
IPSJ SIG Technical Report

Design and Implementation of Multi Agent
Simulator for Resource Transparent Widely

Distributed Computing Environment

Hiroki Kashiwazaki1,a) Yutaka Kikuchi3 Ikuo Nakagawa4

Kazuma Nishiuchi5 Mitsuhiro Osaki5 Shunsuke Kikuchi6 Hideki Takase2

Abstract: The authors seek to pioneer an innovative computing environment for the Beyond 5G era by
using Elixir, a highly scalable and fault-tolerant functional language. First, we build a massively parallel
distributed processing infrastructure transparent to various components of a wide-area distributed system.
Next, we will develop ultra-low-power processing and communication middleware that actively utilizes the
characteristics of SoC hardware as the execution environment for the IoT nodes that are the system compo-
nents. In addition, we will develop a method to determine the optimal allocation of computational resources
required according to the functions and processing of IoT applications. By co-creating these platforms and
algorithms, we can drastically reduce the cost of system construction and bring DX to the manufacturing and
primary industries. This paper describes a method for determining the optimal allocation of computational
resources using multi-agent simulation.

1. Introduction

In IoT systems, there are processing elements such as gen-

eration and transmission of sensing data from many sensors,

collection, processing, and storage of such data, and control

of actuators and other devices. The entities that implement

these processes are the edge devices, the network, and the

cloud. The edge devices (or the gateways that connect the

edge devices to the network) and the cloud are the ones that

currently have the computational power. The edge devices

(or gateways connecting the edge devices to the network)

and the cloud currently have the computational power. First

of all, both computational resources are at the extremes of

computational power and communication latency, and there

is no element with the characteristics of an intermediate

computational resource. In addition, the system configu-

ration architectures of both are based on entirely different

concepts, so building a system that uses both together re-

quires paying a high technical learning cost.

Furthermore, it is necessary to consider that the main fo-

cus of IoT system development and application will shift to

industries far away from ICT in the future. In these indus-

trial usage scenarios, the requirements for response perfor-

1 National Institute of Informatics
2 The University of Tokyo
3 Kochi University of Technology
4 Osaka University
5 Citynet, Inc.
6 SAKURA internet, Inc.
a) reo kashiwazaki@nii.ac.jp

mance, processing content, reliability, and cost will become

more diverse. The current typical architecture consists of

a combination of edge devices. The cloud is expected to

have difficulty in absorbing the variety of functions, perfor-

mance, and costs required in the future. The current typical

architecture, which consists of a combination of cloud com-

puting, will be unable to absorb the variety of functions,

performance, and costs that will be required in the future.

In addition, since users are not expected to be well versed

in various ICT technologies, system integrators will have to

do a great deal of work in defining the requirements and

specifications of the services desired by users. Therefore,

an environment that combines and designs various techno-

logical services in a shorter period is required to relatively

reduce the time and cost to grasp and catch up with the di-

versity of technologies related to design and implementation.

In addition, developers of industrial systems need a system

architecture where the learning cost is sufficiently small for

them to use ICT technologies.

On the other hand, the following technological elements

have emerged to create a technical environment for solving

these issues. A 5G standard allows non-carriers to deploy

MEC as an intermediate component of the network. Het-

erogeneous SoC (heterogeneous SoC) with low cost and high

performance can flexibly respond to various system sizes and

performance requirements. A practical programming lan-

guage and its processing system based on a new paradigm

of functional programming with actor-model compliant con-

currency. Communication middleware for wide-area dis-

1ⓒ 2022 Information Processing Society of Japan

Vol.2022-IOT-56 No.50
2022/3/8

IPSJ SIG Technical Report

tributed processing that can configure loosely coupled sys-

tem architectures. Development of open source (software

and hardware) and engineering communities

Elixir*1, the cornerstone of our research and development,

is a parallel processing-oriented functional programming lan-

guage that has been developed in open source since 2012.

Elixir is a parallel processing-oriented functional program-

ming language designed as an open-source since 2012. It is

suitable for building large, scalable, soft real-time systems

that require high availability, mainly used in telephone ex-

changes, bank account management systems, and messaging

servers. Elixir has the following features and advantages.

