U7 b7 IFE 12118
(1998. 11. &

ARY P FPL=A"DPSDATF— FF v — b DIERK

7Y Yann M ZER

Bl BT - BHRILR
T 305-8573 ZyglE o (W KEAH 1-1-1

0298-53-5165 0298-53-5343
jauhar@softlab.is.tsukuba.ac.jp jiro@is.tsukuba.ac.jp

B5EL KBLTRANY R FL—RABPORF— N F v — b FERT 572000 {DROL — LI DN TR

Do BEDIAT V27 M A2 T BAv =V EeA T V27 bPOHTWL Ay - VEZEL, BRUDATF—
FFv— b &fED, A7 V27 MIA2 T DAy b=V ARY P2BERLTBY, BRE2 D, 7242}
DAY=V ERELT D, RIOAT— FFr— b 2ffo ok, RAPRELALV-VEZEHL, A7—F
Fr—bE2aUNRI P TRERDIDICT S, BROEATF— bFr— MIIRERE, BFRECAT— P Fr— 10
DAY HR—2Y +2FHE-TWE, RADT 7E—FIECASE V- VIZEA L, ANV FL—2AE25BEHIC
AF= N Fv— b EERTHLOIFHATE S,

Fog— K AF— R Fr— b, AN b L= R, BEESIMEL, 7Y = s MERSH - %5

Constructing Statecharts from Event Trace Diagrams

Jauhar Ali and Jiro Tanaka

Institute of Information Sciences and Electronics
University of Tsukuba

Tennodai 1-1-1, Tsukuba-shi, Ibaraki 305-8573
0298-53-5165 0298-53-5343
jauhar@softlab.is.tsukuba.ac.jp jiro@is.tsukuba.ac.jp

Abstract .
This paper presents a set of rules through which statecharts can be created from event trace

diagrams. Initial statecharts are built by considering the in-coming and out-going messages of the objects of
a class. Any in-coming message represents an event which corresponds to a possible transition. An interval
between two consecutive events is considered a state. After creating the initial statecharts, our proposed
rules are applied to make the statecharts compact and complete. The final statecharts contain state hierarchy,
concurrent states and other statechart components. Our approach can be used by CASE tools to automatically
generate statecharts from event trace diagrams.

key words Statecharts, Event trace, Dynamic modeling, OOA/D

— 139 —

1 Introduction

Most of the current object oriented methodologies, such
as OMT [1], Booch [2] method, Use-case method [3] and
Unified Modeling Language (UML) [4], suggest to repre-
sent the dynamic behavior of an object oriented system
by a set of state transition diagrams. These methodolo-
gies usually use Harel’s statecharts [5, 6, 7] which offer
a number of extensions, such as state hierarchy and con-
current states, to the usual state transition diagrams.

A statechart represents the complete behavior of a sin-
gle class of objects. To create statecharts, the object
oriented methodologies suggest to first create some sort
of scenarios represented by event trace diagrams [1] or
message sequence charts [4] which show the interactions
between objects while the system is running: However,
the methodologies do not explain how statecharts can be
built from a set of scenarios.

In this paper, we present a set of rules to create state-
chart for a particular class of objects from a set of event
trace diagrams in which the objects of the class partici-
pate. First a simple statechart is created and then rules
are used to simplify and compact the statechart. Our
method is iterative. New event traces can be added to
statecharts created earlier from some other event traces.

2 Event Traces and Statecharts

An event trace diagram represents a scenario, which is
a sequence of events that occurs during one particular
execution of a system. The event trace diagram shows
each object as a vertical line and each event as a horizon-
tal arrow from the sender object to the receiver object.
Time increases from top to bottom.

A state is an abstraction of the attribute values of an
object. A state specifies the response of the object to
input events. The response of an object to an event may
include an action and/or a change of state by the object.
A state corresponds to the interval between two events
received by an object. Events represents points in time;
states represents intervals of time.

A statechart relates events and states. When an event
is received, the next state depends on the current state as
well as the event. A change of state caused by an event
is called a transition. A statechart is a graph whose
nodes are states and whose directed arcs are transitions
labeled by event names and possibly action names. The
statechart specifies the state sequence caused by an event
sequence. If an object is in a state and an event labeling
one of its transitions occurs, the object enters the state
on the target end of the transition. The transition is said
to fire.

Figure 1: Remote control device for the cassette player

3 Creating Simple Statecharts

We use a simple Cassette Player system throughout the
paper to demonstrate our approach. The player is oper-
ated with a remote control device having several buttons
(Figure 1). We suppose there are two classes in the sys-
tem: Device, which represents the remote control device,
and Controller, which implements the actual behavior of
the player when various buttons are pressed. Whenever
some button is pressed, the Device informs the Controller,
which in response performs some action and changes the
state of the player. We use our approach to construct
statechart for the Controller class from a set of event trace
diagrams.

