
Electronic Preprint for Journal of Information Processing Vol.30

Regular Paper

Mapping Method Usable with Clustered
Many-core Platforms for Simulink Model

Yutaro Kobayashi1,a) Kentaro Honda1,b) Sasuga Kojima2 Hiroshi Fujimoto3

Masato Edahiro4 Takuya Azumi1

Received: May 24, 2021, Accepted: November 2, 2021

Abstract: Multi/many-core processors are being increasingly used to reduce power consumption and improve perfor-
mance. The use of model-based development for embedded systems has also been increasing. Relative to these trends,
the model-based parallelizer or MBP has an essential role in parallelizing applications at the model level. MBP maps
Simulink blocks to cores using various types of information such as block characteristics, C code, and multi/many-
core hardware implementation. However, MBP does not consider many-core hardware with cluster structures such as
Kalray MPPA2-256 processor which contains 16 clusters of 16 cores for 256 general-purpose cores in total. This pa-
per proposes an algorithm that determines core allocations by considering cluster structures. The proposed algorithm
combines two other algorithms: one algorithm uses the core allocation of MBP and path analysis at the cluster-level
and considers effects from communication contention when determining cluster allocations, and the other algorithm
uses the results from MBP and remaps cluster allocations. The proposed algorithm produces better results than its
component algorithms could produce separately. Evaluations demonstrate that the proposed algorithm obtained the
best results among four methods in terms of execution time on Simulink models.

Keywords: embedded systems, model-based development, multi/many-core

1. Introduction

Recently, embedded control systems, such as those used in the
automotive domain have become increasingly complex and pro-
cess large amounts of data. The use of multi/many-core pro-
cessors has consequently increased because these are effective
in improving performance. In addition, development phases of
embedded systems have become more efficient and easier with
Model-Based Development (MBD) [7]. The use of models im-
proves productivity, and the number of hardware prototypes can
be reduced because control specifications can be simulated and
verified at an early development stage. Furthermore, we can au-
tomatically generate code by using MBD.

MATLAB/Simulink [14], which is a graphical program-
ming environment for MBD, has an add-on called Embedded
Coder [13] that can automatically generate readable compact and
fast C code for embedded processors. However, the Embedded
Coder cannot generate a parallel code for multi/many-core pro-
cessors. Therefore to exploit the inherent multi/many-core pro-
cessor performance, parallelizing tools for MBD applications are

1 Graduate School of Science and Engineering, Saitama University,
Saitama 338–8570, Japan

2 Graduate School of Engineering Science, Osaka University, Suita, Osaka
565–0871, Japan

3 Technology Headquarters, eSOL Co., Ltd., Nakano, Tokyo 164–8721,
Japan

4 Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464–
8601, Japan

a) y.kobayashi.858@ms.saitama-u.ac.jp
b) k.honda547@ms.saitama-u.ac.jp

important, e.g., Model-Based Parallelizer (MBP) [6], [8].
MBP generates parallelized C code using Simulink models,

a sequential code generated by the Embedded Coder, and the
Software-Hardware Interface for Multi-Many-core (SHIM) [10]
XML, which has multi/many-core hardware implementations.
MBP can allocate blocks to any number of cores, but cannot al-
locate blocks to many-core hardware with cluster structures such
as MPPA2-256 developed by Kalray [1], [3], [12].

MPPA2-256 contains 16 clusters of 16 cores for 256 general-
purpose cores. The clusters of cores can run independent appli-
cations separately to achieve the desired power envelope for em-
bedded applications. MPPA2-256 connects distributed memory
devices with network-on-chip (NoC). Since delays in communi-
cations vary depending on the communication objects (between
cores or between clusters), the allocations of blocks to cores
are very important. The challenge of core placement changes
depending on whether processors have a cluster structure. For
example, communication time varies depending on whether the
clusters of cores that communicate are the same or not. How-
ever, MBP cannot handle hardware with cluster structures, such
as MPPA2-256.

This paper proposes an algorithm that determines core alloca-
tions to MPPA2-256. A hybrid algorithm is an algorithm that
combines two or more algorithms (Mapping Algorithm using
Path Analysis (MAPA) and Mapping Algorithm from Core to
Cluster (MACC)) to create a better algorithm. If users require
N clusters, MAPA executes N core allocations of MBP, consid-
ers the allocations as clusters, and executes the path analysis at

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

the cluster-level. Then, MAPA determines cluster allocations by
considering the communication contention of NoC and executes
16 core allocations to each cluster. MACC executes 16*N core
allocations of MBP to create XML at core granularity. Next, it
uses the core granularity XML to perform the allocation of the N
clusters. Finally, the finer details of the allocation are modified
and the allocation is determined.

Contributions: The main contributions of the proposed algo-
rithm are as follows:
• The proposed algorithm provides a technical contribution to

MATLAB/Simulink. This algorithm parallelizes and allo-
cates tasks onto cores from distinct clusters.

• The proposed algorithm determines core allocations of
Simulink models for the cluster-based many-core. As a re-
sult, the algorithm decreases the execution time more than
the existing method does.

• The proposed algorithm reduces the burden on users who run
C code generated by MBP on the cluster-based many-core.

Organization: The remainder of this paper is organized as fol-
lows. Section 2 describes the MBP system model and Kalray
MPPA2-256. Section 3 discusses problems applying the MBP
to the MPPA2-256 processor and explains how the proposed ap-
proach can mitigate such problems. Section 4 evaluates the pro-
posed algorithms. Section 5 discusses related work. Section 6
presents the conclusions and suggestions for future work.

