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Abstract: It is well known that the following two conditions should be satisfied in the control-point based geometric
correction of historical maps: (a) Conversion from a historical map into a present map is a homeomorphism and (b)
The straightness of designated specific line segments is maintained. In this paper, a new method for the control-point
based geometric correction of historical maps, which simultaneously satisfies both the above conditions, is proposed.
The correction process is modeled as a phenomenon in a three-dimensional vector field. Each point in a historical map
is connected with the corresponding point in a present map by a streamline of the field. Since a unique streamline
passes through any point in the vector field having no zero-vector point, the above connection relationship becomes
a homeomorphism. As a result, Condition (a) is satisfied. On the other hand, the straightness of designated line seg-
ments is maintained because streamlines intersecting with the line segments in the historical map are formed so as to
necessarily intersect with the corresponding line segments in the present map. Consequently, Condition (b) is satisfied.
The experimental results demonstrate the effectiveness of the proposed method.
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1. Introduction

Historical maps are important materials as information sources
about the historical landscapes of the ages when the maps were
produced. In the analysis of historical maps, a technique of
geometric correction is often used to overlay them on present
maps [1], [2]. This makes it possible to quantitatively compare
the situation of, for example, land use in a historical map with
that in a present map.

The most popular method for the geometric correction of his-
torical maps is that in which the specific points designated by
users are employed as control points [1], [2], [3], [4]. Control
points are the points whose locations in both the historical and
present maps are already known (e.g., temples, shrines, etc.), and
used as reference points to be fixed at the designated specific po-
sitions in both the maps. All the points in a historical map, in-
cluding the ones other than the control points, are converted into
those in a present map so as to maintain their relative positional
relationship to a certain extent and at the same time satisfy the
condition that the control points are fixed at the designated posi-
tions.

It is well known that there are two main groups in control-point
based geometric correction methods: global and local transfor-
mations [2], [3], [4]. In global transformation methods, only one
mathematical model is used to convert the coordinates of any
point in a historical map into that in a present map [2], [3]. A
typical example of the mathematical model is that consisting of
two polynomials for two coordinates. Their coefficients are usu-
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ally adjusted by the least squares method [2]. The disadvantage of
global transformation is that residual errors exist in the positions
of the control points in the corrected historical map [2], [3], [4].
This means that the condition required for control points is not
satisfied.

In local transformation methods, on the other hand, either a
historical map is cut into areas each of which has its own math-
ematical model for point conversion, or the position of any point
is converted with its own mathematical model [2]. A typical ex-
ample of the former approach is a method based on the introduc-
tion of the triangulated irregular network with a local coordinate
conversion (TIN) [1], whereas that of the latter approach is the
moving least squares transformation (MLS) [5]. In local transfor-
mation, no residual error appears in the positions of the control
points in the corrected historical map [1], [2]. In other words, the
condition required for control points is satisfied. In this paper, we
focus on the group of local transformation satisfying the above
condition.

In the control-point based geometric correction of historical
maps, it is required that the conditions shown below are also sat-
isfied [1], [6]:
( a ) Conversion from a historical map into a present map is a

homeomorphism (i.e., one-to-one onto mapping).
( b ) The straightness of designated specific line segments (e.g.,

straight roads, moats, etc.) is maintained.
Condition ( a ) is often violated in TIN. Therefore, an additional
procedure, e.g., modifying the structure of a triangulated irregu-
lar network by hand [7], is often introduced to resolve the issue.
As for Condition ( b ), on the other hand, an attempt to satisfy this
condition is seen in Ref. [6]. In this attempt, the weighted mean
of the between-map displacement amounts of designated line seg-
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ments is used to determine the displacement amount of a point to
be converted. Although the weight is given as a function of the
distance between a line segment and a point to be converted, it is
not a strict inverse distance weight but a monotonously decreas-
ing function giving only a finite value. Therefore, the weight of
the line segment, on which a point to be converted on the corre-
sponding line segment in the present map exists, does not become
infinite, and thereby other line segments can affect the determina-
tion of the displacement amount of the point. As a result, the
converted point does not necessarily exist on the corresponding
line segment. In other words, the straightness of the line segment
cannot be sufficiently maintained.