A statechart describes the behavior of a single class
of objects. The sequence of events in an event trace di-
agram corresponds to paths through the statecharts of
the corresponding objects. A statechart of a class of ob-
jects should have paths corresponding to all event trace
diagrams in which the objects of that class participate.
Therefore, to construct a statechart for a class of objects,
we should consider the vertical lines that correspond to
the objects of that class in all the event traces.

For an object in the event trace diagram, the incom-
ing arrows designate events received by the object and
the outgoing arrows designate actions performed by the
object. The interval between any two consecutive events
specifies a possible state. If there is an action between
two events, the action is executed while entering the new
state.

We believe that statecharts should be built in phases.
In the first phase, the following three rules are applied to
each of the event traces in which the objects of the class
participate:

RULE 1: Before receiving any event, the object is in
the default state.

— 140 —

Device

Controller
T
’ \
i V
' '
H H PowerBut
' 0
) r
H ' setPowerOn
' 1
1 1
! ! PowerBut
' |
t ¥
H 1 setPowerOff
1)
])
! ' PowerBut
' '
' ¥
H ¢ setPowerOn
] ' ’
' '
]]
1 '
‘ ’
(S
PowerBut/
B
PowerBuy/ setPowerOff

setPowerOn

PowerBut/
setPowerOn

Figure 2: Event trace 1 and the corresponding state-
chart 1

RULE 2: Incoming arrows are events; they become
transitions.

RULE 3: Intervals between events become states. Out-
 going arrows at the intervals are actions; they be-
come actions of the transitions leading to the states.

Figures 2 and 3 show two event traces and the cor-
responding statecharts built following the above rules.
Each transition has a label, which consists of the event
name followed by a slash (“/”) followed by the action
name. Each state is given a unique name. Any name
can be given to a state, but it makes sense to derive
the name from the action of the transition leading to
the state, as we did. Next, the following rule is used to
obtain a single statechart.

RULE 4: A single main statechart for a class is ob-
tained by combining all the partial statecharts cre-
ated from different event traces. The default states
in the partial statecharts represent a single default
state in the main statechart. States and transitions
from all the partial statecharts are added to the
main statechart. If a transition or state is common
in the partial statecharts, it is taken only once in
the main statechart.

Suppose we also have the statecharts of Figures 5 and
4 from some other event trace diagrams. Figure 6 shows
the statechart obtained by combining the statecharts of
Figures 2, 3, 4 and 5.

Controller Device
g
. \
1 [
1]
H . PowerBut
i T
13 1
H ' setPowerOn
3]
' i
H ' PlayBut
v 1
+ 1
! t startPlay
v 1]
+ 1
H ! StopBut
+ 1
' '
H | stop
s 1}
: 1 PowerBut
' T
' ¥
H ! setPowerOff
b
A) 7
(S
PowerBut/ PlayBut/

setPowerOn startPlay
' i

StopBut/
stop

PowerBut/

setPowerOff
Sp

Figure 3: Event trace 2 and the corresponding state-
chart 2

PowerBut/ RwdBut/
setPowerOn startRwd
» Rewind
StopBut/
stop

PowerBut/ PlayBut/
setPowerOff ™\ startPlay
‘ PowerOff ;‘ Play @

Figure 4: Statechart 3 obtained from some event trace
diagram

PowerBut/ PlayBut/
setPowerOn startPlay
e

StopBut/ .
stop.

PowerBut/ RwdBut/

sctPowerOff startRwd

Figure 5: Statechart 4 obtained from some event trace
diagram :

— 141 —

RwdBut/
startRwd

PowerBut/
setPowerOn

PowerBut/sctPowerOff

PowerOn Rewind

StopBut/stop

PlayBut/
startPlay

PowerBut/ PowerBut/

RwdBut/

setPowerOn
setPowerOff startRwd
PowerOff |4
PowerBut/setPowerOff StopBut/stop

[}

PowerBut/setPowerOff PlayBut/startPlay

PowerBut/sctPowerOff

Figure 6: The main statechart obtained by combining
the partial statecharts

4 Deleting unnecessary states

After creating a simple statechart for a class, it can be
simplified by deleting unnecessary states and transitions.
A statechart with lesser number of states and transitions
is easier to comprehend. Before presenting the rule for
deleting unnecessary states, we define two functions for a
state: Sous, the set of all out-going transitions from state
S; and S;,, the set of all in-coming transitions to state
S. The two functions can be mathematically defined as:

Sout = {(e,a,st), such that when the current state is
S and event e occurs, action a is executed and the state
is changed to st}

Sin = {(e,a, sf), such that when the current state is
sf and event e occurs, action a is executed and the state
is changed to S}

RULE 5: If Slout € S20u, then S1 and S2 can be
replaced with a single state (say $3), such that
S3out = S20ut and 93y, = S1ip U 524,

Using the above rule, the Default and PowerOff states
in Figure 6 can be combined to form a single state
(PowerOff). Similarly, the PowerOn and Stop states can
be combined together to form a single state (Stop). The
result is shown in Figure 7.

