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Abstract: With the rapid development and popularization of the Internet and communication technologies, the amount
of network traffics has grown explosively. Network resources should be allocated to the applications depending on their
requirements for quality of service (QoS). However, fast-growing new applications and protocols bring us difficulties
and challenges to classify various traffics correctly. Machine learning-based techniques are expected to be a more time-
saving and precise method for traffic classification depending on the quality of services of various applications. In this
paper, we focus on the traffic QoS classification based on the deep learning technique with traditional traffic features
along with a newly defined feature in this paper, that is, the time period of network traffic. Experimental results show
that by considering the time period feature, the classification accuracy can be improved much better than before.
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1. Introduction
With the popularization of 5G communication, cloud comput-

ing, Internet of Things(IoT) and other technologies, the Internet
users, devices and new application requirements show a contin-
uous growth trend [1]. The constant growing applications are
inexorably pushing the limitations of current network manage-
ment. Traffic classification has been regarded as a crucial part to
help improving the service quality of traffic planning and man-
agement, such as reducing packet loss, improving transmission
latency and so on [2]. However, traffic classification becomes
a hard work which requires usage of highly complex identifica-
tion technologies, to fit in with the ever-changing nature of inter-
net traffic applications. In particular,the COVID-19 pandemic has
adversely restricted the movement of people and pushed people
to communicate through the Internet. Various new applications
(e.g., P2P, VoIP, real-time streaming, web browsing) have signif-
icantly magnified the difficulties of traffic classification.

Due to the rapid increase in the types and variety of applica-
tions, application-based traffic classification is facing enormous
challenges. Real-time traffic monitoring and analysis, routing,
resource allocation and other services based on application types
will not be guaranteed with high quality. However, the proposal
of QoS, as a method to quantify the requirements of applications
with different metrics (such as latency and bandwidth), solves this
problem. Therefore, to provide better services for the contin-
uously increasing number and types of applications (especially
new applications), QoS classification for applications is of vital
importance.
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Traffic classification based on QoS metrics has been put for-
ward to overcome the above mentioned problems. Different from
application or traffic size classification [3, 4], QoS classification
simplifies the complexity of classification by comprising different
traffic applications into classes based on each QoS requirements,
which provides convenience for traffic management. Moreover,
with the extensive application of artificial intelligence (AI), net-
work traffic classification using machine learning techniques pro-
vides more accurate results and higher performance [5].

In this paper, we focus on the network traffic QoS classifica-
tion based on deep neural network (DNN), which is one of the
deep learning methods. From the traffic data log, we find the dif-
ferences in traffic flow distribution among different time periods
(e.g., morning, afternoon, etc.). With the awareness of time pe-
riod of network traffic, we analyze the contribution ratio of each
feature including time period to the DNN model through the shap-
ley value and other methods. In addition, we compare the training
and prediction accuracy of DNN models under different feature
sets.

The remainder of this paper is as follows. In Section 2, we in-
troduce the background of traffic classification methods, machine
learning techniques and QoS. In Section 3, we introduce the pre-
vious works and summarize the contributions of this research. In
Section 4, we introduce our dataset used in traffic QoS classifica-
tion. In Section 5, we describe our simulation experiments and
carry out evaluation results. In Section 6, we draw the conclusion
and future works of this research.

2. Background
2.1 Traffic classification methods

To provide more efficient and comprehensive network traffic
analysis, current researches mainly focus the bit level, packet
level, flow level and so on [6]. Over the past years, in addition
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Table 1: Port number and protocol of main applications by IANA
Port number Protocol Application

20 TCP FTP data
21 TCP FTP control
22 TCP SSH
23 TCP Telnet
25 TCP SMTP
53 UDP/TCP DNS

67,68 UDP DHCP
69 UDP FTP TFTP
80 TCP HTTP
110 TCP POP3
161 UDP SNMP
443 TCP SSL

to the recent machine learning-based traffic classification method,
traditional methods can be approximately divided into port-based
classification and payload-based classification. In this section,
we briefly introduce those traditional methods along with their
advantages and disadvantages.

