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Abstract: We propose a privacy-preserving scheme to outsource zero-knowledge proof generation to a party that we
call a worker. Our scheme can be applied to zk-SNARKs with a trusted setup, zero-knowledge proofs deployed in
many applications. Compared to known privacy-preserving outsourcing schemes, our scheme is more practical in the
sense that the computational and memory load on the worker is almost the same as that on the prover in cases where
the provers generate proofs on their own.
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1. Introduction

1.1 Background
A zero-knowledge proof (often abbreviated to ZKP) is a cryp-

tographic protocol, which enables a prover to convince a verifier
that a proposition is true without disclosing the prover’s secret
data for the proposition. For instance, one can use a ZKP to con-
vince another party that they know a correct input of a hash func-
tion without revealing the input itself. ZKPs have attracted much
attention as privacy-enhancing technology since Goldwasser et
al. first introduced the concept [1].

Today there are many practical ZKP protocols (e.g., Refs. [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], and [13]) and
their applications in a variety of areas. The areas include veri-
fiable computations [3], DNA profiling [14], anonymous creden-
tials [15], image authentication [16], e-voting [17], supply chain
tracing [18], EV charging scheduling [19] and COVID-19 contact
tracing [20]. Furthermore, there are already real-world use cases,
in particular, in the blockchain area. For example, the cryptocur-
rencies Zcash [21] and Monero [22] use ZKPs to hide transaction
data.

Although ZKPs are useful privacy-enhancing tools and many
applications are proposed, there are still bottlenecks to deploying
ZKPs in more real-world use cases. In ZKPs, a prover gener-
ates a proof, a datum ensuring the correctness of a proposition.
The verifier checks the proof. If the proof is valid, the verifier
can be convinced that the proposition in question is true. An is-
sue common to all ZKPs is that proof generation requires a high
computational cost. It takes 6 minutes to generate a proof even
when using one of zero-knowledge succinct non-interactive argu-
ments of knowledge (zk-SNARKs) that are the most efficient type
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of ZKP as seen in Ref. [23] *1. The proof generation procedure
is also a memory hog [24]. The high computational and mem-
ory costs for proof generation are an obstacle to applying ZKPs
in cases in which the user has only limited computing resources
such as a smartphone.

One way to reduce a prover’s task is to outsource the proof
generation procedure entirely or partly to other parties, each of
which we call a worker. For example, one can use a distributed
zk-SNARK system DIZK [24] to allow proof generation by clus-
ter computing, to outsource proof generation partly to workers.
A prover has to trust workers in such a scheme since proof gen-
eration requires the prover’s secret data. Hence the prover must
reveal it to the workers if the prover executes no additional pro-
cedure on the secret data.

The secret data may include sensitive information. A (practi-
cal) privacy-preserving outsourcing scheme is therefore needed.

1.2 Our Contribution
In this paper, we propose a privacy-preserving outsourcing

scheme for proof generation. The scheme can be applied to zk-
SNARKs with a trusted setup, which are deployed in many appli-
cations.

In our scheme, a prover sends their secret data to a worker af-

ter encryption according to random parameters that the prover
picks. The secret data are secure unless the random parameters
are known to a worker. The scheme is practical in the following
sense:
• The prover can outsource the proof generation procedure en-

tirely to the worker.
• The worker’s computational and memory cost is almost the

same as the prover when the prover generates a proof on his

*1 The measurement in Ref. [23] uses a 70 GB RAM and a CPU with 3 GHz
virtual core. We note that the proof generation time depends on a propo-
sition. The measurement uses a proposition concerned with a Merkle
hash tree with 256 leaves.
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own.

2. Related Works

Trinocchio [25] is a scheme based on a zk-SNARK Pinoc-
chio [3]. In the scheme, a prover outsources the proof generation
procedure to several workers. The prover splits its secret data into
multiple parts via Shamir’s secret sharing, and sends each part to
each worker. Every worker performs some computation on the
part and sends the result back to the prover. Then the prover
integrates the results to a proof. The computational cost of the
integration procedure is less than that for proof generation.