In this paper, we propose a new method for the control-point
based geometric correction of historical maps. This method be-
longs to the group of local transformation, and is developed
so as to simultaneously satisfy both Conditions ( a ) and ( b ).
We model the correction process as a phenomenon in a three-
dimensional vector field [8]. This concept is introduced from the
map-deformation method proposed for the construction of dis-
tance cartograms [9].

We arrange historical and present maps in the vector field so
that any point in the historical map is connected with a point
in the present map by a streamline [8] of the field. Each of the
points existing on a designated line segment (hereafter, we call
it “a control line segment”) is also connected with a point on the
corresponding control line segment in the present map. When
no zero-vector point exists in the field, there is a unique stream-
line passing through any point [8]. Therefore, the above point
connection becomes a one-to-one onto mapping, i.e., homeomor-
phism [10]. As a result, Condition ( a ) is satisfied. On the other
hand, the straightness of control line segments is also maintained
because streamlines intersecting with the control line segments in
the historical map are formed so as to necessarily intersect with
the corresponding control line segments in the present map. Con-
sequently, Condition ( b ) is satisfied.

We conduct experiments in which simple artificial mapping
models and an actual historical map are used. We compare the
proposed method with the other two local-transformation meth-
ods previously proposed: TIN and MLS. The experimental re-
sults show that the proposed method can provide characteristics
better than those provided by the other two methods.

The remainder of this paper is organized as follows. We
describe the vector-field-analysis based geometric correction
method in Section 2. We show experimental results and verify
the effectiveness of the proposed method in Section 3. A conclu-
sion is finally summarized in Section 4.

2. Geometric Correction Based on Vector
Field Analysis

2.1 Advance Preparation for Geometric Correction
As already mentioned in Section 1, historical and present maps

are arranged in a three-dimensional vector field. To avoid the pro-
duction of a vector field with a distribution too complicated, an
appropriate spatial arrangement is needed. This section describes
the detail of the advance preparation to appropriately arrange both
the maps.

Suppose that the set of the control points in the historical map
and the corresponding points in the present map are given as fol-
lows:

PHn(xHn, yHn) *1: control point for the historical map
PPn(xPn, yPn): control point for the present map

(1 ≤ n ≤ NP, NP: total number of control points)
where PHn is the nth control point in the historical map and PPn

is the corresponding one in the present map. We also give the set
of the control line segments in the historical map and the corre-
sponding line segments in the present map as follows:

LsHm(xsHm, ysHm) LeHm(xeHm, yeHm): control line segment for
the historical map

LsPm(xsPm, ysPm) LePm(xePm, yePm): control line segment for the
present map
(1 ≤ m ≤ NL, NL: total number of control line segments)

where LsHm and LeHm are the endpoints of the mth control line
segment in the historical map and LsPm and LePm are the corre-
sponding ones in the present map. The positions of the above
points are represented by the following position vectors:

pHn = [ xHn yHn ]T for PHn

pPn = [ xPn yPn ]T for PPn

lsHm = [ xsHm ysHm ]T for LsHm

leHm = [ xeHm yeHm ]T for LeHm

lsPm = [ xsPm ysPm ]T for LsPm

lePm = [ xePm yePm ]T for LePm

To eliminate the influence of direction deviation between the
historical and present maps, we rotate the latter one. In the case
that the present map is rotated with the angle θ, the position vec-
tor pPn of the nth control point PPn is converted into p′Pn(θ) of the
rotated point P′Pn as follows:

p′Pn(θ) = R(θ)pPn (1)

where

R(θ) =

⎡⎢⎢⎢⎢⎣ cos θ − sin θ
sin θ cos θ

⎤⎥⎥⎥⎥⎦
The angle between the line segment formed by the pair of the n1th
and n2th control points in the historical map, PHn1 PHn2 , and the
corresponding line segment in the rotated present map, P′Pn1

P′Pn2
,

becomes as follows:

φPn1 ,n2 (θ) = cos−1
(pHn1

− pHn2
) · {p′Pn1

(θ) − p′Pn2
(θ)}∣∣∣∣pHn1

− pHn2

∣∣∣∣
∣∣∣∣p′Pn1

(θ) − p′Pn2
(θ)
∣∣∣∣ (2)