2. System Model

A system model of Model-Based Parallelizer (MBP) is shown
in Fig. 1. MBP supported by Embedded Multicore Consor-
tium [4] generates parallelized C code from a Simulink model, C
code generated by the Embedded Coder, and SHIM [10]. SHIM
has a multi/many-core hardware implementation. In the follow-
ing sections, we describe SHIM, MBP, and MPPA2-256.

2.1 Software-Hardware Interface for Multi-Many-core
(SHIM)

The SHIM specifications define an architecture description
standard to provide a common interface that extracts the hard-
ware properties. SHIM XML has hardware information such as
the number and types of cores, memory maps. Software verifica-
tion can be performed without the actual hardware by expressing
it using SHIM. Therefore, the cost and time required to support
new multi/many-core processors can be reduced.

2.2 Model-Based Parallelizer
MBP can generate a parallelized C code from a Simulink

model as shown in Fig. 1. The MBP process consists of three ma-
jor phases. The first phase is the addition of information for which
various types of information, such as the C code and SHIM XML
are combined at the block level into a BLXML obtained from
a Simulink model. The second phase is core allocation, which
maps blocks to cores using the cycle-count and code annotated
BLXML to generate a parallelized BLXML. The third phase is
the generation of parallelized C code.
2.2.1 Adding Information Phase

MBP generates Simulink block information as a BLXML us-

Fig. 1 System model of MBP.

ing the mdltoxml converter. In addition, MBP receives the C
code generated by the Embedded Coder and separates the C code
for each block. MBP combines the separated C code into the
BLXML and generates a code-annotated BLXML (blxml2code).
Furthermore, MBP receives a multi/many-core hardware imple-
mentation from SHIM XML and calculates the performance of
each block. MBP combines the performance information into the
BLXML and then generates the code and cycle-count as anno-
tated BLXML.
2.2.2 Core allocation phase

According to the cycle-count and code annotated BLXML,
MBP maps blocks to cores and then generates the mapping in-
formation as a parallelized BLXML. Note that three conditions
must be satisfied for appropriate core allocations. First, the load
balances of cores should be equal to each other as much as pos-
sible. Secondly, the communication overhead should be as small
as possible. Finally, the cycle should be protected. To satisfy
these conditions, core allocations can be considered combinato-
rial problems. MBP implements a double hierarchical clustering
method to satisfy these conditions [8].
2.2.3 Code Generation Phase

MBP reconfigures the C code for each block and generates
a parallelized C code. In the parallelized C code, MBP inserts
the communication APIs of mbp channel receive on the receiv-
ing side and mbp channel send on the sending side where com-
munications occur between cores. According to the parallelized
BLXML, which includes core allocations, MBP redesigns the C
code according to the parallelized BLXML which includes core
allocations.

2.3 Karlay MPPA2-256
The MPPA2-256 processor is based on an array of Compute

Clusters (CCs) and I/O subsystems (IOSs) that are connected to
NoC routers with a toroidal two-dimensional topology as shown
in Figs. 2 and 3. In this following sections, we describe CCs,
NoC, and eMCOS which are typical operating systems (OS) for
many cores.
2.3.1 Compute Clusters (CCs)

In MPPA2-256, the 16 inner routers of the NoC correspond to
the CCs, which are composed of a Processing Engine (PE), Re-
source Manager (RM), SMEM, NoC Interface, and Debug Sup-
port Unit (DSU). Cluster local memory (SMEM) is shared with
16 Processing Engines (PEs) and a Resource Manager (RM), so

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 2 An overview of the architecture of Kalray MPPA2-256.

Fig. 3 NoC connections of MPPA2-256.

that 17 k1-cores (a PE or the RM) share 2 MB SMEM. Devel-
opers spawn computing threads on Processing Engines (PEs), of
which 16 PEs and a resource manager (RM), each has the Kalray-
1 cores which implement a 32-bit 5-issue Very Long Instruction
Word architecture with a frequency of 600 or 800 MHz. In ad-
dition, each core has its own instruction and data cache, which
is 2-way associative with a capacity of 8 KB. The NoC interface
has a DMA engine and a NoC router. The DMA engine that is
instantiated in every cluster and connected to the SMEM has the
following three NoC interfaces. A receive (Rx) interface is in-
stalled on the receiving side to receive data from the DMA. A
transmit (Tx) interface and a microcore (UC) interface manage
the sending side that programs use to send data between clusters.
2.3.2 Network-on-Chip (NoC)

The 16 CCs and the 4 IOSs are connected to the NoC as shown
in Fig. 3. MPPA2-256 adopts a torus topology [2] as a bus net-
work that connects routers (CCs and IOSs). One router per CC
and four routers per I/O subsystem hold their own routers. The
routers R0–15, R128–131, R160–163, R224–227, and R192–195
shown in Fig. 3 belong to the NoC routers shown in Fig. 2. Each
network router (a CC or an IOS) includes the 5-link NoC routers
that have FIFOs queueing flits, each network router has four du-
plexed links for neighbors in the north, south, east, west direc-
tions and a duplexed link for the local address space attached to
the NoC router. The data links are 4 bytes wide in each direction.
2.3.3 eMCOS

eMCOS developed by eSOL is a real-time operating sys-
tem supporting MPPA2-256. In the scheduling of the eMCOS,
threads for an arbitrary number of processor cores are extracted

from the core with the highest priority, and exclusively executed
for each designated processor core. Since the time taken for exe-
cution can be calculated without movement or interruption of the
processor core, it is possible to guarantee the real-time property.
To provide communication, eMCOS provides an API using NoC.
eMCOS message is a message API between threads via Tx inter-
faces. In the case of eMCOS messages, data can be exchanged
between threads regardless of the cluster on which the thread is
running.