Elixir has the following features and advantages: It uses an

actor model, where each process communicates with other

processes only through non-shared and asynchronous mes-

sage exchange. Since all data is handled immutably, there

is no need to perform exclusion control or synchronization

processing at the application level, and concurrent and par-

allel processing performance can be easily achieved. Fur-

thermore, since BEAMs*2 running on multiple nodes can

communicate with each other, it is also suitable for realizing

distributed systems.

The BEAM runs as one of the processes managed by the

OS kernel, and each Elixir process is allocated a unique

memory block. As a result, the process model is very

lightweight and robust, making it easy to achieve economies

of scale based on computational resources. Elixir’s language

specification is based on Ruby and is designed to be simple

in notation and concepts but easy to apply. Furthermore,

elixir is a functional paradigm that is highly descriptive and

easy to learn, resulting in high development productivity.

Therefore, the authors are trying to create an IoT architec-

ture that actively utilizes the advantages and functions of

the communication infrastructure in the Beyond 5G (B5G)

era and pioneer an innovative computing environment based

on Elixir, an actor-based functional language.

Utilizing the Multi-access/Mobile Edge Computing tech-

nology, a component deployed in the network from edge de-

vices to the cloud, we will research and develop a transparent

parallel processing infrastructure that can flexibly allocate

processing to the resource characteristics of these nodes. We

will be able to design and configure systems consisting of

multiple IoT nodes (hereafter referred to as IoT systems)

without being aware of the characteristics of the compu-

tational resources of IoT nodes distributed on the network

(computational power, storage capacity, communication la-

tency, etc.). Achieve resource transparency for processing

applications distributed across IoT nodes that can operate

in parallel with a response time of within 1-2 ms for local

networks and within 10-300 ms for global networks.

Research and develop technologies that enable Elixir pro-

cesses to run efficiently on IoT nodes (edge devices, MECs,

and clouds), IoT systems’ building blocks. We will build an

*1 The Elixir programming language https://elixir-lang.org/
*2 The Erlang BEAM Virtual Machine Specification http://www.

cs-lab.org/historical_beam_instruction_set.html

execution method for the Elixir process and its processing

system that actively utilizes the characteristics of the SoC

(System-on-a-Chip) hardware from the virtual machine and

achieve a power efficiency improvement of more than ten

times compared to the conventional method. In addition,

we will develop communication middleware specialized for

communication in the B5G interconnection network. We

will also prove that it can realize the ultra-high-speed, large

capacity, ultra-low latency, and ultra-multiple simultaneous

connections, which are functions that B5G should have.

Research and develop an algorithm to determine the opti-

mal resource allocation to demonstrate the quality and per-

formance of applications running on IoT nodes (hereafter

referred to as IoT apps). Depending on the rewards and

priorities for the functional requirements of the IoT app, we

will be able to allocate, deploy, and execute IoT nodes that

can maximize quality and performance. Simulation evalua-

tion will prove that our algorithm works theoretically in a

system consisting of more than 100 IoT nodes. We will con-

nect a total of six computer servers to the widely distributed

platform Distcloud and prove that our algorithm works prac-

tically. We will develop applications for demonstration and

evaluation using these research and development results. We

will show that our approach can significantly reduce IoT sys-

tem development and operation costs and duration. Prove

that the results of this R&D can serve as an entry for social

implementation and commercialization.

By engaging in these R&D activities, we will create an ar-

chitecture that can maximize the functions and performance

required to develop and operate IoT systems. In addition,

we will provide a unified, wide-area distributed platform

that is independent of the characteristics and types of com-

putational resources and a development environment for its

applications. System developers who use the results of this

research and development will be able to program in an in-

tegrated manner using a functional paradigm without being

aware of the characteristics of the various resources such as

edge devices and MECs that are components of IoT systems.

Each process of the developed IoT application will operate

transparently on each IoT node distributed on the network

by optimally allocating computational resources through the

allocation decision algorithm. In addition, the functions of

the Elixir processing system and communication middleware

equipped as the execution environment of the IoT nodes au-

tomatically realize parallelization and ultra-low power con-

sumption of the entire IoT system massively.

In other words, by utilizing the results of this research,

the learning cost of system development can be reduced,

and the cost and time of system development can be greatly

shortened. This will promote the use of IoT technologies

in “industries where ICT is not the core business,” such as

manufacturing and primary industries, and bring about dig-

ital transformation (DX) in these industries.