5 State Hierarchy

The concept of state hierarchy can be used to decrease
the number of transitions in a statechart. A transition
from a superstate is inherited by each of the substates.

RULE 6: If S1,52,..,5n have the same transi-
tion (e,a,s), then a superstate (say S) having
S1, 82, .., 8n as its substates can be introduced such
that the transition (e,a,s) will be removed from

PowerBut/sctPowerOn ~—— RwdBut/startRwd

Rewind

StopBut/stop
PowerBut/
sctPowerOff

PowerOff)

P tPlay

StopBut/stop

PowerBut/setPowerOff

PowerBut/setPowerOff

Figure 7: The simplified statechart with its states com-
bined

Y
Play |

Stop PN\ R Rwd
[Stop | | Rewind
PlayBut/startPlay p—g StopBut/stop

PowerBut/setPowerOft

PowerBut/sctPowerOn

@ D-‘ PowerOff

Figure 8: Statechart with state hierarchy

each of the substates (S1,52,..,9n) and added to
the superstate S.

In Figure 7, there is a common transition (e = Power-
But, a = setPowerOff, s = PowerOff) from states Stop,
Play and Rewind. Applying the above rule, we have the
statechart of Figure 8.

When there is a state hierarchy, there is usually a de-
fault substate inside each of the superstate. When a
transition leading to the superstate is executed, the de-
fault substate gets activated. We can use the following
rule to divert a transition from a substate to the super-
state.

RULE 7: Transitions towards a substate can be di-
rected to its superstate if the substate is the default
one.

Figure 9 shows the result when the above rule is ap-
plied to the statechart of Figure 8. We give the name
PowerOn to the superstate because of the transition from
the PowerOff state.

6 Concurrent states

It is not necessary to apply the statechart simplification
rules to all of the event trace diagrams at once. Instead,
a statechart can be constructed by considering only few

— 142 —

PowerOn

StopBut/stop /L RwdBut/startRwd
‘ Play | [stop |
PlayButstartPlay ~—r’

PowerBut/setPowerOff

| Rewind

StopBut/stop

PowerBul/sctPowerOn

Figure 9: Statechart with a default substate inside a
superstate

Speaker
SpeakerBul/setLeft / N\ SpeakerBut/setRight
Both o Left +{ Right
SpeakerBut/seiBoth

PowerBut/setPowerOff

PowerBut/sctPowerOn

Figure 10: Statechart created from a different set of event
trace diagrams

of the event traces and then the statechart can be ex-
tended as new event traces become available. We can
even create a statechart from a set of event traces and
then combine it with a statechart created earlier from a
different set of event traces. The above rules can be used
to combine the statecharts. This later combination of
two or more independently created statecharts becomes
very valuable if the underlying class of objects has some
sort of concurrency. Concurrent states become active si-
multaneously whenever their superstate becomes active.
This results in a very compact description of a complex
system. Concurrent substates are also called AND-type
substates, whereas the usual substates are called OR-
type substates. Suppose that we have another statechart
(Figure 10) for the Controfler class of the player system
created from another set of event trace diagrams. Now
the following rule states that we have to introduce con-
current states in order to combine the statechart of Fig-
ures 9 and 10.

RULE 8: If there are two superstates S1 and S2, such
that Sl = S2pn and Sloy = S2,4, then they
must be combined with AND.

Using the above rule, we arrive at the statechart shown
in Figure 11. We give the names Speaker and Player to

PowerOn
Speaker
SpeakerBut/setLeft SpeakerBut/sctRight
Both @ Right
SpeakerBut/setBoth
Player
StopBut/stop /L RwdBut/startRwd -
Play] { stop] | Rewind
PlayBut/startPlay N StopBut/stop
N\ J
PowerBut/setPowerOff
PowerBut/setPowerOn

Figure 11: Statechart having concurrent states

the two AND-substates and the name PowerOn to the
superstate of the substates.