Port-based classification identifies the application based on in-
specting the packet header and matching it with specific port
number registered on the IANA [7]. The classification process
of this method is uncomplicated and time-saving, and it behaves
well with those well-known applications which have specific port
number shown in Table 1. However, with the emergence of some
applications using unregistered port numbers or picking random
ports such as P2P applications, the port-based classification is no
longer reliable. A few applications (usually non-legitimate ap-
plications) hide themselves transferred by well-known ports to
avoid being filtered and bypassing restrictions of firewall or ac-
cess control. Furthermore, modern security features like IP layer
encryption (e.g., IPsec), and some encrypt-ions introduced by the
application will make it impossible to know the actual port num-
bers. Therefore, the port-based method is a completely inappli-
cable choice for traffic classification.

Payload-based classification, also known as Deep Packet In-
spection (DPI), is proposed as a more reliable method based on
the inspection of packets compared with Port-based method [8].
This method has been widely used in several commercial and
open-source tools, such as Linux Kernel Firewall [9] and net-
work intrusion detection systems (IDS) [10]. The reliability of
payload-based method has been inspected widely when the pay-
load is not encrypted. However, this method requires exces-
sive computing consumption and raises the consideration in pri-
vacy. Consequently, payload-based classification is not suitable
for dealing with large volume network traffic.

With the rapid increasing of network traffic, traditional network
traffic classification methods can not satisfy current requirements.
To make classification performance more precise based on statis-
tical characteristics, machine learning techniques are applied to
traffic classifiers.

2.2 Machine learning techniques
Various machine learning techniques have been developed to

deal with analyzing huge scale data. Machine learning techniques
can be basically divided into four categories: unsupervised, su-
pervised, semi-supervised and reinforcement learning [11]. The

ability to analyze huge amount of data in a relatively short time
and better classification accuracy make machine learning tech-
niques extensively used.

Unsupervised learning is a kind of learning algorithm which
do not require any prior knowledge or labelled data [12]. Un-
supervised learning algorithms, which are commonly used in
clustering, dimension reduction and association rule, mainly in-
cluding K-means, Generative Adversarial Network (GAN), Self-
Organizing Map (SOM), Local Outlier Factor (LOF) and Isola-
tion Forest (IF). Advantages of unsupervised learning are less
workload requirements including preparing and preprocessing the
training dataset. However, with a huge amount of unlabeled train-
ing data requiring, unsupervised learning often converges more
slowly to acceptable performance and requires extensive compu-
tational power and storage.

In contrast to unsupervised learning, supervised learning is a
learning process to map the inputs to particular outputs achieved
by using labelled data. While it requires much more labor to pre-
process the dataset, its better performance and invulnerability to
artifacts and anomalies make it applicable to be used in network
traffic classification.

Commonly used supervised learning algorithms include Sup-
port Vector Machines (SVM), Deep Neural Network (DNN),
Decision Tree (DT), Long Short-Term Memory Recurrent Neu-
ral Network (LSTM RNN), K-Nearest Neighbors (KNN), Naive
Bayes (NB) and Random Forest (RF) [13]. In this paper, we
use DNN for traffic classification which is suitable for various
types and distributions of datasets [14]. The architecture of DNN
is flexible to be adapted to classification problems of different
scales. Furthermore, DNN can yield good performance within an
acceptable time period.

Fig. 1: Architecture of a DNN

As shown in Figure 1, DNN consists of three types of layers:
input layer, hidden layer(s) and output layer. The input layer re-
ceives the input signal and transfer it to next layer through neu-
rons without any processing. Then the signal is processed in the
hidden layers, which perform nonlinear transformations and com-
putations to abstract the input signal features at multiple levels.
After signal processing in the hidden layers, the output layer out-
puts the results within a reasonable range by activation functions
on neurons. The sigmoid function is usually regarded as the ac-
tivation function of the output layer to make the value of output
results between 0 and 1.
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Table 2: Characteristics of the traffic flow in the UPC dataset [21]
Name Date(YMD) Day Start Time Duration Packets Bytes Avg.Util

