE will have the same unit as the output properties (i.e., 

s for execution time and W for power consumption). On the 

other hand, RMSPE and MAPE have values of between 0 

to 1, representing values between 0% and 100%. Another 

difference between these metrics is the weights they placed 

on each error. From the equation above, we can see that all 

errors (Yi - Yi) in MAE and MAPE are equally weighted, 

but in RMSE and RMSPE, the weight of each error depends 

on their size (i.e., a larger error will contribute more because 

they are squared) . 
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Table 5: Prediction errors trained only with layer hyperpa-

rameters 

(a) Execution time 

Layer Conv . Pool. Flat. FC 

degree 4 4 3 2 
a 1 X 10- 3 1 X 10- 4 1 X 10- 7 1 X 10- 4 

MAE [s] 0.175 0.0118 0 .000001 0.00308 
RMSE [s] 0.295 0.0260 0 .000002 0.00691 
MAPE [%] 992 112 7.63 97.2 
RMSPE [%] 5400 456 14.7 336 

(b) Power consumption 

Layer Conv. Pool. Flat. FC 

degree 1 1 2 1 
a 1 X 10- 2 1 X 10- 3 1 X 10- 5 1 X 10- l 

MAE[W] 0.0248 0.0315 0.0179 0.118 
RMSE [W] 0.0371 0 .0398 0.0239 0.131 
MAPE [%] 0.76 0.98 0.58 3.51 
RMSPE [%] 1.13 1.23 0 .77 3.93 

5.2 Predictions on Training D ata 
The evaluation results of predictions done by t he regres­

sion models are shown in Figure 4 and Table 5. 

In Figure 4, the top and bottom rows show the evaluation 
results of the execution time predictions and the power con­

sumption predictions, respectively. Columns are grouped by 

layer types, in t he order of convolut ional layer, max-pooling 

layer, flatten layer, and fully connected layer. Each graph 

is a scatterplot of prediction values on the y-axis and truth 

values on the x-axis, with s and W as the units for execution 
time and power, respectively. For instance, the graph at the 

intersection of t he execution time row and flatten layer col­

umn shows the scatterplot between truth values and predic­

tion values obtained from the flatten layer 's execution t ime 

model. In addit ion, each black point on t he graph represents 

a 1-layered neural network of the same layer type but with 

different hyperparameters values. Each point is plotted with 

a 50% opacity so the distributions of values can be visible. 

For example, in the scatterplot of the convolutional layer's 

execution time model, the points on the lower left side of 

the graph appeared darker , indicating that most measured 
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Fig. 5: Zoomed-in version of t he scat terplot s of prediction evaluations of execution time models for convolut ional layer , 

max-pooling layer and fully connected layer. 

execut ion t imes lie between Os and 2 s. Also, t he red line 

labeled with y = x in each scatterplot represents t he ideal 

sit uation where all predicted values by the regression model 

are equal t o the t rue values. The horizontal distance from a 

black point to t he red line refers to t he prediction accuracy 

for a part icular 1-layered neural network. 

5.2.1 Execution Time Models 
Observation 1: From Figure 4, most points are near 

the red line, suggesting that our execution time models have 

good prediction abilities. However , the large values of rel­

at ive errors (i.e. , RMSPE and MAPE) in t he convolut ional 

layer , max-pooling layer , and fully connected layer columns 

in Table 5 suggest t he opposite. 

To explain this observation, we calculat ed the relative er­

rors of the execution t ime models' predictions when the ac­

tual execut ion t ime is relatively short. Precisely, relative 

errors of t he execut ion t ime models predict ions were calcu­

lated for convolutional layers, max-pooling layers, and fully 

connected layers when t he actual execution t ime is less t han 

25 s, 0.040 s, and 0.0025 s, respectively. Figure 5 shows t he 

scatterplots of prediction and true values for layers with rel­

at ively short execut ion t ime. From Figure 5, we found out 

that t he prediction errors when execut ion t ime is relatively 

short cont ribute to most of t he errors reported in Table 5. 

The large relative errors when execut ion t ime is relatively 

short can be explained by two possible reasons. First , the ex­

ecution t ime models failed to fit well for these 1-layered neu­

ral networks-especially when the 1-layered neural network 

has a short execut ion t ime-which caused t hem to predict 

badly. The second reason is based on how relative errors are 

calculat ed (Section 5.1). As execution t ime becomes small , 

t he denominator in t he equation for RMSPE and MAPE 

becomes smaller , t hus producing a large value of relative 

error. 