Rahimi et al. [26] proposed a secure outsourcing scheme us-
ing a secret sharing procedure somewhat different from Shamir’s.
The scheme of Rahimi et al. is more efficient than Trinocchio in
terms of the computational load of each worker.

In their schemes, the secret data are secure unless some of
the workers colludes with each other. Trinocchio for example
requires at least three workers assuming that one worker is not
trustworthy.

3. Preliminaries

This section briefly reviews zk-SNARKs and how to use them.
For theoretical descriptions of zk-SNARKs, we recommend the
reader to refer to literature such as Refs. [3], [4], and [8].

3.1 zk-SNARKs
Let F be a finite field. In a typical zk-SNARK, a proposition to

prove is as follows: a prover knows some vector w ∈ Fk so that
(w, p) ∈ Fk × Fl becomes a solution of a system of equations of
some type supported by the zk-SNARK. Such a system of equa-
tions is called a constraint system.

At present, zk-SNARKs are the most efficient type of ZKPs in
terms of proof size and verification time. In most zk-SNARKs,
the proof size is small and constant (i.e., independent of a propo-
sition), and a verifier can check a proof in time linear to the
size of the public data. Another advantage is non-interactiveness;
namely, a prover needs to communicate with a verifier only once.
Non-interactiveness is preferable for real-world use since many
interactions between the prover and the verifier might cause net-
work latency issues. Due to such efficiency, zk-SNARKs are
adopted in the cryptocurrency Zcash [21] and the blockchain
Layer2 technology zkSync [27].

To achieve efficiency, typical zk-SNARKs require an additional
setup phase. In the setup, a third party calculates a common ref-

erence string (CRS) and provides it to both a prover and a verifier
before proof generation. While a CRS has the effect of reducing
computational loads on a prover and a verifier, it also causes the
following problems:
• In CRS generation, the third party obtains a trapdoor, which

enables one to create a counterfeit proof that passes the ver-
ifier’s inspection.

• A CRS depends on a proposition.
Therefore (in typical zk-SNARKs), participants must trust the
third party, and a CRS must be calculated per proposition. In
Zcash, disclosing a trapdoor may cause currency counterfeiting.
Hence Zcash uses a multi-party computation protocol in CRS

generation so only one participant must be honest in the proto-
col.

A proof in a typical zk-SNARK with a trusted setup is gener-
ated from a solution (w, p) of the constraint system in question
and a CRS for it. The proof is verified using the public vector p

and the CRS. It is difficult to generate a valid proof unless the
solution (w, p) is known. Hence the verifier can be convinced that
the proposition is true if the proof is valid.

We remark that recently zk-SNARKs have been proposed to
deal with CRS issues. For example, Groth et al. [8] constructed
a zk-SNARK with universal and updatable CRS. Here the term
“universal” means that a single CRS can be used for all constraint
systems of some bounded size, and the term “updatable” means
that anyone can update the CRS. Their zk-SNARK was improved
in Refs. [10], [11], and [13].

3.2 How to Use zk-SNARKs
A zk-SNARK enables a prover to convince a verifier that the

prover knows correct inputs and outputs of a vector-valued func-
tion F : Fd1 → Fd2 without revealing parts of inputs and outputs.
The scheme based on a zk-SNARK with a trusted setup is as fol-
lows:
(1) First of all, to use a zk-SNARK, one must convert the func-

tion F into a constraint system C supported by the zk-
SNARK. The constraint system C is designed so that a solu-
tion for it can be derived from correct inputs and outputs of
F.

(2) A trusted third party (TTP) calculates a CRS for a propo-
sition concerned with C and sends it to the prover and the
verifier.

(3) The prover generates a proof for knowledge of a solution of
C, and sends the proof to the verifier.