3. Approach

In this section, we will describe an approach that determines
core allocations by considering cluster structures. First, we will
discuss a problem when using MBP for MPPA2-256. Then,
we will propose two algorithms (Mapping Algorithm using Path
Analysis (MAPA) and Mapping Algorithm from Core to Clus-
ter (MACC)). MAPA determines core allocations in each cluster
after determining the cluster allocation. MACC determines on
cluster allocation based on the results of MBP at core granularity.
Afterward, we will propose a hybrid algorithm which combines
MAPA and MACC to compensate for the disadvantages of each.

3.1 Problem
MPPA2-256 has complex cluster structures as mentioned in

Section 2.2.2. One of the features of the hardware with cluster
structures (e.g., MPPA2-256) is the NoC, as described in Sec-
tion 2.3.2. In addition, we use eMCOS message described in Sec-
tion 2.3.3. The eMCOS message varies significantly during com-
munication delays depending on the communications between
clusters and cores. MBP can determine core allocations for any
number of cores, but cannot determine core allocations consider-
ing cluster structures. Therefore, if we will use the original results
of MBP, the overhead caused by communication delays becomes
large. In this section, we propose algorithms for deciding on core
allocations that consider the cluster structures.

3.2 Mapping Algorithm Using Path Analysis (MAPA)
Mapping Algorithm using Path Analysis (MAPA) is executed

with a flow that determines cluster allocations and then core allo-
cations in each cluster. Figure 4 shows the MAPA system model.
Firstly, if users use N clusters, then MAPA receives a Simulink
model and SHIM XML for MPPA2-256 as input and executes
the N core allocation using MBP. MAPA considers the result
of MBP as a cluster and determines cluster allocations to avoid
communication delays as much as possible. Cluster Allocation
Method receives the parallelized BLXML and the parallelized C
code generated by MBP. The method determines cluster alloca-
tions by considering cluster structures and then outputs the code
and cycle-count annotated BLXML divided for each cluster, the
method generates N code and cycle-count annotated BLXMLs.
Then, MAPA executes 16 core allocations of MBP for each code
and cycle-count annotated BLXML to determine core allocations
in each cluster and generates N parallelized BLXMLs. MAPA
integrates N parallelized BLXMLs and creates one parallelized
BLXML that has the information on the 16*N core allocations.
The code generation phase of MBP outputs a parallelized C code

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 4 System model of Mapping Algorithm using Path Analysis (MAPA).

Fig. 5 An example of converting the information to the cluster level.

from the parallelized BLXML. Finally, since the original paral-
lelized C code generated by MBP cannot run on MPPA2-256, the
code rewriting method for MPPA2-256.
3.2.1 Cluster Allocation Method

Cluster Allocation Method receives the parallelized BLXML
and the parallelized C code as input, determines cluster alloca-
tions by considering the cluster structures, and outputs N code
and cycle-count annotated BLXMLs for each cluster. The method
flow consists of the following five steps.

Convert the information to the cluster-level: In this phase,
the method converts the information on the core allocations gen-
erated by MBP to the cluster-level. In order to maintain the
dependency, the method uses a parallelized C code and divides
the mass of blocks. Figure 5 shows the result of eight core
allocations by MBP to execute an example model that has 47
blocks. The different colors represent the different cores. Here,
the method regards the core allocations (mbp allocation) divided
by MBP as clusters and decides how to allocate these to 16 CCs.
The names of the blocks and core allocations (mbp allocation)
determined by MBP are described in the boxes. The arrows in-
dicate the dependencies between the blocks and each thread in
the parallelized BLXML is boxed with a light color. In addi-
tion, mbp channel send and mbp channel receive are indicated
by the thick arrows. The method divides the mass of blocks
when the thread is changed or when mbp channel send and
mbp channel receive appear in the parallelized C code and then
outputs the information at the cluster-level. Figure 6 shows the
result when we executed the method on the example model. We
named each node as small cluster (e.g., 0 0 0, 1 0 0, and 2 0 0).
Note that the name of small cluster (e.g., 1 0 0) is configured by
mbp allocation (e.g., 1) and thread number (e.g., 0 0) as shown
in Fig. 6.

Fig. 6 A result of the conversion of the information to the cluster-level.

Fig. 7 An example of confirming an order for determining cluster alloca-
tions.

Adopt a path analysis: This method applies a path analy-
sis and a critical path method to the information of the cluster-
level. The weight of each node (small cluster) is the sum of the
throughputs of the containing blocks. The method calculates the
earliest start time (ES) and the latest start time (LS) of each node
and derives the weight of all paths [8].

Confirm an order for determining cluster allocations: Ac-
cording to the results of the path analysis, the method confirms an
order for determining cluster allocations. Since we must first deal
with the path with heavier processing, the method sequentially al-
locates small cluster on a heavier path to CC. For example, if the
heaviest path is the thick arrow path and the second heavy path
is a thick dotted arrow path in Fig. 7, the order is the number at
the upper left of small cluster. This process is repeated in or-
der from heavier paths and is terminated when the order of all
small cluster is determined.