5.2.2 Power Consumption Models 

Observation 2: From Figure 4, t he predictions per­

formed by t he power consumpt ion models appeared to be 

inaccurate, but t hey have relative errors of less t han 5% 

(Table 5). 

@ 2022 Inform at ion P rocess ing Socie ty of J apan 

One possible reason for t his observation is t hat a bad pre­

diction would not contribute to large relative error due to 

t he lack of variation in t ruth values of power consumpt ion. 

For all layer types, t he t rue power consumpt ion values have 

an average value range of 0.325 W , which magnit ude is only 

about 10% of the power consumpt ion. 

Observation 3: We can also obtain from Figure 4 that 

the power models for t he convolut ional, max-pooling and 

fully connected layers produce near-constant predictions. 

T he polynomial equations for power models of t he convo­

lut ional and fully connected layers only have t hey-intercept 

(a constant) as t he effective term (i.e. , term wit h non-zero 

coefficient ). To further investigated if t he power models 

learned any relationships between layer hyper-parameters 

and power consumption from the t raining data , we compare 

t heir error metrics to two naive power models. The two naive 

power models are models t hat consistent ly predict t he mean 

value and t he median value of t he training data, respec­

t ively. From t his comparison, we found out t hat t he power 

models of convolut ional layer and fully connected layer have 

the same error metrics as the model t hat always predict s the 

mean value, suggesting t hat t hey learnt to predict t he mean 

value from the training data. 

Another interpretation of t hese two observations is t hat 

external factors ( e.g., power modes, t he temperature of SoC) 

have more significant effects on t he power consumption of 

Raspberry Pi 4 compared to the layer hyperparameters. 

5.3 Models Trained with Performance Counters 
The large error in predictions by t he models evaluated in 

Section 5.2 suggests t he limit of layer hyperparameters in 

explaining t he execut ion t ime and power consumpt ion. To 

find out if this hypothesis is t rue, we evaluated another set of 

regression models, this t ime t rained with both layer hyper­

parameters and performance counters values collected dur­

ing the 1-layer neural networks execut ions. Because perfor­

mance counters count t he number of events at the hardware 

level, it is expected to explain execution t ime and power 

consumption bett er than layer hyperparameters. 
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Fig. 6: Scatterplots of truth values and prediction values obtained from polynomial regression models trained with both layer 

hyperparameters and performance counters values. 

Table 6: Prediction errors trained with both layer hyperpa-

rameters and performance counters. 

(a) Execution time 

L ayer Conv. Pool. Flat. FC 
degree 2 3 2 3 
a 1 X 10- 3 1 X 10- 5 1 X 10- 9 1 X 10- 5 

MAE [s] 0 .0323 0 .00108 7.05 X 10 - S 0.000314 
RMSE [s] 0.0576 0.00166 1.05 X 10 - 7 0.000546 
MAPE [%] 117 17.0 0.44 31.3 
RMSPE [%] 506 64.3 0.72 177 

(b) Power consumption 

L ayer Conv. Pool. Flat. FC 
degree 1 4 4 1 
a 1 X 10- 2 1 X 10- 2 1 X 10- 3 1 X 10- 2 

MAE[W] 0.0248 0.0314 0.0173 0.114 
RMSE [W] 0.0371 0.0402 0.0229 0.128 
MAPE [%] 0.76 0.98 0.56 3 .37 
RMSPE [%] 1.13 1.25 0 .74 3 .83 

Raspberry Pi 4 has seven hardware performance counters 

in total [3], which consist of one clock cycle counter and six 

counters t hat can be set to count any events available in t he 

processor [2] . In our case, we used t he performance counters 

to count the occurence of the following seven events. 

( 1) cycles : number of clock cycles 

( 2) instructions: number of instructions retired 

( 3) armv8_cortex_a12/insto_spec: speculated number of in-
structions executed 

( 4) ldsLspec: speculated number of load and store instructions 

( 5) armv8_cortex_a12/mem_access : number of memory access 

( 6) armv8_cortex_a12/l2d_cache/: number of L2 data cache ac-
cess 

( 7) armv8_cortex_a 12/l2d_cache_refill/: number of L2 data 
cache refill 

Figure 6 shows t he scatterplot of predicted values against 

truth values of t he models trained wit h layer hyperparame­

ters and performance counters. 