2. Related Works

For the evaluation of IoT applications in edge computing,

2ⓒ 2022 Information Processing Society of Japan

Vol.2022-IOT-56 No.50
2022/3/8

IPSJ SIG Technical Report

Sumit Maheshwari et al[1]. For IoT applications, especially

targeting smart cities, the work of Sharu Bansal et al[2].

In particular, the contribution of optimization methods in

Robot Operating System (ROS) may benefit from the ap-

proach of Ziyue Jiang et al[3]. There have been various

studies on data distribution services (DDS) in industrial au-

tomation for a relatively long time, and the approach of Jin-

song Yang et al. is one of the relatively well-known ones[4].

Topic naming is one of the important issues in DDS, and

Gunjae Yoon et al. have addressed this issue[5]. As for the

research on providing scalable DDS using mobile devices,

Lincoln David et al. have been working on it since rela-

tively early days[6]. Xiaokang Zhou et al. worked early on

(2015) as a distributed learning method in the next genera-

tion communication networks called B5G or 6G[7].

3. Methodology

This research and development will contribute to con-

structing an innovative computing environment for the B5G

era and to the effective use of radio waves. In particular, in

the R&D area that the author is in charge of, the IoT appli-

cations will be assigned to computational resources that sat-

isfy the quality and characteristics (latency characteristics

and processing performance) required by the IoT applica-

tions to be deployed and executed. Computational resources

are priced according to their operational quality, and we in-

troduce a mechanism that allows an IoT app to select mul-

tiple computational resources concerning these prices dy-

namically. In the following, we describe the details of our

proposed method.

3.1 Optimal allocation algorithm

One of the characteristics of the Mobile Edge Computing

environment (MEC) is that geographic conditions dominate

it. For example, users in the vicinity of a given MEC will

tend to use applications with short response latency for in-

formation available at that MEC. On the other hand, some

users want to deploy a uniform algorithm in the MEC to

provide a consistent application independent of geographi-

cal conditions.

MECs deployed at the gateways of IoT nodes temporarily

store the information collected by the IoT nodes and provide

this information for applications with short request-response

latency. However, the Service Level Agreement (SLA) pro-

vided by the MEC is not necessarily the same for MECs

in different geographic conditions. Especially in the case of

Local5G networks, no clear SLA may be set, so the quality

of communication between the IoT node and the MEC may

not be sufficient to ensure the quality of communication due

to the return on investment by the investor in the MEC. The

same can be said for the MEC and Internet communication.

The MEC and the user who provides the line will be pro-

vided with the MEC currency obtained from the billing.

The user who provides the MEC and the communication

line obtains the MEC currency through billing. The user

who provides the MEC and the line accepts the MEC cur-

rency through billing. In other words, the user who provides

the resources that make up the MEC and is committed to

maintaining the high virtual Service Level (vSL). That is

compensated in the currency that is accepted in the MEC

(virtual Edge-network Currency (vEC)) in the amount that

the provided resources are used. The vEC can then be used

to purchase information obtained from the MEC. On the

other hand, users who do not offer resources for this MEC

can buy the information obtained in this MEC by exchang-

ing real-world currency for the currency in the network.

When such an incentive is set up, the excessive investment

will be curbed based on economic principles even if exces-

sive resource investment is made because vEC cannot be

obtained if the resources are not used. On the other hand,

if the resources of the MEC are sufficiently small concerning

the demand to purchase the information obtained within the

MEC, the quality of operation will be below the SLA, result-

ing in a low vEC. Therefore, it provides a positive incentive

for resource investment.

We have already conducted agent simulations in which

users are made to behave as agents in an environment where

this billing algorithm is implemented. In this research and

development, we will also implement this in a real-world

wide-area distributed network, conduct a demonstration ex-

periment, compare the results with those of the simulation,

and tune the parameters.

3.2 Priority control and conflict resolution algo-

rithms

Two problems have been identified in the preliminary

demonstrations. The point is that all information acqui-

sition requests are treated equivalently in FIFO in MEC.

Therefore, it can be assumed that users want to make high-

priority requests by paying a high price. On the other hand,

if an algorithm with such a priority is introduced into the

MEC, a malicious third party can generate a temporary con-

centration of high-priority information acquisition requests,

thereby reducing the actual vSLs observed in that MEC. It is

expected that a mutual monitoring mechanism will be intro-

duced in inter-MECs that connect different MECs against

such attacks.

