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緩和最適輸送問題のためのブロック座標Frank-Wolfeアル
ゴリズムの拡張手法と画像処理への応用

福永拓海1,a) 笠井裕之1,2,b)

Abstract: 確率分布間の距離を表現可能な最適輸送問題は幅広い分野で注目されている．最適輸送問題は厳密
な質量保存を表す制約条件を有する線形計画問題で定式化されるが，一般に線形計画問題を高速に解くことは
難しい．当該問題の解決のため，制約条件を緩めた緩和最適輸送問題が提案されており，高速化の実現と応用
分野への有効性が確認されている．以前発表した研究では，その緩和問題のうち凸緩和最適輸送問題に注目し，
Frank-Wolfeアルゴリズムに基づいた高速最適化手法を提案した．しかし，Frank-Wolfe (FW)アルゴリズムは
劣線形性で収束するため，その収束速度は依然遅い．本稿では，Frank-Wolfeアルゴリズムの改良手法である，
ギャップサンプリングを考慮したブロック座標 Frank-Wolfe (BCFW-GA)アルゴリズムを提案し，そのアルゴリ
ズムの計算量と最悪収束反復数を示す．数値実験から，改良手法と画像処理に対する凸緩和最適輸送問題の有
効性を議論する．

1. Introduction
The Optimal Transport (OT) problem has been focused and ap-

plied to widely various fields recently, thanks to representability
of distances between probability distributions [1]. Because it is
defined as a convex linear programming, many dedicated solvers
such as an interior-point method and a network-flow method en-
able us to obtain this solutions. However, it remains hard to solve
efficiently because its computational cost increases cubically in
terms of the data size.

To avoid this issue, an entropy-regularized approach has been
widely used because it enables us to bring about the Sinkhorn
algorithm [2], which is faster and enables a parallel implemen-
tation. In addition, although a stabler variant has been also pro-
posed to cope with its numerical unsuitability and non-robustness
against for small values of the regularizer, it still remain slow [3].

In another line of directions, some papers report that the strict
mass-conversation constraint in the OT problem diminishes the
performance of some applications where mass need not be nec-
essarily preserved. For this particular problem, some researchers
have recently utilized a constraint-relaxed approach, which re-
laxes such strict constraints. This approach has gained impor-
tance on various machine learning fields such as color trans-
fer [4] and multi-label learning [5]. However, it still suffers
from a slow convergence property. To address this slow con-
vergence, a faster algorithm has been proposed by use of the
Frank Wolfe (FW) and block-coordinate Frank-Wolfe (BCFW)
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for semi-relaxed problem [6]. These approaches are more effec-
tive thanks to projection-free property of FW algorithm. In addi-
tion, it enables us to obtain a sparser solution.

This paper gives a fast variant of BCFW for semi-relaxed prob-
lem improving the previously proposed algorithm [6]. We fo-
cus on another approach to accelarate the convergence speed,
which is an adaptive sampling strategy that is popular approach
in block-coordinate methods [7], [8], [9], [10]. This paper partic-
ularly utilizes the approach considering the duality gap. Herein,
we denote the BCFW with gap-adaptive sampling as BCFW-GA.

2. Preliminary and related work
Rn is denoted as n-dimensional Euclidean space and Rn

+ is de-
noted as the set of vectors in which all elements are non-negative.
Rm×n is denoted as the set of m×n matrices and Rm×n

+ is denoted as
the set of m × n matrices in which all elements are non-negative.
We denote vectors as bold lower-case letters a, b, c, . . . and ma-
trices as bold-face letters A,B,C, . . . . The i-th element of a and
the element at the (i, j) position of A are represented as ai and Ai, j

respectively. When a matrix A is denoted as (a1, . . . , an), ai rep-
resents the i-th column vector of A. ei is the canonical standard
unit vector, of which the i-th element is 1, and others are zero.
We denote [m] as the set {1, 2, · · · ,m. The probability simplex is
denoted as ∆m = {a ∈ Rm :

∑
i ai = 1}. δa is the delta function at

the vector a. ⟨·, ·⟩ and ⟨·, ·⟩F represent the inner product and the
Frobenius norm. Given two matrices A,B, the Frobenius norm is
denoted as ⟨A,B⟩F :=

∑n
i=1⟨ai, bi⟩ =

∑m
i=1
∑n

j=1 Ai, jBi, j.