As for the mth control line segment LsPmLePm, the position vec-
tors of the endpoints, lsPm and lePm, are converted into l′sPm(θ)
and l′ePm(θ) corresponding to the rotated line segment L′sPmL′ePm

as follows:
l′sPm(θ) = R(θ)lsPm (3)
l′ePm(θ) = R(θ)lePm (4)

The angle between LsHmLeHm in the historical map and L′sPmL′ePm

in the rotated present map becomes as follows:

φLm(θ) = cos−1 (leHm − lsHm) · {l′ePm(θ) − l′sPm(θ)}∣∣∣leHm − lsHm

∣∣∣∣∣∣l′ePm(θ) − l′sPm(θ)
∣∣∣ (5)

*1 In this paper, the symbol x is used as the coordinate of the horizontal
axis, whereas y as that of the vertical axis. This symbol assignment is
contrary to that in the Japanese surveying and mapping community (x:
northing, y: easting) [11]. We select the above assignment in accordance
with mathematical conventions.
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To obtain the optimal rotation angle θ0 giving the rotated
present map whose direction is aligned to that of the historical
map, we solve the following optimization problem:

Minimize f (θ)
Subject to θmin ≤ θ ≤ θmax

where

f (θ) =
fP(θ) + fL(θ)
gP(θ) + gL(θ)

fP(θ) =
NP−1∑
n1=1

NP∑
n2=n1+1

vPn1 ,n2 (θ)φPn1 ,n2 (θ)

fL(θ) =
NL∑

m=1

vLm(θ)φLm(θ)

gP(θ) =
NP−1∑
n1=1

NP∑
n2=n1+1

vPn1 ,n2 (θ)

gL(θ) =
NL∑

m=1

vLm(θ)

vPn1 ,n2 (θ) =

√∣∣∣∣pHn1
− pHn2

∣∣∣∣
∣∣∣∣p′Pn1

(θ) − p′Pn2
(θ)
∣∣∣∣

vLm(θ) =
√∣∣∣leHm − lsHm

∣∣∣∣∣∣l′ePm(θ) − l′sPm(θ)
∣∣∣

and θmin and θmax are the angles giving the search interval of the
rotation angle, [θmin, θmax]. The objective function f (θ) is the
weighted mean of the angles each of which is that between the
historical-map line segment and the corresponding present-map
line segment. Each angle is weighted with the size of the corre-
sponding line-segment pair (specifically, weighted with the geo-
metric mean of the length of the historical-map line segment and
that of the present-map line segment, i.e., vPn1 ,n2 (θ) or vLm(θ)).
This is based on the fact that direction deviation given by a line-
segment pair with a larger size can bring about greater map defor-
mation. In actual calculations, we solve the above optimization
problem by the golden section search method [12] *2 under the
conditions θmin = −2π/3 and θmax = 2π/3 *3.

Next, we separately standardize the coordinates of the points in
the historical map and those in the present map (origin: centroid
of all points, mean distance from the centroid: unity) to eliminate
the influence of the scale difference between the two maps. We
use the following symbols for the standardized points:

PIn(xIn, yIn) for PHn in the input (i.e., historical) map
POn(xOn, yOn) for PPn in the output (i.e., present) map

(1 ≤ n ≤ NP)
LsIm(xsIm, ysIm) for LsHm in the input map
LeIm(xeIm, yeIm) for LeHm in the input map
LsOm(xsOm, ysOm) for LsPm in the output map
LeOm(xeOm, yeOm) for LePm in the output map

(1 ≤ m ≤ NL)
The position vectors of the centroids of the input and output maps,
p̄I and p̄O, are given as follows:

p̄I =

∑NP
n=1 pHn +

∑NL
m=1{lsHmDs(m) + leHmDe(m)}

NP +
∑NL

m=1{Ds(m) + De(m)} (6)

p̄O =

∑NP
n=1 p′Pn +

∑NL
m=1{l′sPmDs(m) + l′ePmDe(m)}

NP +
∑NL

m=1{Ds(m) + De(m)} (7)