7 Refining the Statechart

The major difference between an event trace diagram
and a statechart is that an event trace diagram shows
the sequence of events that occurs during one particular
execution of a system whereas a statechart is supposed
to represent the complete behavior of a class of objects.
Event trace diagrams do not completely describe the dy-
namic model of a system. Therefore, even after con-
sidering all the event trace diagrams of a system, it is
quite possible that the resulting statecharts are incom-
plete. We believe that there should be a refinement phase
where the missing parts of a statechart are added to it.

In the cassette player remote control device, there is
also a Fwd button which can be pressed and the system
is supposed to respond to it in some way. The state-
chart of Figure 11 does not specify any behavior for a
FwdBut event. In this particular example, we can guess
that the behavior of the FwdBut event resembles with
that of RwdBut and can refine the statechart as shown
in Figure 12. However, sometimes we may not be able
to guess the behavior and may need to create an extra
event trace diagram to make the statechart completed.
Applying RULE 6 about state hierarchy to Figure 12, we
get the statechart of Figure 13.

The following rule can be applied to the final state-
chart to avoid the repetition of action names on transi-

—143—

PowerOn
4 PowerOn \
Speaker
Speaker
SpeakerBuusetloft /7 N SpeakerBut/seiRight
Both Left Right
© © e SpeakerBut
SpeakerBut/sctBoth
""""""""""""""""""""""""""""""" Player Running
Player exit/stop

StopBut/stop D Forward
Forward N (entry/startFwd)
FwdButstarttwd FardBut
) N\ RwdBut/startRwd ~\RwdBut Rewind
Stop | [Rewina Stop | entry/startRwd
e - StopBut

- StopBut/stop
PlayBut/startPlay PlayBut Play
- | Play cntry/startPlay
StopBut/stop ____—___/
. J
\ J
PowerBut/setPowerOff
PowerBut/setPowerOff
PowerBut/setPowerOn
PowerBut/setPowerOn

PowerOff
)

Fi 14: Statechart with ent d exit acti
Figure 12: Statechart after adding a new state Forward e atechart With eniry and ex achions

tions.

4 N . . i
PowerOn RULE 9: If all the in-coming transitions of a state have
the same action, the action can be made as the entry
Speaker action of the state and removed from the transitions.
Similarly, if all the out-going transitions have the
SpeakerButsetLeft /™ SpoakerButsciRight /T same action, the action can be made the erit action

Both et) Right and removed from the transitions.

SpeakerBut/setBoth

Figure 14 shows the result when the above rule is ap-
plied to the statechart of Figure 13.

Player Running

Forward
FE——— 8 Related Work

~ RwdBut/startRwd R a
@—b@) e The most related work is that of Koskimies and Maki-
StopBut/stop

nen [8] who developed an algorithm which converts a se-
quence of event trace diagrams into state machines. The
basis of their algorithm is the same as our RULES No.
2 and 3. The result of the algorithm is simple state ma-
\ -/ chines without any state hierarchy and concurrent states.
PowerBut/sctPowerOIf Whereas our set of rules produce real statecharts with al-
most all of the extensions described by Harel [5, 6, 7].

PlayBut/startPlay Play

Ol

PowerBut/sctPowerOn

Figure 13: Statechart with further state hierarchy

9 Conclusions

A set of rules have been developed through which state-
charts can be created from event trace diagrams. First,

—144—"

basic rules are applied to build simple statecharts. Then
simplification rules are applied to make the statecharts
simple and compact by deleting unnecessary states and
introducing state hierarchy and concurrency. In future
work, we plan to implement our rules in a system which
automatically converts a set of event trace diagrams into
statecharts.

References

[1] James Rumbaugh, Michael Blaha, William Premer-
lani, Frederick Eddy, and William Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, Eagle-
wood Cliffs, New Jersey, 1991.

2

Grady Booch. Object Oriented Design with Appli-
cations. Benjamin/Cummings, Redwood, California,
1991.

3

Ivar Jacobson. Object-Oriented Software Engineer-
ing: A Use Case Driven Approach. Addison Wesley,
Reading, Massachusetts, 1992.

[4] Rational Software Corporation. Unified Modeling
Language (UML).
http://www.rational.com.

[5] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Program-
ming, (8):231-274, August 1987.

[6] David Harel. On visual formalisms. Communications
of the ACM, 31(5):514-530, May 1988.

[7] David Harel and Amnon Naamad. The statem-
ate semantics of statecharts. ACM Transactions
on Software Engineering and Methodology, 5(4):293—
333, October 1996.

8

Kai Koskimies and Erkki Makinen. Automatic syn-
thesis of state machines from trace diagrams. Soft-
ware — Practice and Experience, 24(7):643-658, July
1994.

—145—