2.1 Optimal transport (OT)
Given two empirical probability distributions ν =

∑m
i=1 aiδxi ,

µ =
∑n

i=1 biδyi and the cost matrix C, the OT problem between
distributions is defined as:
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min
T∈U(a,b)

⟨T,C⟩F , (1)

where the domainU(a, b) is defined as

U(a, b) = {T ∈ Rm×n
+ : T1n = a,TT 1m = b}. (2)

The resultant transport matrix T∗ brings a powerful distances
between distributions, which is known to Wasserstein distance.
Many problems appearing in machine learning and statistical
learning can be defined in the OT problem. We refer the inter-
ested readers to [1] for more comprehensive survey .

2.2 Relaxed optimal transport
Domain constraint relaxation. One approach is to relax
the constraint domain [11]. Ferradans et al. propose to al-
low each point of X to be transported to multiple points of
Y and versa. This method enables the transport matrix to in-
crease or decrease the mass between two points which are low
distances. The noteworthy point is that the relaxed domain
keeps the linear constraints as the original, thus, existing solvers
of linear programming can be used. We also have other re-
laxed formulations considering only T1n = a or TT 1m = b as

min
T1n = a

⟨T,C⟩ or min
TT 1m=b

⟨T,C⟩. Because these optimal solutions

are summation of minimum costs of each row or column vector,
they can be solved faster than linear programming. In practice,
this method is useful for document classification [12], and its ex-
tended formulation have recently been developed in context of
style transfer [13], [14].
Regularized constraint relaxation. Another approach adds the
regularized term of the domains defined in (2) into the objective
function [15]. Relaxing both marginal constraints in (2) yields
the following relaxed formulation:

min
T≥0
⟨T,C⟩ + 1

2
Φ(T1n, a) +

1
2
Φ(TT 1m, b),

where Φ(x, y) is a smooth divergence measure. We also have an
alternative formulation, which relaxes one of the two constraints
in (2). This is called a semi-relaxed problem and is defined as the
following:

min
T≥0,TT 1m=b

⟨T,C⟩ + Φ(T1n, a). (3)

A similar formulation is also proposed and, is solved by use of
augmented Lagrangian [16]. Another formulation specifically
focuses on both color transfer and barycenter and is solved by
use of the proximal splitting method and the coordinate descent
method.[11]. Rabin et al. also propose the weighted regulariza-
tion term ∥ κ − 1n ∥1 as well as Relaxed Weighted OT so that the
ratio of the source image approaches that of the target image [4].
Recently, this approach is used in graph dictionary learning [17].

2.3 Frank-Wolfe and block-coordinate algorithms
The Frank-Wolfe (FW) algorithm is one of the constraint con-

vex optimization methods using conditional gradient [18]. Al-
though FW has sublinear convergence rate, its projection-free
property is preferable in the case where the convex constraint is
simple and the feasible point can be found easily. More specifi-
cally, at every iteration, the feasible point s is first found by min-
imizing the linearization of f over the convex feasible setM. To

find the feasible point s, we need to solve the following subprob-
lem :

s = arg min
s′∈M

⟨s′,∇ f (x(k))⟩ (4)

where x(k) represents the k-th current point. The convexity of the
domainM and the linearity of the objective enable us to solve (4)
by linear programming. Finally, the next iterate x(k+1) can be ob-
tained by a convex combination as x(k+1) = (1− γ)x(k) + γs where
γ is a stepsize. Therefore, the generated iterates can belong to the
feasible setM if the initial point x(0) is inM.

Nevertheless, it is necessary in the FW algorithm to solve the
minimization problem in each iteration. For this issue, For this
issue, if the variable M can be block-separable as a cartesian
product M = M(1) × M(2) × · · · × M(n) ⊂ Rm over n ≥ 1, we
can perform a single cheaper update on onlyM(i) instead of on
an entire of M. In this line of algorithms, the block-coordinate
Frank-Wolfe (BCFW) algorithm has been proposed, for example,
in the structural SVM problem in [19] and in the MAP inference
[20]. This algorithm can be applied to the constrained convex
problem of the form

min
x∈M(1)×M(2)×···×M(n)

f (x).

We assume that each factorM(i) is convex, with m =
∑n

i=1 mi. We
solve the subproblem on the factor which is selected randomly.
As a result, the BCFW algorithm can be implemented in cheaper
iteration. When n = 1, this algorithm is reduced to the FW algo-
rithm.