*2 Another solution can be used as the need arises.
*3 The search interval can be varied as the need arises.

where

Ds(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 (when lsHm = lsHm0 or lsHm = leHm0

for some m0, 1 ≤ m0 < m)
1 (when lsHm � lsHm0 and lsHm � leHm0

for any m0, 1 ≤ m0 < m)

(8)

De(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 (when leHm = lsHm0 or leHm = leHm0

for some m0, 1 ≤ m0 < m)
1 (when leHm � lsHm0 and leHm � leHm0

for any m0, 1 ≤ m0 < m)

(9)

Ds(m) and De(m) are introduced to remove the endpoints of the
control line segments overlapping with any endpoint already used
in the calculation *4. By using the above centroid positions, we
obtain the standardized position vectors as follows:

pIn = [ xIn yIn ]T = (pHn − p̄I)/d̄I for PIn

pOn = [ xOn yOn ]T = (p′Pn − p̄O)/d̄O for POn

lsIm = [ xsIm ysIm ]T = (lsHm − p̄I)/d̄I for LsIm

leIm = [ xeIm yeIm ]T = (leHm − p̄I)/d̄I for LeIm

lsOm = [ xsOm ysOm ]T = (l′sPm − p̄O)/d̄O for LsOm

leOm = [ xeOm yeOm ]T = (l′ePm − p̄O)/d̄O for LeOm

(10)

d̄I =
1

NP +
∑NL

m=1{Ds(m) + De(m)}

⎡⎢⎢⎢⎢⎢⎢⎣
NP∑
n=1

|pHn − p̄I|

+

NL∑
m=1

{|lsHm − p̄I|Ds(m) + |leHm − p̄I|De(m)}
⎤⎥⎥⎥⎥⎥⎥⎦ (11)

d̄O =
1

NP +
∑NL

m=1{Ds(m) + De(m)}

⎡⎢⎢⎢⎢⎢⎢⎣
NP∑
n=1

|p′Pn − p̄O|

+

NL∑
m=1

{|l′sPm − p̄O|Ds(m) + |l′ePm − p̄O|De(m)}
⎤⎥⎥⎥⎥⎥⎥⎦ (12)

The above advance-preparation transformation is similar to
the least-squares Euclidean transformation consisting of rotation,
translation and scale change [13]. On the other hand, as will be
mentioned in Section 3.2, an inverse transformation in which the
input and output maps are exchanged is needed in the actual cor-
rection process. In the inverse transformation, it is required that
the relative positional relationship between the input and output
maps is maintained. This relationship is maintained in the inverse
transformation of the proposed advance preparation, whereas it is
not necessarily maintained in that of the least-squares Euclidean
transformation.

2.2 Geometric Correction Based on Vector Field Analysis
This section describes the detail of the geometric correction

based on vector field analysis. We first arrange both the input (i.e.,
historical) and output (i.e., present) maps in a three-dimensional
space as shown in Fig. 1. The input map is put on the xy plane
(z = 0), whereas the output map is put on the z = 1 plane par-
allel to the xy plane. In Fig. 1, each of the control points in the
input map is connected by a straight line with the corresponding
control point in the output map. We give each connected control

*4 As will be shown in the example maps in Section 3, a control line seg-
ment is often arranged so that its endpoints (or one of its endpoints) co-
incide with those of other control line segments. To avoid overestimating
the weight of the position on which many endpoints overlap, we remove
overlapping endpoints in the calculation of the centroid coordinates by
introducing Ds(m) and De(m).
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Fig. 1 Concept of vector field analysis.

point pair a unit vector as follows:

en =
xOn − xIn

rn
i +
yOn − yIn

rn
j +

1
rn

k

= enxi + eny j + enz k (13)

rn =

√
(xOn − xIn)2 + (yOn − yIn)2 + 12

where en is the unit vector given to the straight line of the nth con-
trol point (i.e., Line PInPOn, hereafter the nth CP line) and i, j and
k are the fundamental vectors for the x, y and z axes, respectively.