Confirm cluster allocations by the number of hops: When
MPPA2-256 performs NoC communications, communication
contention tends to occur as the number of hops increases. Since
the execution of processing consumes more time when commu-
nication contention occurs, we must prevent the contention on a
heavy processing path as much as possible. Therefore, execut-
ing blocks on a path with heavy processing by a small number of
hops is necessary. To realize this, the core allocations of MBP
(mbp allocation) to the CC of MPPA2-256 are implemented us-
ing the determined order. The flow is described in Algorithm 1.
N is the number of clusters to be implemented by the users. sc

and ma mean small cluster and mbp allocation, respectively. C

has 16 CCs. ORDER contains sc as the order determined above.
E[mai] is an array that manages whether the cluster allocation has
been determined or not. Note that Table 1 summarizes the num-
ber of hops between CCs when we used eMCOS message.

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Table 1 The number of hops between CCs
������from

to
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11 CC12 CC13 CC14 CC15 CC16 Sum

CC1
����

2 1 3 2 4 3 5 1 3 2 4 3 5 4 6 48

CC2 2
����

3 1 4 2 5 3 3 1 4 2 5 3 6 4 48

CC3 1 3
����

2 3 5 2 4 2 4 1 3 4 6 3 5 48

CC4 3 1 2
����

5 3 4 2 4 2 3 1 6 4 5 3 48

CC5 2 4 3 5
����

2 1 3 3 5 4 6 1 3 2 4 48

CC6 4 2 5 3 2
����

3 1 5 3 6 4 3 1 4 2 48

CC7 3 5 2 4 1 3
����

2 4 6 3 5 2 4 1 3 48

CC8 5 3 4 2 3 1 2
����

6 4 5 3 4 2 3 1 48

CC9 1 3 2 4 3 5 4 6
����

2 1 3 2 4 3 5 48

CC10 3 1 4 2 5 3 6 4 2
����

3 1 4 2 5 3 48

CC11 2 4 1 3 4 6 3 5 1 3
����

2 3 5 2 4 48

CC12 4 2 3 1 6 4 5 3 3 1 2
����

5 3 4 2 48

CC13 3 5 4 6 1 3 2 4 2 4 3 5
����

2 1 3 48

CC14 5 3 6 4 3 1 4 2 4 2 5 3 2
����

3 1 48

CC15 4 6 3 5 2 4 1 3 3 5 2 4 1 3
����

2 48

CC16 6 4 5 3 4 2 3 1 5 3 4 2 3 1 2
����

48

Algorithm 1 Confirm cluster allocations by the number of hops
Require: C = [cc 1,...,cc 16] (16 CCs). ORDER = [sc0,...,scn]. mai

(mbp allocation) represents the core allocations of sci (small cluster).

mai = [0,...,N-1] (i=0,...,n). when mai has determined allocations to cc x,

then cc x is plugged into E[mai].

1: i← 0

2: while The allocation of N pieces of mai is determined do

3: sci is extracted from ORDER.

4: if E[mai] has not been determined a cluster allocation yet then

5: if sci has no input then

6: Allocate mai to cc x of C which is randomly determined.

7: else

8: Allocate mai to cc x of C with the smallest number of hops from

E[prev] shown in Table 1. Note that prev is ma which has a de-

pendency with sci.

9: end if

10: Remove cc x from C. E[mai] = cc x.

11: end if

12: i← i + 1

13: end while

For example, if the order is determined as shown in Fig. 7, then
ORDER is {2 0 0, 2 0 1, 2 0 2, 2 0 3, 3 0 1, 0 1 0, 1 1 0, ...}.
2 0 0 (sc) is extracted from ORDER (Line 2). Here, 2 (ma) has
not been determined as a cluster allocation, E[2] is empty (Line
3). Since 2 0 0 has no input (Line 4), Line 5 is executed. Since
CC6 (cc 6) is randomly determined in C, 2 (ma) is allocated to
CC6, and then, cc 6 is removed from C and plugged into E[2]
(Line 9). Then, since 2 0 1’s, 2 0 2’s, and 2 0 3’s ma are 2 (Line
3) and E[2] has cc 6, these return to Line 1. 3 0 1’s ma is 3 and
E[3] is empty. Since 3 0 1 has dependencies with 2 0 3 (Line
4) as shown in Fig. 6, Line 7 is executed. Since 2 0 3’s ma is
2, prev is 2. Since CC with the smallest number of hops from
E[prev] (cc 6) is CC8, as shown in Table 1, 3 is allocated to CC8
(Line 7). Then, cc 8 is removed from C and plugged into E[3].
Note that, when there are two or more clusters with the smallest
number of hops, the algorithm selects the cluster with the smallest
cluster number. This process is repeated until the allocations of
all clusters are determined. The proposed method can determine
the application mapping after considering the number of hops and
parallelization in the cluster, which is different from methods in
current research.