@ 2022 Information Processing Society of Japan 

5.3.1 Execution Time Models 

Observat ion 4: Comparing Figure 4 and Figure 6, the 

predicted values by this new set of models are closer to the 

red line. While being visible in the scatterplots, the error 

metrics in Table 6 agreed that t his new set of models have 

smaller prediction errors. 

5.3.2 Power Consumption Models 

Observat ion 5: Although the power model of the 

convolutional layer has t he same prediction errors like the 

power model trained without info of performance counters, 

the power models of other layer types achieved smaller pre­

diction errors. However, from Figure 6, most of the pre­

dicted values still form a horizontal line, suggesting that nei­

ther performance counters managed to explain the change 

in power consumpt ion across layers with different hyperpa­

rameters well. 

5.3.3 Availability of Performance Counters 

As performance counters are values counted during t he 

executions, t hey will not be available for pre-execution pre­

dictions. Performing predictions with the knowledge of per­

formance counters when it is not available might be possi­

ble if performance counters values are predictable by layer 

hyperparameters. Finding out a method to estimate perfor­

mance counters values using layer hyperparameters is one of 

t he possible future research directions. 

6. Discussion 

This section discusses the validity of using the number of 

clock cycles in prediction (Section 6.1) and how the input 

data could affect a layer's execution time and power con­

sumption (Section 6.2) . 

6.1 Using Clock Cycles as Input Feature 

In Section 4.3 .3, I-layered neural networks are executed at 

a fixed power mode, which will keep the clock frequency con­

stant in an ideal situation. Based on the following equation, 
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when the clock frequency is constant, using the number of 

clock cycles as one of the input features in the polynomial 

regression model can be considered as "cheating" because 

the coefficient learned by the regression model is the clock 

frequency, a value known before training. 

1 
. . total number of clock cycles (l) tota execut10n time = ---------~-­

average clock frequency 

To find out if our models "cheated" during training, we 

investigated (1) the average clock frequency during the ex­

ecutions of each 1-layered neural network in Section 6.1.1 

and (2) the significance of the number of clock cycles as an 

input feat ure in the regression models in Section 6.1.2. 

6.1.1 Average Clock Frequency 

Figure 7 shows the distributions of average clock fre­

quency during the executions of 1-layered neural networks. 

Although all the histograms have a peak around 1.5 GHz­

the same as the clock frequency at performance governor 

mode- the spread of values of the average clock frequency 

is evident, suggesting that the clock frequency during execu­

tion is not constant. Note that average clock frequency Jc1k 
is calculated using the equation below, where cycles is the 

average number of clock cycles obtained from performance 

counters in one execution. 

f
- cycles 
elk= 

Tinference 
(2) 

6.1.2 Significance of Clock Cycles as an Input 

Feature 
In order to investigate the significance of the number of 

clock cycles as an input feature, multiple linear regression 

analyses were performed using statsmodels, a Python third­

party library that focuses on statistical analyses of models. 

Hypothesis: If our models "cheated," the results from 

regression analysis will show that clock cycles is the only in­

put feature required to model execution time. Two metrics, 

(1) adjusted R2 and (2) p-value of F-statistic, were used as 

measures of the significance of an input feature . 

R esults: From Table 7, the number of clock cycles 

(represented as cycles in the table) as an input feature has 

a p-value (p-value of F-statistic) of less than 0.05 for all layer 

types except the fully connected layer. This observation sug­

gests that the number of clock cycles is a good estimate of 

@ 2022 Information Processing Socie ty of Japan 

execution time. However, other input features also have a 

p-value of less than 0.05, implying that the number of clock 

cycles is not the only input feature required to estimate ex­

ecution time (i.e., go against our hypothesis) . The changes 

in R;dj when we include the number of clock cycles adj in 

the input features of the regression model also suggest the 

same. 

The results in Sections 6.1.1 and 6.1.2 suggest t hat on 

modern comput ing platforms, the relationship between exe­

cution time, clock cycles, and the clock frequency is not as 

simple as the equation shown above. Moreover, the underly­

ing reasons for these observations and results are not clear. 

Therefore, more experiments and analysis are required be­

fore a concrete conclusion regarding t he relationship be­

tween execut ion t ime, clock frequency, and clock cycles can 

be drawn. 