Another problem is expected when the inter-MEC as men-

tioned above is introduced. When inter-MEC is introduced,

it can be assumed that the exchange of vEC, the currency

within the MEC, will be required between different MECs.

Since the exchange rate between the real currency and the

vEC is determined by the observed practical service level

vSL, the exchange rate between MECs is likewise deter-

mined by the ratio of the vSL. When an MEC achieves a

high vSL by rejecting requests for information acquisition

from arbitrary users, that MEC can create a vEC with an

unreasonably high rate. It is expected that a mechanism

will be introduced to curb such self-induced inflation of the

monetary value.

In this section, we will design and implement a MEC that

provides a billing service with an additional priority flag,

3ⓒ 2022 Information Processing Society of Japan

Vol.2022-IOT-56 No.50
2022/3/8

IPSJ SIG Technical Report

Administration
service

communitcation
contract

resource list

query

response

payment

resource
information

Resource B
(as server)

Resource A
(as user)

Resource C
(as server)

Resource D
(as server)

Fig. 1 Relations among the resources and the administration ser-
vice

a mutual monitoring mechanism in the inter-MEC, a ser-

vice to determine the exchange rate of different vECs, and

a mechanism to deter unfair rate inflation, and evaluate it

through both simulation and feasibility studies.

3.3 Proposed Method

In MEC, computational resources are servers that pro-

vide computational resources and users that request com-

putational resources for the programs they (or their own-

ers) execute. Unlike cloud computing environments, where

uniform computational resources are homogeneously man-

aged by their owners, MEC comprises tens of thousands of

types and hundreds of millions of total numbers. Let’s not

have any illusions that these devices can be centrally man-

aged. Computational resources that meet the low latency

requirement, one of the characteristics of edge computing

environments, are geographically constrained and extremely

limited in number. You should not, by mistake, advertise

to the entire population and search for devices that match

the criteria. The ad traffic will deplete your resources. My

impression is that the ideal edge computing environment is

lawless. Swarms are formed by devices communicating with

each other and where there is no clear boundary between

hives.

However, let’s face reality and define a group of devices

under the authority of an edge controller as a “domain” or a

“village” environment. All resources (and their owners) are

inconsistent, far from philanthropic, yet rational. While it

would be my ideal to build a completely decentralized model,

we will start with a centralized model and then asymptoti-

cally move to a decentralized environment. In other words,

the ideal environment for this research is one where there is

no centralized management service and no need for agents to

be installed uniformly on all devices. Then build the model

assuming that there is a management service and that agents

are installed uniformly on all devices.

The agent installed on each resource measures the product

of the amount of CPU, memory, storage space, and traffic

demand used by a particular process on the OS that man-

ages the resource and the time taken by the process and

reports this to the management service. It also measures

and reports the latency to all other resources in a domain.

When a resource needs its own computational or network

resources and those owned by other resources, this resource

(the requester) sends a query request to the management

service. This query includes the number of cores and oper-

ating frequency required to run the process and the maxi-

mum delay time needed to communicate with its resource.

If there is no upper limit to the latency time, the cloud com-

puting environment can be used instead of MEC, which pro-

vides limited computing and network resources. The man-

agement service that receives the query creates a resource

list from the reports it receives from time to time and replies

to the requestor with resources that match the constraints

described in the query. This response may include multiple

resources. After receiving the response, the requester selects

one or more of these resources and requests the job to be

executed via the management service. If the resource that

receives the request accepts the job execution, the job will

be handed over via the management service. After the job

execution, the resource will report the information of the

consumed computer resources and network resources. The

management service bills the requestor for the amount of

resources consumed (Figure 1).

The requesting resource does not decide which resources

to use based on uniquely defined rules. It could be a rule to

use the resource at the top of the list of resources received

or use the resource with the lowest latency. Or the resources

may have a history and prioritize specific resources based on

their past performance, or vice versa, i.e., exclude specific

resources found on their past performance. In other words,

there are multiple ways to select resources. On the other

hand, the same can be said for the resource that receives

the request to execute a job. A resource can either accept

or reject the request, offer the same number of cores as re-

quested after receiving the job or offer only a limited number

of cores to execute the job. It can also choose to oversub-

scribe to multiple job requests, or it can choose to provide

computing resources exclusively (monopolistically) to other

job requests. We have already discussed how such a job ex-

ecution strategy provides an “impression” to the requester

if the requester adopts a history-based selection method.