Divide information by each cluster: After the cluster allo-
cations are determined, it is necessary to decide how to allo-

cate blocks to 16 cores in each cluster. Therefore, the method
divides the information of the blocks by each cluster (each
mbp allocation) and generates N code and cycle-count annotated
BLXMLs.
3.2.2 Execution of the Second MBP

MAPA executes the core allocation phase of MBP to N code
and cycle-count annotated BLXMLs in order to decide how to
allocate blocks to the 16 cores in each cluster and generates N
parallelized BLXMLs. In other words, 16*N core allocations of
MPPA2-256 are determined by this execution of MBP. Then,
MAPA integrates N parallelized BLXMLs to one parallelized
BLXML. At this time, 16 cores belonging to CC1 are treated
as core numbers 0 to 15, CC2’s cores are treated as 16 to 31,
CC3’s cores are treated as 32 to 47, and so forth. Therefore, the
parallelized BLXML with core numbers from 0 to 16*N - 1 is
generated.

MAPA executes the code generation phase of MBP to the par-
allelized BLXML and generates a parallelized C code. However,
we should rewrite the parallelized C code because it cannot exe-
cute on MPPA2-256.
3.2.3 Rewriting Code Method for MPPA2-256

Since the parallelized C code generated from MBP cannot be
implemented on MPPA, Rewriting Code Method for MPPA2-256
rewrites the code for MPPA2-256 and executes the following five
items.

1) Adding static to all thread functions: MPPA2-256 gener-
ates execution files for each CC. If there is no static, all execution
files capture all functions. In this case, a large amount of the code
area of the memory is consumed. Therefore, the method adds
static to all thread functions.

2) Synchronizing the beginning of the thread functions: In
MPPA, CC1 to CC16 are activated in order. There is a consid-
erable difference in activation time between CC1 and CC16. If
MPPA2-256 immediately executes processing after starting up,
then an error occurs when one CC communicates with other CCs
that have not yet started. Therefore, the method synchronizes the
thread function of each CC.

3) Changing the thread activation process: MPPA2-256 gen-
erates execution files for each CC. In each execution file, only the
threads of the cores belonging to each CC need to be activated.
Therefore, the method changes the thread activation process to
run on only the CC containing each core according to the rules

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

(CC1: 0 to 15, CC2: 16 to 31, CC3: 32 to 47, and so forth)
described in Section 3.2.2.

4) Changing to cache thread ID: The parallelized C code gen-
erated by MBP reads the thread ID of the communication desti-
nation each time communications between the cores occur. How-
ever, since another communication is required to read the thread
ID, communication volume keeps increasing and the buffer is not
sufficient to handle the load. Our method, therefore, reduces
the communication traffic volume for reading the thread ID by
caching it at the head of the C code.

5) Adjusting the stack sizes of threads: The memories that
can be prepared for each CC are finite. In addition, the amount
of stack required for each thread varies according to operations
within a thread. Therefore, the method determines the stack sizes
of the threads in each CC according to the amount of thread pro-
cessing and memory area.

3.3 Mapping Algorithm from Core to Cluster (MACC)
MACC creates a core granularity XML from the MBP core al-

location and performs cluster allocation. It then determines the
cluster allocation by adjusting the core placement. If cluster al-
location is created from core granularity XML, the same core al-
location may be allocated to different clusters depending on the
task. Therefore, adjust the core placement to make sure that the
same cores are placed in the same cluster.

The MACC system model is shown in Fig. 8. It receives the
parallelized BLXML containing the allocation information for
16*N cores and the parallelized C code and generates the core
granularity XML. This generation part is similar to the Cluster
Allocation Method described in Section 3.2.1. In Section 3.2.1,
the BLXML is divided into clusters to generate the cluster gran-
ularity XML. However, MACC generates the core granularity
XML without dividing the core. Next, MBP is used to allocate
the clusters and adjust the core placement as described in Sec-
tion 3.3.1. Finally, the parallelized C code is generated, and the
code is rewritten using the Rewriting Code Method for MPPA
described in Section 3.2.3.
3.3.1 Arranging Core Allocation Method (ACAM)

Cluster allocation using core granularity XML results in some
cores being allocated to different clusters. The arranging core
allocation method (ACAM) adjusts the placement of cores to en-
sure that tasks with the same core are allocated to the same cluster
when viewed at core granularity.

As described above, Algorithm 2 adjusts the core placement.
Line 3 signifies that no more than 16 cores can be allocated to
the cluster. In Line 5, if all the tasks at the core granularity are
assigned to the same cluster, no matter what, same cluster no mat-
ter what, then the cluster assignment is finalized. Lines 7–8 is the
case where not all tasks at core granularity are assigned to the
same cluster. In this case, it allocates the task to the cluster with
the heaviest processing among the clusters to which it is allo-
cated. In this way, the core placement is adjusted so that all tasks
at core granularity are assigned to the same cluster.

3.4 Hybrid Algorithm
Hybrid Algorithm provides better core allocations than MAPA

Fig. 8 System Model of Mapping Algorithm from Core to Cluster (MACC).

Algorithm 2 Reallocate cluster by the number of hops
Require: C = [cc 1,...,cc 16] (16 CCs). taskm (m = 0,...,n) (n = total number

of tasks) represents the number of tasks. c ai (i = 0,...,16*N) represents

the core allocations at granularity of taskm. cc a j (j = 0,...,N) represents

the cluster allocations of c ai. cc a = [0,..,N] When c ai has determined

allocations to cc x, con f irm[x]← c ai.