6.2 The Ratio of Zero in Input Data 

Another experiment was conducted to determine if input 

values affect the execution time and power consumpt ion of 

1-layered neural networks . F irst, we define t he term input 

data as the input to a 1-layered neural network, and it con­

sists of input shape and input values. Input shape decides 

the number of elements in input data (e.g., height, width, 

and dimension) , and input values decide t he values of the 

elements . In t his experiment, each 1-layered neural network 

was executed with different input values using the methodol­

ogy explained in Section 4. Precisely, each 1-layered neural 

network was executed and measured five times, each time 

with a different input data from the list { 0, 0.25, 0.50, 0.75, 

1.0 }. 

In this experiment, a different set of 1-layered neural 

networks was used; instead of randomly generating t he 1-

layered neural networks , each layer hyperparameter was 

handpicked. Precisely, the 1-layered neural networks were 

generated with all the possible combinations of hyperpa­

rameter values listed in Table 8. As a result, this new set of 

1-layered neural networks contains 2250 convolutional lay­

ers, 162 max-pooling layers , 100 flatten layers, and 200 fully 

connected layers. 

Figure 8 shows the distributions of execution time and 

power across different input values of all layer types. The 

points scattered vertically of each input value represent lay­

ers with different hyperparameters. 
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Table 7: Results of significance analysis of clock cycles as an input feature; p-values less than 0.05 are shown in bold. 

(a) Convolutional layer (b) Max-pooling layer 
R adj without cycles 0.939 

R a dj without cycles 0.924 
R~d- with cycles 0.940 (+0.0005) 

R;;d. with cycles 0.926 (+0 .0015) 
term f-score p-value 

t e rm f-score p-value 
y- intercept 207 0.000 y-intercept 67.6 0.000 cycles 10.2 4.19 X 10 - 24 

cycles 4.24 2.5 X 10 - 5 

filters 9.64 6 .51 X 10 - 22 

instruct ions 8.45 3.18 X 10 - 17 ldsLspec 3.55 4.12 X 10 - 4 

armv8_cortex_a72/insLspec/ 8.26 1.79 X 10 - 16 armv8_cortex_a 72 / mem_access / 3.19 1.49 X 10 - 3 

input_x_size 1.86 6.31 X 10- 2 
armv8_cortex_a72/12d_cache_refill / 7.63 2.50 X 10 - 14 

input_y _size 1.86 6.31 X 10- 2 
channels 5.95 2.76x10- 9 

kerneLsize 5.74 9.54 X 10 - 9 pooLsize 1.41 1.59 X 10- l 

armv8_cortex_a72/ 12d_cache/ 5.71 1.17 X 10 - 8 armv8_cortex_a72/12d_cache_refill / 1.33 1.85 X 10-l 
channels 1.31 1.89 X 10- l 

armv8_cortex_a 72 / mem_access / 5.07 4.01 X 10 - 7 

instructions 1.00 3.13 X 10- l 
input _x_size 2.47 1.34 X 10 - 2 

armv8_cortex_a72/inst_spec/ 0.647 5.18 X 10- l 
inpuLy_size 2.47 1.34 X 10 - 2 

strides 0.403 6.87 X 10- l 
ldsLspec 2.13 3 .33 X 10 - 2 

armv8_cortex_a72/12d_cache/ 0.095 9.24 X 10- l 
str ides 1.71 8.68 X 10- 2 

( c) Flatten layer (d) Fully connected layer 
R adj without cycles 0.932 

Radj without cycles 0.962 
R;d with cycles 0.939 (+0.0063) 

R;d. with cycles 0.962 (+0.000) 
term f-score p-value 

term f-score p-value 
y-intercept 71.4 5.31 X 10- 261 

y-intercept 252 0 .000 cycles 7.13 3.60 X 10- 12 

instructions 1.96 5.07 X 10 - 2 
armv8_cortex_a72/12d_cache/ 3.82 1.53 X 10- 4 

armv8_cortex_a 72 / insLspec / 1.86 6.31 X 10 - 2 
armv8_cortex_a72/12d_cache_refill/ 1.63 1.03 X 10 - l 

armv8_cortex_a 72 / 12d_cache_refill/ 1.60 1.11 X 10-l 
ldsLspec 0. 389 6.97 X 10-l 

armv8_cortex_a 72 / inst_spec / 0. 369 7.12 X 10 - 1 armv8_cortex_a 72 / mem_access / 1.31 1.90 X 10 - l 

channel 0.248 8.04 X 10-l 
ldsLspec 1.26 2.09 X 10 - l 

armv8_cortex_a 72 / mem_access / 0.152 8.79 X 10 - l 
num_inputs 0.806 4.21 X 10-l 