We do not know if the resource will adopt an “honest”

strategy by providing such an economic incentive. This is

partly because jobs are not uniform. A complex interplay

of various parameters may sometimes lead to a local opti-

mum solution and sometimes to an asymptote to the global

optimum. A significant factor in this situation can be the

“pricing” of computer and network resources. Depending

on the pricing, some resources may be more conservative in

using their computing and network resources, while others

may be more liberal. We will try to use agent simulation to

understand these situations quantitatively (Figure 2).

4. Evaluation

I wanted to talk about the design and implementation

of multi-agent simulations, but I have no time. I started

writing this manuscript only at 16:00 on February 1, 2022,

the deadline for submitting this manuscript. I’ll talk more

4ⓒ 2022 Information Processing Society of Japan

Vol.2022-IOT-56 No.50
2022/3/8

IPSJ SIG Technical Report

communitcation
contract

Resource B
(as server)

Resource A
(as user)

Fig. 2 Economical Incentives among the resources

about it at the March meeting, and I’ll start with a simple

example of implementation in Python. Then, I will show

the difficulties in empirically evaluating multi-agent simula-

tions and discuss what approaches are effective in speeding

up the computation.

5. Conclusion

The authors enumerate the problems of a resource-

transparent hyper-distributed parallel environment using

the Elixir functional language for the B5G environment in

the future, when 5G is sufficiently widespread, and devise

methods to solve them. This paper explains the require-

ments for optimal resource allocation, priority control, and

conflict resolution algorithms, and an economically moti-

vated approach that can solve these problems is described.

The evaluation of the environment using multi-agent simu-

lation shall be done in an oral presentation.

Acknowledgments

These research results were obtained from the commis-

sioned research (04001) by National Institute of Information

and Communications Technology (NICT), JAPAN. This

work was also supported by JSPS KAKENHI Grant Number

19K20256.

References

[1] Maheshwari, S., Raychaudhuri, D., Seskar, I. and Bronzino,
F.: Scalability and Performance Evaluation of Edge
Cloud Systems for Latency Constrained Applications, 2018
IEEE/ACM Symposium on Edge Computing (SEC), pp. 286–
299 (online), DOI: 10.1109/SEC.2018.00028 (2018).

[2] Bansal, S. and Kumar, D.: IoT Application Layer Protocols:
Performance Analysis and Significance in Smart City, 2019
10th International Conference on Computing, Communica-
tion and Networking Technologies (ICCCNT), pp. 1–6 (on-
line), DOI: 10.1109/ICCCNT45670.2019.8944807 (2019).

[3] Jiang, Z., Gong, Y., Zhai, J. and et al.: Message Pass-
ing Optimization in Robot Operating System, Int J Parallel
Prog., Vol. 48, pp. 119–136 (online), DOI: 10.1007/s10766-
019-00647-w (2020).

[4] Yang, J., Sandström, K., Nolte, T. and Behnam, M.: Data
Distribution Service for industrial automation, Proceedings of
2012 IEEE 17th International Conference on Emerging Tech-
nologies Factory Automation (ETFA 2012), pp. 1–8 (online),
DOI: 10.1109/ETFA.2012.6489544 (2012).

[5] Yoon, G., Choi, J., Park, H. and Choi, H.: Topic naming ser-
vice for DDS, 2016 International Conference on Information
Networking (ICOIN), pp. 378–381 (online), DOI: 10.1109/I-
COIN.2016.7427138 (2016).

[6] David, L., Vasconcelos, R., Alves, L. and et al: A DDS-based
middleware for scalable tracking, communication and collab-
oration of mobile nodes, Journal of Internet Services and Ap-
plications, Vol. 4, No. 16 (online), DOI: 10.1186/1869-0238-4-
16 (2013).

[7] Zhou, X., Liang, W., She, J., Yan, Z. and Wang, K. I.-K.:
Two-Layer Federated Learning With Heterogeneous Model
Aggregation for 6G Supported Internet of Vehicles, IEEE

Transactions on Vehicular Technology, Vol. 70, No. 6, pp.
5308–5317 (online), DOI: 10.1109/TVT.2021.3077893 (2021).

5ⓒ 2022 Information Processing Society of Japan

Vol.2022-IOT-56 No.50
2022/3/8