(4) Finally, the verifier checks the proof.
To be familiar with the scheme, we explain how to convert F

into a rank-1 constraint system (R1CS), which is supported by
many zk-SNARKs such as Refs. [2], [3] and [4]. An R1CS is a
system of equations of the form,

〈x, u〉 = 〈x, v〉〈x, w〉,
for some u, v, w ∈ Fm+1, where x = (x0, x1, · · · , xm) is a variable
with the assignment x0 ≡ 1, and 〈, 〉 denotes the usual inner prod-
uct:

〈a, b〉 :=
m∑

i=0

aibi, a = (a0, . . . , am), b = (b0, . . . , bm).

It is well-known that each component F j of F = (F1, . . . , Fd2 )
can be written as a polynomial function since F is a finite field.
Therefore F can be represented as an arithmetic circuit consisting
of addition, addition-by-scalar, multiplication and multiplication-
by-scalar gates and wires connected to gates. In particular, we can
assume that every multiplication gate has a fan-in of 2. Each gate
of the arithmetic circuit constrains values carried by wires con-
nected to the gate; for example, if the input wires connected to
an addition gate carry a1, a2, a3 ∈ F, respectively, then the output
wire has to carry a4 ∈ F such that a4 = a1 + a2 + a3. From this
point of view, we interpret the circuit as an R1CS since every mul-
tiplication gate has a fan-in of 2; see also Fig. 1. One can derive a
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Fig. 1 The function F(x1, x2, x3, x4) = x1 x3 + x2 x3 + 5x1 + 5x2 + 2x4 can
be converted into an R1CS consisting of 5 equations x1 + x2 = x5,
x3 + 5 = x6, x5 x6 = x7, 2x4 = x8, and x7 + x8 = x9.

solution of the R1CS from correct inputs and outputs of F. There
are infinitely many R1CSs that represent the same function.

4. Our Scheme

We propose a privacy-preserving scheme to outsource proof
generation in a zk-SNARK with a trusted setup to a worker. As
the basic scheme explained in Section 3.2, our scheme allows a
prover to convince a verifier that the prover knows correct inputs
and outputs of a vector-valued function F : Fd1 → Fd2 without
revealing parts of inputs and outputs.

4.1 Overview of the Scheme
Without loss of generality, we can assume that the prover wants

to hide the first k1 inputs s1 ∈ Fk1 and the first k2 outputs s2 ∈ Fk2 .
The rest of the inputs and outputs are disclosed to the worker, the
verifier, and a TTP. We denote by p1 ∈ Fl1 , p2 ∈ Fl2 the public
inputs and outputs, respectively, where li := di − ki (i = 1, 2).

The prover’s secret data s1, s2 are sent to the worker after be-
ing encrypted by functions E1 : Fk1 → Fk1 , E2 : Fk2 → Fk2 the
prover chooses. Here Ei (i = 1, 2) is invertible; namely there is a
function Di : Fki → Fki so that

Di ◦ Ei = 1Fki = Ei ◦ Di,

where 1S denotes the identity map of a set S . We denote by ŝ1,
ŝ2 the secret inputs and outputs, respectively. More specifically,
these are given by ŝ1 = E1(s1), ŝ2 = E2(s2).

The TTP is informed of encryption functions E1, E2. Another
function F̂ : Fd1 → Fd2 is then converted into a constraint system
Ĉ. The function F̂ is defined by

F̂ := (E2 × 1Fl1 ) ◦ F ◦ (D1 × 1Fl2 ). (1)

Since F̂(ŝ1, p1) = (E2 × 1Fl1 ) ◦ F(s1, p1) = (ŝ2, p2), the data ŝ1,
p1, ŝ2, and p2 are correct inputs and outputs of F̂ (Fig. 2). The
TTP also calculates a CRS for a proposition for Ĉ; the CRS is
sent to the worker and the verifier.

The worker derives a solution of the constraint system Ĉ from
ŝ1, ŝ2, p1, and p2. Then the worker generates a proof π̂ for Ĉ.