1: for i← 0 to 16*N do

2: for j← 0 to N do

3: if c a placed on con f irm[x] is more than 16 then

4: break

5: else if all tasks to c ai are allocate to cc a j then

6: x← j and con f irm[x]← c ai

7: else if tasks to c ai are allocate to more then two cc a then

8: the heaviest processing con f irm[cc a]← c ai

9: end if

10: end for

11: end for

and MACC, whose advantages and disadvantages complement
each other. MAPA has advantages when the number of clusters
is large. However, when the number is small, MAPA sometimes
does not output good results. Since reducing the number of clus-
ters lowers the volume of communication traffic, MAPA’s effect is
reduced. On the other hand, MACC is more effective than MAPA
when the number of clusters is smaller. Since MACC allocates
tasks to equalize the amount of processing, good results are out-
put even if the number of clusters is small. In addition, the al-
gorithm that produces the best results depends on the Simulink
model used as input. The hybrid algorithm executes both algo-
rithms and produces better results by providing the best core al-
locations for any number of clusters.

4. Evaluation

In this section, we describe the results of core allocation using
the proposed method. First, we describe the evaluation environ-
ment. Next, we describe the evaluation results from assigning
a Simulink model to each core of the cluster structure using the
proposed method. Next, we evaluate and discuss the number of
inter-cluster communications at each number of clusters. Finally,
we evaluate the extent to which the proposed method reduces the
burden on developers at the code level.

4.1 Environment
We used eMBP [5] developed by eSOL, which has the same

functionality as MBP. We also used eMCOS as an OS and eM-

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

COS messages as the means for communication described in Sec-
tion 2.3.3. We evaluated Hybrid Algorithm based on its execution
time as compared with the MBP, MAPA, and MACC. The mea-
surement of execution time is performed using an IOS that is not
used for core allocations at this time, and all runtimes are per-
formed under the same conditions. We also measured the com-
munication count obtained via the algorithm.

4.2 Execution Time of Simulink Models
In this section, we used Simulink models consisting of vari-

ous Simulink blocks such as Unary Minus, Add, Subsystem. We
designed Simulink models with various block numbers (About
1,000 blocks, 1,500 blocks, 3,000 blocks). We applied the hybrid
algorithm to these model assuming 4, 8, 12, and 16 clusters and
compared them with the original core allocations of MBP (an ex-
isting method), MAPA, and MACC. The clusters of 4, 8, 12, and
16 have 64, 128, 192, and 256 cores, respectively.

We can see from Fig. 9 that the execution time can be reduced
by 2.9–7.2 times for MAPA and 2.5–3.8 times for MACC. In
addition, in most cases, increasing the number of clusters shows
better results. Comparing the results by the number of clusters,
MAPA shows the best results for 4 and 16 clusters, and MACC
shows the best results for 8 and 12 clusters.

Next, we compare the execution time for each number of clus-
ters in MAPA and MACC used for the hybrid algorithm. The
Simulink model used is a 1,500 block and 3,000 block model.
This is the Simulink model of small scale, with the processing
volume of one task of 1,500 blocks being a tenth of the process-
ing volume of one task of 3,000 blocks.

The execution time of the model with 1,500 blocks is shown
in Fig. 10. The execution time of MACC is faster than that of
MAPA for 4, 8, and 12 clusters, and MAPA is faster than MACC
for 16 clusters. As shown in Fig. 11, increasing the number of
clusters in each algorithm reduces the execution time.

MACC has more allocations in the cluster allocation step than
MAPA, by the number of cores per cluster. Therefore, MACC is
more affected by the communication time than MAPA. If the
number of clusters is large, the communication frequency in-
creases and the communication time increases. In addition, if
the processing time of one block is long, the waiting time in syn-
chronous communication will increase and the communication
time will be strongly affected. Therefore, when the processing
time of one block is short and the number of clusters is small,
the execution time of MACC is shorter than that for MAPA.
Whereas, for models with a large number of blocks, the execu-
tion time of MAPA is shorter than that for MACC.

Next, the performance obtained based on the load balancing
data is examined. The coefficient of variation, which is the stan-
dard deviation divided by the mean, is calculated as a value indi-
cating the load variance. The values used in the calculations are
the processing times for each cluster, and the results are shown
in Table 2. In addition, a box-and-whisker diagram of the exe-
cution time for each cluster is shown in Fig. 12. The coefficient
of variation for each algorithm is within 6.3%, and the results
show that the variation is low. In addition, the hybrid algorithm
improved the load balancing performance by 2.4% for 4 clusters

Fig. 9 Execution time of Simulink Model (1,000 blocks).

Fig. 10 Execution time of Simulink Model (1,500 blocks).

Fig. 11 Execution time of Simulink Model (3,000 blocks).

Table 2 Coefficient of variation of each algorithm based on the execution
time of each cluster.

MAPA MACC
1,500 blocks 3,000 blocks 1,500 blocks 3,000blocks

4 clusters 0.036 0.031 0.012 0.010
8 clusters 0.025 0.025 0.049 0.026

12 clusters 0.023 0.018 0.054 0.050
16 clusters 0.020 0.022 0.042 0.063

of 1,500 blocks and by 4.1% for 16 clusters of 3,000 blocks. As
the box-and-whisker diagram shows, the difference in processing
time per cluster for each algorithm is almost negligible, and the
variation becomes smaller as the number of clusters increases for
MAPA and as the number of clusters decreases for MACC. From
this result, we can see that the hybrid algorithm provides good
load balancing. The hybrid algorithm has the shortest execution
time, regardless of the number of clusters or blocks since both
algorithms can be executed and give better results. Therefore,
among the four algorithms, the hybrid algorithm has the best core
allocation in the Simulink model.