Similarly, each of the endpoints of the control line segments in
the input map is connected by a straight line with the correspond-
ing endpoint in the output map as shown in Fig. 1. We give each
straight line a unit vector as follows:

esm =
xsOm − xsIm

rsm
i +
ysOm − ysIm

rsm
j +

1
rsm

k

= esmxi + esmy j + esmz k (14)

rsm =

√
(xsOm − xsIm)2 + (ysOm − ysIm)2 + 12

and

eem =
xeOm − xeIm

rem
i +
yeOm − yeIm

rem
j +

1
rem

k

= eemxi + eemy j + eemz k (15)

rem =

√
(xeOm − xeIm)2 + (yeOm − yeIm)2 + 12

where esm and eem are the unit vectors given to the straight lines
of the endpoints of the mth control line segment (i.e., Lines
LsImLsOm and LeImLeOm, hereafter the mth CLSs and CLSe lines).

We assume that the vector field F(x, y, z) shown below exists
in the three-dimensional space:

F(x, y, z) =

NP∑
n=1
w(dn(x, y, z))en +

NL∑
m=1
w(dLm(x, y, z))eLm(x, y, z)

NP∑
n=1
w(dn(x, y, z)) +

NL∑
m=1
w(dLm(x, y, z))

(16)

w(d) =
1

d q

dn(x, y, z) =
√

(xn(z) − x)2 + (yn(z) − y)2

xn(z) = xIn + aenx, yn(z) = yIn + aeny, a = z/enz

dLm(x, y, z)

=

√
{sxsm(z) + txem(z) − x}2 + {sysm(z) + tyem(z) − y}2

xsm(z) = xsIm + besmx, ysm(z) = ysIm + besmy, b = z/esmz

xem(z) = xeIm + ceemx, yem(z) = yeIm + ceemy, c = z/eemz

s =
dem(x, y, z)

dsm(x, y, z) + dem(x, y, z)

t =
dsm(x, y, z)

dsm(x, y, z) + dem(x, y, z)

dsm(x, y, z) =
√

(xsm(z) − x)2 + (ysm(z) − y)2

dem(x, y, z) =
√

(xem(z) − x)2 + (yem(z) − y)2

eLm(x, y, z) =
s
−−−−−−−−→
LsImLsOm + t

−−−−−−−−→
LeImLeOm∣∣∣∣s−−−−−−−−→LsImLsOm + t
−−−−−−−−→
LeImLeOm

∣∣∣∣
−−−−−−−−→
LsImLsOm = (xsOm − xsIm)i + (ysOm − ysIm) j + 1 · k
−−−−−−−−→
LeImLeOm = (xeOm − xeIm)i + (yeOm − yeIm) j + 1 · k

where dn(x, y, z) is the distance of the point P(x, y, z) (existing at
any position in the vector field) from the point Pn(xn(z), yn(z), z),
i.e., the intersection of the nth CP line with the plane includ-
ing P (Plane Σ in Fig. 1, parallel to the xy plane), dLm(x, y, z) is
the distance of P from the contol line segment on Σ, LsmLem *5

(Lsm(xsm(z), ysm(z), z) and Lem(xem(z), yem(z), z) are the intersec-
tions of the mth CLSs and CLSe lines with Σ, respectively),
dsm(x, y, z) and dem(x, y, z) are the distances of P from Lsm and
Lem, respectively, eLm(x, y, z) is the unit vector given to the mth
control line segment, and q is the parameter to adjust the strengh
of the weight function w(d) (d: distance of P from the point Pn,
dn, or from the line segment LsmLem, dLm). A greater value of q

assigns greater influence to the control points or the line segments

*5 Note that the above distance does not necessarily match that of P from
the closest point on LsmLem. We adopted the above distance to consider
the influence of an entire line segment. In the case that the distance from
the closest point is used, the influence of only a single point is consid-
ered.
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closer to the point P *6.
F(x, y, z) is the weighted mean of ens and eLms with the inverse

distance weight w(d), and becomes smooth everywhere when
q > 1 [14]. F(x, y, z) has a positive (i.e., non-zero) z-component
everywhere because each of the z-components of ens and eLms,
i.e., 1/rn and 1/