2.4 Block-coordinate Frank-Wolfe (BCFW) for semi-
relaxed OT problem

Our previous paper addresses the semi-relaxed problem with
Φ(x, y) = 1

2λ ∥ x − y ∥22 because it is not only smooth but also
convex [6]. This problem is formally defined as

min
T ≥ 0,
TT 1m=b

{
f (T) := ⟨T,C⟩ + 1

2λ
∥ T1n − a ∥22

}
, (5)

where λ is a relaxation parameter. The domain is transformed
intoM = b1∆m × b2∆m × · · · × bn∆m, where bi∆m represents the
simplex of the summation bi. After following Frank-Wolfe (FW)
algorithm, we describe a block-coordinate Frank-Wolfe (BCFW)
algorithm for the semi-relaxed optimal transport problem.
Frank-Wolfe (FW) algorithm. The gradient ∇ f (T) ∈ Rmn is
given as (∇1 f (T)T , . . . ,∇n f (T)T )T where ∇i f (T) ∈ Rm represents
the gradient on the i-th variable block bi∆m. The linear subprob-
lem is equivalent to

si = bie j = bi arg min
ek∈∆m ,k∈[m]

⟨ek,∇i f (T(k))⟩, (6)

where j ∈ [m] and e j is the extreme point on probability simplex
[21]. The computational cost of the subproblem (6) is greatly im-
proved from O(n3 log n) to O(n). A line-search algorithm can be
applicable to search an optimal stepsize γ. Concretely, we solve
minγ∈[0,1] f ((1 − γ)x + γs), and calculate γ directly since the ob-
jective of the semi-relaxed problem is quadratic.
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Block-coordinate Frank-Wolfe (BCFW) algorithm. The sep-
arability of the domain (5) enables us to develop the block-
coordinate Frank-Wolfe algorithm for the semi-relaxed problem.
The subproblem is identical to (6), but we solve the subproblem
only for the i-th column, which is selected randomly. Then, all
the other columns of T remain the same. Similarly to the FW al-
gorithm, an exact line-search (ELS) algorithm can be also used.
The optimal stepsize γLS is calculated as

γLS =
λ⟨t(k)

i − si, ci⟩ + ⟨t(k)
i − si,T(k)1n − a⟩

∥ t(k)
i − si ∥2

(7)

where ti is the i-th column of T, and si is the solution of the i-th
subproblem in (6). The duality gap can be used for the stopping
criterion, and in a practical implementation, we monitor the value
of the duality gap because the subproblem is solved at every iter-
ation.

3. Block-coordinate Frank-Wolfe with adap-
tive sampling (BCFW-GA)

We construct in this paper the BCFW with gap sampling
for semi-relaxed optimal transport problem according to meth-
ods [8], [22] because they address the duality gap whereas oth-
ers mainly focus on the Lipschitz constants of the gradients
[7], [8], [9], [10]. The main idea behind our proposed approach
is as follows: Because the columns with larger duality gaps ad-
mit higher improvement to the objective function value, such
columns should be sampled more often. In this way, we try
to make more significant progress than the uniform-sampling
method. For this purpose, after update of ti, the proposed BCFW-
GA updates the duality gap for each column. Here, note that g(T)
is given as

g(T) = ⟨T − S,C⟩ + 1
λ
⟨T1n − S1n,T1n − a⟩

=

n∑
i=1

⟨ti − si, ci⟩ +
1
λ
⟨

n∑
i=1

(ti − si),T1n−a⟩ =
n∑

i=1

gi(T),

where gi(T) is given by gi(T) = ⟨ti−si, ci⟩+ 1
λ
⟨ti−si,T1n−a⟩.∀i ∈

[n]. Therefore, updating the column-wise duality gap gi(T) every
iteration, we select an index i at random in proportion to the prob-
ability generated from (g1(T), g2(T), . . . , gn(T)).

In the meantime, the update of gi(T) apparently depends on
T. Hence, every time one single ti is updated, it is necessary to
re-calculate gi(T) of all other (n − 1) columns to obtain its cor-
rect probability. Nevertheless, this is intractable, and wastes the
benefit of the block coordinate approach. Therefore, in practice,
at every M × n iterations, we periodically update gi(T) of all the
columns to obtain their exact values. This update is specifically
called the global update in this paper, and the loop of this global
update is called an outer iteration. In contract to the outer iter-
ation, the update of single gi(T) within the cycle of the global
update is called an inner iteration. Within the global update pe-
riod, i.e., the inner iteration, we store the calculated gi(T) for each
i-th column, and do not perform the global update for the other
columns. For the update of g j(T) of the j-th column ( j , i),
we utilize the stored latest (but outdated) g j(T). Hence, we ex-
pect that, when M is reasonably small, the convergence can be

achieved, otherwise not.

4. Theoretical analysis
We analyze the convergence behaviour of BCFW-GA proposed

in the previous section. In addition, we reveal computational
complexity and the worst convergence iteration of the proposed
algorithm. In the presentation, we will present them.

5. Numerical evaluations in color transfer
problem

We compare BCFW-GA with our previously proposed algo-
rithm. In addition, we investigate the effectiveness of semi-
relaxed optimal transport problem for color transfer problem. In
the presentation, we will show these numerical evaluation results.
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