instructions 0.078 9.38 X 10 - l 
num_neurons 0.704 4.82 X 10 - 1 

input_,csize 0.034 9.73 X 10-l 
armv8_cortex_a72/ 12d_cache/ 0.523 6.01 X 10-l 

input_y _size 0.034 9.73 X 10 - 1 cycles 0.300 7.64 X 10-l 

Table 8: The hyperparameter values handpicked for each layer used in I-layered neural network generation 
Conv. Pool. Flat. FC 

input size (2D/1D) 
# channel 

{ 10 + 55n I O :S n :S 4} { 10 , 20 , 30} { 2 + 2n I O :S n :S 9} { 3600 + 600n I O :S n :S 9} 
{96+64nl0:Sn:S4} {96 , 176,256} {96+32nl0:Sn:S9} 

# filters/ neurons 
kernel/pool size 
strides 
padding 
activation function 

{ 96 + 64n I O :S n :S 4} 
{3, 5, 7} 
{1 ,2,3} 
{yes, no} 
{ relu} 

{2, 3,4} 
{l , 2, 3} 
{yes, no} 

When fully connected layers were executed with input 

values of all zeros, the execution times were much shorter, 

and t he power consumption was smaller than other input 

values. One of the reasons for t his observation is imple­

mentation optimization of fully connected layer ( e.g., sparse 

matrix multiplication) which reduces t he number of oper­

at ions required in one inference. This reasoning is con­

firmed by checking the number of retired instructions in one 

inference-treated as a reference for the number of oper­

ations performed, for simplicity-. The mean number of 

retired instructions in one inference- across fully connected 

layers of different hyperparameters- when the input values 

are all zeros and when the input values are all non-zeros were 

5.602 x 104 and 1.055 x 107 respectively. In a more realistic 

situat ion, input values of a fully connected layer will be a mix 

of zero values and non-zero values instead of all zeros. We 

suspect an association exists between the zeros ratio in input 

values and execution t ime or power consumption. Also, the 

rat io of zeros in the learned weights of the fully connected 

@ 2022 Information Processing Society of Japan 

{600 + 400n I O :S n :S 9} 

{ relu, softmax} 

layer might affect execution time or power consumption, as 

they are also involved in matrix multiplications. We plan to 

investigate the relationship between t he ratio of zeros and 

layers' execution time and power consumption in the future. 

For t he other layers, no apparent differences in execution 

time can be seen- from the scatterplots- when the layers 

are executed with different input values. Although differ­

ences in power consumption distributions can be observed , 

there are overlaps between the distributions , so the associa­

tion between input values and power consumptions of t hese 

layers cannot be confirmed wit hout further analysis and ex­

periments. 

7. Conclusions 

As the need for sustainable computing soars, inter­

mittent executions on energy harvesting devices with ef­

fective checkpoint ing are required. As the first step 

towards proposing a layer-wise selective checkpointing 

scheme with power/performance models, we implement a 

10

Vol.2022-ARC-248 No.13
Vol.2022-SLDM-198 No.13

Vol.2022-EMB-59 No.13
2022/3/10



IPSJ SIG Technical Report 

convolutional layer maxpooling layer 

" 

0.25 0.50 0.00 0.25 0.50 0.75 ,.oo 
input_values input_values 

33 

32 

000 0.25 0.50 0.75 ,oo 0.50 0.75 
inpul_values input_values 

00006 

0000, 

0.0002 

00000 

3.6 

3> 

flatten layer 

0.50 
input_values 

0.50 0.75 
input_values 

0.008 

0.006 

0.00, 

0.002 

0000 

3.9 

3.8 

f ·' 
~ 3.5 

8.3.4 

3> 

0.00 

fully connected layer 

0.25 0.50 0.75 
input_va lues 

0.50 
input_values 

,oo 

Fig. 8: Distribution of execution time and power consumption with different input values 

power/ performance prediction framework of CNN inferences 

on single-board computers based on NeuralPower [4] and 

evaluate its prediction precision. 

We found out that there is a limit in layer hyperparam­

eters' ability to model a layer 's execut ion time and power 

consumption. Furthermore, although performance counter 

values can improve the prediction, they are usually unavail­

able at the pre-execution stage. Moreover , implementation 

optimization like sparse matrix multiplication gives birth to 

the dependency of execution time and power consumption 

on the input values. 
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