∣∣∣∣s−−−−−−−−→LsImLsOm + t
−−−−−−−−→
LeImLeOm

∣∣∣∣, is necessarily positive.
As a result, only one streamline of F(x, y, z) passes through any
point *7, and each streamline necessarily connects any point in the
input map (e.g., Ps(xs, ys, 0) in Fig. 1) with only one point in the
output map (e.g., Pe(xe, ye, 1) in Fig. 1) *8. The region consisting
of the intersections of the output-map plane with the streamlines
from all the points in the input map (including those other than
the control points) becomes the entire area of the corrected input
map, and any point in this area is connected with only one point
in the input map *9. The above connection can be regarded as a
one-to-one onto mapping h : I → O (I: set of all points in the in-
put map and O: set of all points in the entire corrected-map area
of the output map). When q > 1, both h and h−1 are not only con-
tinuous but also smooth because F(x, y, z) is smooth everywhere.
Consequently, h becomes a smooth homeomorphism *10.

On the other hand, consider the case that the point Ps in the in-
put map exists on a control line segment, e.g., the mth control line
segment LsImLeIm. We assume that Ps internally divides LsImLeIm

in the ratio t : s (t = ds/(ds + de), s = de/(ds + de), ds and de:
distances of Ps from LsIm and LeIm, respectively). In this case,
the distance of Ps from the line segment LsImLeIm, dLm, is zero.
Therefore, the streamline starting from Ps becomes a straight line
parallel to eLm, because the inverse distance weight w(dLm) for
LsImLeIm becomes infinite and consequently only the unit vector
eLm contributes to determining the form of the streamline. Since
the direction of eLm is identical to that of s

−−−−−−−−→
LsImLsOm + t

−−−−−−−−→
LeImLeOm,

the intersection of the above streamline with the output map, Pe,
becomes an internally dividing point of the control line segment
LsOmLeOm with the division ratio identical to that of Ps dividing
LsImLeIm. This means that the straightness of the control line seg-
ment is necessarily maintained in the output map.

As mentioned above, the mapping h simultaneously satisfies
Conditions ( a ) and ( b ) pointed out in Section 1, i.e., maintains
both the property of homeomorphism and the straightness of des-
ignated line segments. We adopt this mapping as a point loca-
tion conversion method for the geometric correction of historical
maps. A streamline of F(x, y, z) is obtained by giving a starting

*6 Although the physical dimension of w(d) varies by changing the q value,
its influence is eliminated due to the existence of w(d) in the denominator
of Eq. (16).

*7 For a smooth vector field in which no zero-vector point exists, there is
only one streamline passing through any point [8], as already mentioned
in Section 1.

*8 This is caused because the z-component of F is positive everywhere.
This means that streamlines of F never turn into the negative z-direction.
Therefore, both the input and output maps are intersected by a streamline
only once.

*9 This section describes the theoretical background of the proposed
method. Therefore, the resolution of both the input and output map is
assumed to be infinite and thereby an infinite number of streamlines are
considered here. In actual applications, image data with a finite resolu-
tion are often used. An approach to solve a problem occuring in the use
of finite-resolution image data will be mentioned in Section 3.2.

*10 The conditions to be satisfied in a homeomorphism are as follows. (1) h
is a one-to-one onto mapping and (2) h and h−1 are continuous [10].

Fig. 2 Algorithm for streamline tracing (Runge-Kutta method, M: division
number of the interval [0, 1] in the z axis).

point and solving the equation shown below [8]:

dx
Fx(x, y, z)

=
dy

Fy(x, y, z)
=

dz
Fz(x, y, z)

(17)

where Fx(x, y, z), Fy(x, y, z) and Fz(x, y, z) are the x-, y- and z-
components of F(x, y, z), respectively. From Eq. (17), two differ-
ential equations are derived as follows:

dx
dz
=

Fx(x, y, z)
Fz(x, y, z)

,
dy
dz
=

Fy(x, y, z)

Fz(x, y, z)
(18)