The verifier checks the proof π̂. It is difficult to generate a valid
proof unless one has knowledge of correct inputs and outputs of
F̂, which is equivalent to F’s. Hence the verifier is convinced that
the prover knows correct inputs and outputs of F if the proof π̂ is
valid.

The larger size of a constraint system increases the computa-
tional cost for proof generation in typical zk-SNARKs. There-
fore, for the sake of efficiency, we use simple encryption func-
tions Ei(x) := x + ri (i = 1, 2) with ri ∈ Fki . This being the case,

Fig. 2 The encrypted secret datum ŝ1 are on the input wire to D1 and ŝ2 is
on the output wires from E2. Hence we see that (ŝ1, p1) and (ŝ2, p2)
are correct inputs and outputs of F̂, respectively.

the decryption function Di is given by x 	→ x − ri.

4.2 Protocol
The protocol of our scheme is as follows:

Step 1 The prover picks random parameters r1 and r2 from Fk1

and Fk2 , respectively, and sends them to the TTP.
Step 2 The prover calculates ŝi ← Ei(si) := si+ ri (i = 1, 2) and

sends ŝ1, ŝ2 to the worker.
Step 3 The TTP converts the function F̂ into a constraint sys-

tem Ĉ, and calculates a CRS for Ĉ. Then the TTP informs
Ĉ to the worker and sends the CRS to the worker and the
verifier.

Step 4 The worker generates a proof π̂ concerned with Ĉ. Then
the worker sends the proof π̂ to the verifier.

Step 5 The verifier checks the proof π̂.

4.3 Security
The prover’s secret data s1, s2 can be recovered from ŝ1, ŝ2

using the random parameters as si ← Di(ŝi) = ŝi − ri (i = 1, 2).
The secret data is therefore disclosed when a worker obtains the
random parameters. If the worker knows F, the worker may infer
the random parameters from Ĉ. Therefore, to avoid disclosing the
secret data to the worker, a better approach is to slightly adjust the
scheme so that the worker communicates only with the prover.

4.4 Remarks on Implementation
In Step 3, the TTP calculates a CRS. The CRS generation pro-

cedure requires a high computational cost. Hence when applying
our scheme to a case such as many users have to convince some
party that they know correct inputs and outputs of the same func-
tion F, it is more practical for the TTP to prepare a number of
tuples consisting of random parameters, a constraint system Ĉ for
the function F̂ determined by the random parameters, and a CRS
for Ĉ in advance; each user then selects the random parameters.

4.5 Comparison with the Known Schemes
We compare our scheme with the other privacy-outsourcing

schemes referred to in Section 2.
In our scheme, the secrets are disclosed when both the TTP

and the worker are attacked. On the other hand, in Trinocchio [25]
and the scheme of Rahami et al. [26], the secret data are disclosed
when some of the workers compromise the information.

In terms of the computational and memory costs on the work-
ers in total, our scheme is more efficient than Trinocchio and the
scheme of Rahimi et al. In fact, Trinocchio requires each worker
to compute the same load or more than a prover in Pinocchio.
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The scheme of Rahimi et al. is more efficient than Trinicchio;
however, to reduce each worker’s task, it needs more and more
trusted workers. On the other hand, in our scheme, the worker’s
computational and memory cost is almost the same as that on the
prover if the provers generate proofs on their own.

We also note that our scheme works in a single-worker setting,
while Trinocchio and the scheme of Rahimi et al. do not work in
that setting.

5. Conclusions

We propose a privacy-preserving outsourcing scheme for zero-
knowledge proof generation, which is an overhead for ZKPs to
be applied in more real-world use cases assuming that a prover
has only limited computational resources.

Our scheme can be applied to zk-SNARKs with a trusted setup.
Compared to the known outsourcing schemes in the literature, our
scheme is more practical in that the computational and memory
load on the worker is almost the same as that on the prover in
cases where the provers generate proofs on their own.
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