UPC-I 08-12-11 Thu 10:00 15min 95M 53G 482Mbps
UPC-II 08-12-11 Thu 12:00 15min 114M 63G 573Mbps
UPC-III 08-12-12 Fri 16:00 15min 102M 55G 500Mbps
UPC-IV 08-12-12 Fri 18:30 15min 90M 48G 436Mbps
UPC-V 08-12-21 Sun 16:00 1h 167M 123G 279Mbps
UPC-VI 08-12-22 Mon 12:30 1h 345M 256G 582Mbps
UPC-VII 09-03-10 Tue 03:00 1h 114M 78G 177Mbps

2.3 Quality of Service (QoS)
QoS refers to the measurement of the overall performance of

different services for applications. To quantitatively measure
QoS, several metrics of network services are generally consid-
ered, such as bandwidth, latency, jitter, packet loss and so on
[15, 16]. The most critical QoS parameters used for data trans-
mission are the bandwidth and latency requirements since they
can intuitively describe the requirements of different network ap-
plications. In this paper, we focus on the QoS traffic classification
considering bandwidth and latency requirements of each applica-
tion. According to different levels of sensitivity to bandwidth and
latency, we divide all the applications into four categories.

3. Related works and key contributions
In recent years, many researches are devoted to network traf-

fic classification. In [21], Carela-Espanol et al. proposed a ma-
chine learning-based traffic classification model using the C4.5
supervised ML method, analyzing traffic flows collected in dif-
ferent time periods, from a NetFlow enabled server placed in
the network edge between Internet and intranet in a university.
The average classification accuracy based on machine learning
is 90.59% which is approximately 10 times than traditional port-
based method. This shows the tremendous improvement in classi-
fication accuracy brought by machine learning techniques. How-
ever, the time period, as a key factor in their dataset, was not
considered as a feature for traffic analyzing. In [18] and [19],
Balanici and Pachnicke proposed a new ML-based traffic pre-
diction model using Long short-term memory neural networks
(LSTM NNs), analyzing and predicting traffic floes of real-time
server in a Data Center (DC). This research demonstrates an in-
credible 99% accuracy for highly variable and bursty traffic flows,
which is much higher than other related works. Researchers im-
plemented not only the LSTM model to vanilla recurrent neural
networks (RNNs), but also a prediction sliding window and per-
forming forecasting to solve the challenging issue of multi-step
forecasting. Although the LSTM model is efficient and capable
for real-time traffic prediction, it is relatively limited that the char-
acteristics and QoS requirements can not be obtained from the
model. In [20], Xiaotao Guo et al. proposed a QoS aware re-
source allocation method based on deep reinforcement learning.
This research focused on various QoS requirements supported by
DCs and trying to optimize the DC network topology by using the
deep reinforcement learning and a technique called Actor-Critic
Reconfiguration for OP Square (ACRO). However, the time pe-
riod should be considered in the DC network topology optimiza-
tion because of its significant impact on traffic distribution.

In this paper, besides the traditional features used for describ-
ing traffic flow of applications, we additionally consider the time
each traffic flow occurs as a key feature in traffic classification
based on DNN. The main contributions of this paper are as fol-
lows. Our research features on traffic classification considering
the correlation between time period and applications and extends
it to the QoS groups. We select dataset from 5 different time pe-
riods and introduce the time period as a feature for classification
in our DNN model. Furthermore, we classify the traffic appli-
cations into 4 QoS categories in terms of latency and bandwidth
requirements. Focusing on QoS classification is not so limited
to well-known network applications as the previous application
classification, and is more suitable for the explosive growth of
network applications in the future.

4. Dataset used in traffic QoS classification
The dataset we used in this paper is provided freely at the

Gigabit access link of the Universitat Politecnica de Catalunya
(UPC) [21]. The dataset consists of 7 traffic log blocks from
distinct time periods and contains 50,000 applications execution
records (IS THE CORRECT?).

The dataset is not a raw one but processed by UPC. Table 2 il-
lustrates the characteristics of the traffic flows in the dataset. The
UPC dataset has 10 features and 11 groups of network applica-
tions, which are shown in Table 3 and 4, respectively.