We numerically solve Eq. (18). First, the point location in the in-
put map, Ps(xs, ys, 0), is input as a starting point. This point is
the point to be converted into that in the output map, and has al-
ready been rotated and standardized by the advance-preparation
procedure. Next, the algorithm shown in Fig. 2 (the Runge-Kutta
method [15]) is executed. The execution is completed when the
streamline reaches the output map, i.e., the z = 1 plane. Finally,
the x- and y-coordinates at the intersection of the plane with the
streamline, xe and ye, are output. These coordinates are converted
into those of the original (i.e., unrotated and non-standardized)
present map as follows:

pPe = [ xPe yPe ]T

=

⎡⎢⎢⎢⎢⎣ cos(−θ0) − sin(−θ0)
sin(−θ0) cos(−θ0)

⎤⎥⎥⎥⎥⎦ (d̄O pe + p̄O) (19)

where pPe is the position vector of the converted point in the orig-
inal present map, PPe(xPe, yPe), and pe = [ xe ye ]T.

As for the computational complexity of the above algorithm,
that of the calculation of F(x, y, z), i.e., Eq. (16), is O(NP + NL).
On the other hand, the number of loop processing in Fig. 2 de-
pends only on the division number of the interval [0, 1] in the z

axis, M. This means that the M value can be given independently
of the parameters of the historical and present maps. As a result,
the computational complexity of the whole algorithm becomes
O(NP + NL) (or more simply, O(N) for the data size N).
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Fig. 3 Geometric correction of the model maps.

3. Results and Discussion

3.1 Overview of Experiments
This section presents the experimental results of the pro-

posed geometric-correction method based on vector field analysis
(VFA). As already mentioned in Section 1, we compare the ob-
tained results with those obtained by TIN and MLS. In TIN, the
Delaunay triangulation [16] is used to construct a triangulated ir-
regular network (no additional procedure modifying the structure
of the network is used), whereas the affine transformation is used
for local coordinate conversion in each triangle area [4].

First, simple artificial mapping models are used to compare
the performance of VFA with those of TIN and MLS. Next, the
historical map of Akita City, Japan, is used to evaluate the charac-

teristics shown in the geometric correction of an actual historical
map.

3.2 Geometric Correction of Simple Mapping Models
Figure 3 shows the results of geometric correction for the sim-

ple mapping models. The historical map consists of 8 control
points, 12 control line segments and 2 circles, and is converted
into two present maps: Maps A and B. In the experiments, the
points existing on the 12 control line segments in the historical
map (64 points for each control line segment) and those on the 2
circles (360 points for each circle) are converted into those in the
2 present maps. In addition, the inverse transformation, in which
the corrected historical maps are used as input maps and the orig-
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Fig. 4 Historical map Ushū Kubota Ōezu (representing the situation of the Kubota district (current Akita
City, Akita Prefecture, Japan) in 1828) [17].

inal historical map is used as an output map, is performed *11. In
the experiments in which TIN or MLS is used, the endpoints of
the control line segments are used as control points (overlapping
ones are removed). As for the experiments of VFA, the results of
2 cases in which the value of q in Eq. (16) is changed (q = 2 or 3)
are shown (M = 5 in both cases. The appropriateness of this M

value will be demonstrated in the latter part of this section.).
In the cases of Map A, the corrected historical maps given by

TIN and MLS show errors in the straightness maintenance of the
control line segments. On the other hand, the straightness of all
the control line segments is maintained in both the 2 corrected
historical maps given by VFA. As for the inverse transformation,
the original historical map is completely restored in TIN and the
2 cases of VFA, whereas restoration is failed in the case of MLS.

In the cases of Map B in which the configuration of the control
points and line segments is more highly deformed than Map A,
the corrected historical maps given by TIN and MLS show not
only errors in straightness maintenance but also the violation of
homeomorphism. On the other hand, no error is seen in both the
2 cases of VFA. As for the inverse transformation, the restoration
of the original historical map is succeeded in both the 2 cases of
VFA, whereas it is failed in TIN and MLS.

The above results show the advantage of the proposed VFA
method. In particular, it should be noted that VFA is more ro-
bust against a highly deformed control-point configuration than
the other two methods. This property is maintained through the
change of the parameter q. As shown in Fig. 3, the shapes of
the geographic elements (i.e., 2 circles) are slightly changed by
changing the q value. This means that users can adjust the shapes
of geographic elements to a certain extent by changing the q

*11 In the inverse transformation of TIN, the structure of the triangulated
irregular network obtained in the forward transformation is kept.