4.3 Communication time between the cluster
Inter-cluster communication has a longer communication time

than inter-core communication, which affects the execution time.
Therefore, we compared the number of inter-cluster communi-
cations for each algorithm. As shown in Fig. 13, the number of
inter-cluster communications is significantly reduced for all algo-

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 12 Box-and-whisker plot of processing time for each cluster.

Fig. 13 Number of communications between clusters

Table 3 Reduction in number of lines of code

add modify total
(1) 0 α + 1 α + 1
(2) α + 1 2 α + 3
(3) 2 × α 0 2 × α
(4) 52 β + 2 β + 54
(5) 0 α + 2 α + 2

total 3 × α + 53 2 × α + β + 7 5 × α + β + 60
(1): Adding static to all thread functions
(2): Synchronizing the beginning of the thread functions
(3): Changing the thread activation process
(4): Changing to cache thread ID
(5): Adjusting the stack sizes of threads
α: The number of threads in the parallelized C code
β: The number of communication between cores and between clusters

rithms compared to the existing MBP method. From this result
and the results of Section 4.2, MAPA is useful as an algorithm
when the execution time of the input model assigned by MBP is
greatly affected by the communication time, and MACC is useful
when less affected by the communication time.

4.4 Reduction of the C Code Rewriting Burden
Rewriting Code Method for MPPA2-256 described in Sec-

tion 3.2.3 rewrites the parallelized C code generated by MBP.
Table 3 shows the extent to which our method reduces the bur-

den on the user. The numbers in the leftmost column are linked
with the numbers in Section 3.2.3. Here, add and modi f y sig-
nify the numbers of lines of the C code that have been newly in-

serted and modified, respectively, by the method. Next, 3×α+53
lines of the C code are added and 2 × α + β + 7 lines of the C
code are modified. As a result, the proposed algorithm reduces
the user burden in rewriting 5 × α + β + 60 lines of the C code.
For example, the Simulink model of 1,000 blocks mentioned in
Section 4.2 has 256 threads and 322 communications when we
executed MAPA while assuming 16 clusters. Thus, the method
automatically rewrites 1,662 lines and decreases the user burden.

5. Related Work

AMALTHEA platform [7] was created to address the chal-
lenges in parallelism exploitations for multi-core systems. The
platform creates meaningful solutions by providing effective pro-
cesses for application distributions. Various methods such as the
Critical Path Partitioning and Earliest Start Scheduling are intro-
duced in the partitioning phase.

OSCAR Compiler [15] breaks down the behavior of the soft-
ware into tasks of various granularities, analyzes the tasks in de-
tail, and allocates them to multiple cores to accelerate the pro-
cessing. Unlike MBP, which exploits models, it takes a sequential
code that operates from a single core as its input.

Kumura et al. [9] described a method to generate a parallelized
C code from Simulink models. To ease the parallelization, this
paper analyzed the model and broke loop structures by divid-
ing indirect feedthrough blocks. Then, task allocation and task
scheduling are provided using a symmetric multi-processing OS.

Zhong et al. [17] used a mixed-integer linear programming for-
mulation to determine core allocations while considering load
balancing and inter-core communications across cores with re-
spectively different performance. Moreover, this paper evaluated
the approach to a single-ISA heterogeneous multi-core processor.

Kojima et al. [8] proposed two methods: the Remapping
Blocks Method (RBM) which remaps blocks to cores by the re-
sults of MBP and the Deciding Execution Order Method (DEOM)
which decides the execution order of the block. The methods en-
hance the parallelism of blocks and improve load balance.

SLX tool [11] profiles a sequential C code and finds functions
with many executions. SLX tool consists of three parts: SLX
Parallelizer, SLX Mapper, and SLX Generator. Parallelism is ex-
tracted by SLX Parallelizer from the sequential C code, and core
allocations are determined by SLX Mapper. Then, a parallelized
C code is generated by SLX Generator.

Table 4 briefly summarizes the characteristics of several re-
lated tools and compares them with the proposed algorithm.
AMALTHEA platform, OSCAR Compiler, MBP, and RBM and
DEOM do not assume the use of hardware with cluster structures.
The NoC SLX tool does assume their use but the tool does not use
MATLAB/Simulink.

6. Conclusion

This paper proposes an algorithm to determine core allocations
to many-core hardware with cluster structures such as MPPA2-
256. If users need to use N clusters, the Mapping Algorithm
using Path Analysis (MAPA) uses the 16*N core allocations of
MBP and determines cluster allocations according to the com-
munication contention of NoC. Mapping Algorithm from Core

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Table 4 Comparison of proposed and previous methods

Embedded MATLAB/ Path Cluster- NoC
Simulink Analysis Structure

AMALTHEA platform [7] � �
OSCAR Compiler [15] � � �

Model Based Parallelization [9] � �
MBP [17] � � �

RBM and DEOM [8] � � �
SLX tool [16] � � � �

Proposed Algorithm � � � � �

to Cluster (MACC) executes 16*N core allocations of MBP to
create XML at core granularity. Next, it uses the core granu-
larity XML to perform the allocation of the N clusters. Finally,
the finer details of the allocation are modified, and the allocation
is determined. We evaluated these algorithms with the original
MBP core allocations. Since the results of the Simulink show that
Hybrid Algorithm has the shortest execution time, Hybrid Algo-
rithm’s core allocation is the best among the four algorithms. In
future work, we will propose an algorithm that decides the opti-
mal number of clusters according to a model. In addition, we will
evaluate the system using highly parallel application models such
as point cloud processing for self-driving systems.