Table 3: Description of features in UPC dataset
Feature Description Size (Unit: bits)

Sport Source port of the flow 16
Dport Destination port of the flow 16

protocol IP protocol value 8
ToS Type of Service from the first packet 8
flags Cumulative OR of TCP flags 6

duration Duration of the flow in nanosec precision N/A
packets Total number of packets in the flow N/A
bytes Flow length in bytes N/A

pkt-size Average packet size of the flow N/A

Different network applications are divided into 11 groups. Ap-
plications in each group have the same characteristics with each
other. Otherwise, the proportions of application groups vary from
different time periods in a day and the average flow size of each
application group is also different. This further shows the neces-
sity of time period as a feature for classification.

In this paper, we consider further the time a flow occurs as
a feature for classification. From the characteristics shown in
Table 2, we can find that UPC-II and UPC-VI are collected at
around 12:00 and are classified as Noon, UPC-III and UPC-V
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Table 4: Application groups used in UPC datasets
Group Applications

P2P Peer-to-peer file sharing applications (BitTorrent, Edonkey)
HTTP HTTP related applications (http, httpcachemiss, etc.)
VoIP Voice communication applications (Skype, Teamspeak, etc.)

Network Network applications (BGP, DHCP, SSH, Telnet, etc.)
Streaming Media streaming applications (PPLive, Itunes, QuickTime, etc.)

DNS Domain Name System traffic
Others CVS, Hddtemp, IPP, unknown data, etc.
Chat Real-time chat applications (Aim, IRC, MSN Messenger, etc.)
Email Email related traffic (IMAP, POP3, SMTP)
FTP File transfer applications (FTP, Tftp, etc.)

Games Online games (Battlefield, Counter-strike, WoW, etc.)

are collected from 16:00 to 16:15, whose time period are defined
as Afternoon. In addition, the time periods of UPC-I, UPC-IV
and UPC-VII are defined as Morning, Evening and Late Night
respectively according to their start time. Therefore, as shown in
Table 5, the 7 datasets are divided into 5 categories, each of which
presents a specific time period.

Table 5: Time periods defined in UPC datasets
Dataset Start Time Time period Time class

UPC-I 10:00 Morning 1
UPC-II, UPC-VI 12:00, 12:30 Noon 2
UPC-III, UPC-V 16:00 Afternoon 3

UPC-IV 18:30 Evening 4
UPC-VII 03:30 Late night 5

Due to the rapid increasing of application categories, it is hard
to classify new applications into those well-known 11 application
groups shown in Table 4. In addition, different kinds of appli-
cations may have the same QoS requirements. Therefore, in this
paper, we focus on the traffic QoS classification instead of appli-
cation classification based on 2 key metrics: latency and band-
width.

According to the QoS requirements of different applications
defined in [22], we divide the applications into 2 categories: real
time application and non-real time application based on the effect
of latency on Human Voice Perception. As shown in Table 6, we
define the label of non-real time applications as L1, which indi-
cates weakly sensitive to latency. Otherwise, we define the sen-
sitivity of real time applications to latency as L2, which means
strongly sensitive to latency.

Table 6: Latency and bandwidth requirements of different appli-
cations

App. Latency req. Latency class Bandwidth req. Bandwidth class

P2P Non-real time L1 >10 B1
HTTP Non-real time L1 5 ∼ 25 B1
VoIP Real time L2 <0.5 B2

Network Non-real time L1 <0.5 B2

Streaming Real time L2 5 ∼ 8 for HD B125 for 4K
DNS Non-real time L1 <0.5 B2

Others Non-real time L1 <0.5 B2
Chat Real time L2 1 B2
Email Non-real time L1 1 B2
FTP Non-real time L1 >10 B1

Games Real time L2 >4 B1

We can obtain from [23] that a 4Mbps connection is sufficient

for bandwidth requirements of basic applications, but inadequate
for highly demanding applications. Therefore, we set 4Mbps as
the boundary of sensitivity to bandwidth requirements. Similarly,
Table 6 indicates the 2 types of bandwidth requirements of ap-
plications, in which B1 represents high bandwidth requirement
(>4Mbps), B2 represents low bandwidth requirement (<4Mbps).
We assume the average bandwidth requirements illustrated in
FCC [24] as the reference of bandwidth requirements of appli-
cations.

Therefore, we can divide all the applications into 4 QoS groups
based on different latency and bandwidth classes defined in Ta-
ble 6: Group 1: (L1,B1) represents applications which are
weakly sensitive to latency and require high bandwidth; Group
2: (L1,B2) represents applications which are weakly sensitive to
latency and require low bandwidth; Group 3: (L2,B1) represents
applications which are strongly sensitive to latency and require
high bandwidth; Group 4: (L2,B2) represents applications which
are strongly sensitive to latency and require low bandwidth. The
QoS requirements and classes of different applications are shown
in Table 7.

Table 7: QoS requirements of different applications
Application QoS requirement QoS class

P2P (L2,B1) 3
HTTP (L2,B1) 3
VoIP (L1,B2) 2

Network (L2,B2) 4
Streaming (L1,B1) 1

DNS (L2,B2) 4
Others (L2,B2) 4
Chat (L1,B2) 2
Email (L2,B2) 4
FTP (L2,B1) 3

Games (L1,B2) 2

5. Simulation experiments and results
In this section, to evaluate classification accuracy of datasets

with different feature sets and labels, we use the same scale train-
ing and testing sets to conduct simulation experiments under the
DNN model with the same parameter settings.

Table 8: Parameters for DNN model
Item Parameters

Input layer
Num. of neuron units: same as number of features

Activation function: ReLu
Drop out rate: 0.1

Hidden layer

Num. of layers: 10
Num. of neyron units: 200
Activation function: ReLu

Drop out rate: 0.1

Output layer Num. of neuron units: same as number of labels
Activation function: Softmax

Loss function Cross entropy

Batch size 1000

Epoch 100

Learning rate 0.001

Due to the large scale of the original dataset, we take the data
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(a) Application label

(b) QoS label

Fig. 2: Distribution of datasets with application label and QoS la-
bel

from different time periods and application groups according the
distribution of the original dataset to form training and testing
sets. Specifically, we choose 100,000 records from the origi-
nal dataset, including 90,000 records as training set and 10,000
records as test set. Therefore, the distribution of datasets labeled
with applications and QoS is shown in Figure 2.

As mentioned before, we divide our final dataset with 100,000
records into training and testing set in ratio 9:1. With differ-
ent training and testing sets, we use DNN model to evaluate the
loss of training process and the classification accuracy. The neu-
ron units in input and output layer differ in different experiments
carried out due to the difference in number of features and la-
bels. The corresponding parameters of DNN model are defined
as shown in Table 8.

To illustrate the necessity of time period and QoS requirements
being considered into traffic classification, we compare our pro-
posed time-aware QoS classification with application classifica-
tion and QoS classification without time period awareness. The
performance results of these three classifications including train-
ing loss and classification accuracy are illustrated in Table 9.

Table 9: Training loss and classification accuracy via different
classification methods

Classification Training loss Accuracy

Time-aware QoS-based 0.6405 0.7643
Time-aware Application-based 0.6733 0.7627

Application-based 0.9724 0.6674

As known from Table 9, our proposed time-aware QoS classi-
fication outperforms other previous methods in both training loss
and classification accuracy. Specifically, taking into account time

period as a feature for network traffic classification will have an
significant improvement in performance. Moreover, treating QoS
requirements as classification labels rather than applications can
improve the convergence efficiency of DNN model.

However, using QoS labels instead of application labels does
not perform well as expected. This may be due to the lack of
detailed description of applications in the original data. For ex-
ample, a network traffic with the application label of HTTP can
be further divided into HTTP control traffic or HTTP data traf-
fic, which has different QoS requirements. Another example
as P2P traffic, which mainly contains P2P peer discovery traf-
fic , P2P peer communication traffic and P2P data traffic. The
bandwidth requirements of P2P peer discovery and communica-
tion traffic are far less than P2P data traffic, resulting in different
QoS requirements. Therefore, the imprecise description of traffic
records in the original dataset causes QoS classification perfor-
mance yields not as expected.