Acknowledgments This work was partially supported JST
PRESTO Grant Number JPMJPR1751.

References

[1] Azumi, T., Maruyama, Y. and Kato, S.: ROS-lite: ROS Framework
for NoC-Based Embedded Many-Core Platform, Proc. IROS (2020).

[2] Dally, W.J. and Towles, B.: Route packets, not wires: On-chip inter-
connection networks, pp.684–689 (2001).

[3] De Dinechin, B.D., Van Amstel, D., Poulhiès, M. and Lager, G.: Time-
critical computing on a single-chip massively parallel processor, Proc.
DATE, pp.1–6 (2014).

[4] Embedded Multicore Consortium: Embedded Multicore Consor-
tium, Embedded Multicore Consortium (online), available from
〈http://www.embeddedmulticore.org/〉 (accessed 2021-05-10).

[5] eSOL: eMBP, eSOL Co., Ltd. (online), available from 〈https://www.
esol.com/embedded/mbp.html〉 (accessed 2021-05-10).

[6] Honda, K. and Azumi, T.: Performance Estimation for Many-
core Processor in Model-Based Development, Proc. MECO, pp.1–6
(2019).

[7] Höttger, R., Krawczyk, L. and Igel, B.: Model-Based Automotive
Partitioning and Mapping for Embedded Multicore Systems, Proc.
ICPDSSE (2015).

[8] Kojima, S., Edahiro, M. and Azumi, T.: Remapping Method to Min-
imize Makespan of Simulink Model for Embedded Multi-core Sys-
tems, Proc. CATA (2018).

[9] Kumura, T., Nakamura, Y., Ishiura, N., Takeuchi, Y. and Imai, M.:
Model Based Parallelization from the Simulink Models and Their Se-
quential C Code, Proc. Workshop on SASIMI, pp.186–191 (2012).

[10] Multicore Association: Software-Hardware Interface for Multi-Many-
core (SHIM), Multicore-Association (online), available from 〈http://
www.multicore-association.org/workgroup/shim.php〉 (accessed
2021-05-10).

[11] Onnebrink, G., Hallawa, A., Leupers, R., Ascheid, G. and Shaheen,
A.-U.-D.: A heuristic for multi objective software application map-
pings on heterogeneous MPSoCs, Proc. ASPDAC, pp.609–614 (2019).

[12] Perret, Q., Maurere, P., Noulard, E., Pagetti, C., Sainrat, P. and Triquet,
B.: Temporal Isolation of Hard Real-Time Applications on Many-
Core Processors, Proc. RTAS, pp.1–11 (2016).

[13] The MathWorks, Inc.: Embedded Coder, The MathWorks, Inc. (on-
line), available from 〈http://jp.mathworks.com/products/embedded-
coder/〉 (accessed 2021-05-10).

[14] The MathWorks, Inc.: MATLAB/Simulink, The MathWorks, Inc. (on-
line), available from 〈http://www.mathworks.com/products/simulink/〉
(accessed 2021-05-10).

[15] Umeda, D., Suzuki, T., Mikami, H., Kimura, K. and Kasahara, H.:
Multigrain Parallelization for Model-Based Design Applications Us-
ing the OSCAR Compiler, Proc. LCPC, pp.125–139 (2016).

[16] Xilinx: SLX tool, Xilinx (online), available from 〈https://silexica.
com/〉 (accessed 2021-05-10).

[17] Zhong, Z. and Edahiro, M.: Model Based Parallelizer for Embedded

Control Systems on Single-ISA Heterogeneous Multicore Processors,
Proc. ISOCC (2018).

Yutaro Kobayashi is a master student of
Graduate School of Science and Engineer-
ing, Saitama University. He received his
B.E. degree from School of Science and
Engineering, Saitama University in 2021.

Kentaro Honda received his M.E. de-
gree from Graduate School of Science and
Engineering, Saitama University in 2021.

Sasuga Kojima received his M.E. degree
from Graduate School of Engineering Sci-
ence, Osaka University in 2019.

Hiroshi Fujimoto has been a member of
Technology Headquarters in eSOL Co.,
Ltd., since October 2015. He is engaged
in the development of parallel processing
software that runs on multi/many-cores.

Masato Edahiro is a Professor at the
Graduate School of Informatics Nagoya
University. He received his Ph.D. de-
gree in computer science from Princeton
University, Princeton, NJ, USA, in 1999.
He joined NEC Corporation in 1985, and
was with its research center for 26 years,
and moved to Nagoya University, Nagoya,

Japan, in 2011. His research interests include graph and network
algorithms and software for multi/many-core processors.

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Takuya Azumi is an Associate Profes-
sor at the Graduate School of Science
and Engineering, Saitama University. He
received his Ph.D. degree from the
Graduate School of Information Science,
Nagoya University. From 2008 to 2010,
he was under the research fellowship for
young scientists for Japan Society for the

Promotion of Science. From 2010 to 2014, he was an Assistant
Professor at the College of Information Science and Engineer-
ing, Ritsumeikan University. From 2014 to 2018, he was an As-
sistant Professor at the Graduate School of Engineering Science,
Osaka University. His research interests include real-time operat-
ing systems and component-based development. He is a member
of IEEE, ACM, IEICE, and JSSST.

c© 2022 Information Processing Society of Japan