To further investigate the impact of time period on classifi-
cation performance, we evaluate training loss and classification
accuracy of DNN model with different feature sets, which cor-
respond to the feature sets after removing one feature respec-
tively. The classification performance comparisons of complete
10 feature-based with other 9 feature-based are shown in Table
10.

Table 10: Training loss and classification accuracy via different
feature sets

Feature set Training loss Accuracy

10 features 0.6405 0.7643
9 features without time period 0.7850 0.6712

9 features without Sport 0.6853 0.7485
9 features without Dport 0.6694 0.7519

9 features without protocol 0.6459 0.7622
9 features without ToS 0.6303 0.7675
9 features without flags 0.6667 0.7663

9 features without duration 0.7214 0.7429
9 features without packets 0.6637 0.7581
9 features without bytes 0.6534 0.7570

9 features without pkt-size 0.7395 0.7068

No matter which feature is removed except ToS and flags,
training accuracy and loss performance are worse than com-
plete 10 feature-based classification. Figure 3 indicates the accu-
racy and loss gap between different feature-based classifications
shown in Table 10 and complete 10 feature-based classification.
The accuracy and loss gap are computed as formula (1) and (2).
x is the feature set with complete 10 features and x\i is the fea-
ture set after feature i removed. Apparently, if the time period
feature is removed, the classification accuracy will be reduced to
the greatest extent. Similarly, the training loss will has the great-
est extent of increase. From the above results, we can obtain that
time period is the most critical of the 10 features, which further
proves the necessity of time period as a feature for network traffic
classification.

GapAccux\i = (Accux\i − Accux) × 100% (1)

GapLossx\i = (Lossx\i − Lossx) × 100% (2)
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Fig. 3: Performance gap with 10 feature-based classification via
different feature sets

Furthermore, to accurately quantify the importance of time pe-
riod feature to the classification by DNN model, we introduce
another performance metric called Shapley value [25,26] to mea-
sure the importance of each feature to DNN model. Shapley value
is a game-theoretic formulation of feature importance which is
defined through a cooperative game between features and dis-
tribute influence among input elements [27]. Concretely, during
the training process of DNN model, we compute Shapley value
of each feature with following formula:

Φi(x) =
∑

S∈N\i

|S |!(|N | − |S | − 1)!
|N |!

( fS∪{i}(xS∪{i}) − fS (xS )) (3)

In formula (3), x is the feature set, i is the ith feature and Φi(x)
refers to the importance of ith feature in feature set x. N is the
set of permutations and combinations of all features and S is the
set excluding feature i in set N. |S |!(|N| − |S | − 1)! defines the
number of permutations and combinations of features before and
after feature i and |N |! defines number of permutations and com-
binations of all features. In addition, fS∪{i}(xS∪{i}) − fS (xS ) refers
to the gain obtained by adding feature i.

Fig. 4: Shapley value: average impact on model output magni-
tude via different features

Figure 4 shows the shapley values of different features corre-
sponding to 4 QoS categories. Inevitably, time period has the
maximum Shapley value among 10 features no matter in which
QoS class. In other words, time period is the feature that has the
greatest impact on classification output of DNN model, which
also proves the importance of time period as a feature of network
traffic classification.

6. Conclusions and future works
In this paper, we focus on network traffic QoS classification

based on one of the supervised learning methods called DNN with
awareness of time period. We introduced the Shapley value to ex-
amine the importance of the features used in the DNN model. The
result shows that the time period is the most critical feature. We
compare our proposed time-aware QoS classification with previ-
ous works in classification accuracy and training loss based on
a DNN model developed in this paper. The results show that
the time feature plays a most important role in traffic classifica-
tion and the accuracy and loss when adding the time feature is
much better than any other feature. Overall, our findings indi-
cate that considering QoS requirements for traffic classification
can improve convergence efficiency of model and time period is a
feature worthy of consideration for network traffic classification.

Future works will consider the correlation between features
combined with Shpaley value of features for further study on fea-
ture dimension reduction. Moreover, more QoS requirement pa-
rameters such as jitter and packet loss should be considered in
traffic QoS classification.
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