Table 1 Errors of the locations of the geographic elements (2 circles in Map
B) restored by the inverse transformation performed by VFA.

M = 2 M = 3 M = 5 M = 10

q = 2
Max 1.57 × 10−4 2.45 × 10−5 2.03 × 10−6 6.49 × 10−8

Mean 4.11 × 10−6 5.43 × 10−7 4.40 × 10−8 1.40 × 10−9

q = 3
Max 6.40 × 10−4 1.02 × 10−4 8.21 × 10−6 2.68 × 10−7

Mean 2.44 × 10−5 3.44 × 10−6 2.91 × 10−7 9.61 × 10−9

value.
As for the restoration of the original historical map in the in-

verse transformation, only VFA succeeded in all the cases. As
will be shown in the next section, the geometric correction of
a historical map is often performed using the image data of the
map. In such cases, a blank (or multiple blanks) appears inside
the image data of the corrected historical map obtained by the for-
ward transformation, due to a partial stretch caused by a highly
localized deformation of the control-point configuration. By us-
ing the procedure of the inverse transformation, we can identify
the historical-map locations corresponding to all the pixels in the
image data of the present map. As a result, the appearance of a
blank part inside the corrected historical map can be avoided. In
the above identification process, it is desirable that the correspon-
dence between the locations of the historical map and those of the
present map is uniquely determined through both the forward and
inverse transformations. VFA, which restores the original histori-
cal map in all the cases of the inverse transformation, realizes the
above unique correspondence. TIN also realizes the unique corre-
spondence only in the case that no violation of homeomorphism
occurs.

To investigate the influence of the variation of the M value (i.e.,
the division number of the z axis in the numerical streamline trac-
ing) on the accuracy of the VFA geometric correction, we cal-
culate the errors of the locations of the geographic elements in
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Fig. 5 Control points and control line segments used in geometric correction.

Fig. 6 Evaluation of homeomorphism by counting the number of grid line intersections.

the historical map restored in the inverse transformation. Table 1
shows the errors of the locations of the circles restored by the in-
verse transformation. Specifically, error values are calculated at
every point comprising the 2 circles in Map B as follows:

ek =

√
(xrk − xok)2 + (yrk − yok)2

r0
(20)

where xrk and yrk are the coordinates of the kth restored point
(1 ≤ k ≤ 720), xok and yok are those of the kth original point and
r0 is the radius of the outer circle. As shown in the table, the error
value can be kept within less than 10−5 when M ≥ 5. This means
that at least five significant digits are guaranteed when M ≥ 5 *12.
In the next section in which the geometric correction of an ac-
tual historical map is performed, we set M = 5 because positions
in the historical map used in the next section are represented by
four-significant-digit pixel numbers.

3.3 Geometric Correction of an Actual Historical Map
As mentioned above, this section presents the experimental re-

sults of the geometric correction of an actual historical map. Fig-
ure 4 shows the historical map used in the experiments. This
is the historical map Ushū Kubota Ōezu representing the situa-
tion of the Kubota district (current Akita City, Akita Prefecture,
*12 In the case that the degree of deformation is much higher than the cases

of Fig. 3, a larger M value may be needed. It can be confirmed whether
the selected M value is appropriate or not by checking the inverse-
transformation accuracy.

Fig. 7 Evaluation of line-segment straightness by using the straightness er-
ror area.

Japan) in 1828 [17] *13. The size of the image data of the map is
as follows: width: 2,006 [px] and height: 2,048 [px].

Figure 5 shows the configuration of the control points and con-
trol line segments in the historical map and that in the present
map *14. 47 control points (existing temples, shrines, bridges,
etc.) and 675 control line segments (existing roads, moats, etc.)
are used *15. The coordinates of the control points and the end-

*13 The image data of the historical map was downloaded from the web site
of Akita Prefectural Library Digital Archive [17]. This map originally
puts east on top. However, the map used in this paper, i.e., the map
shown in Fig. 4, is rotated 90 degrees clockwise to put north on top in
accordance with the current conventions in surveying. The present map
is further rotated by the direction optimization procedure mentioned in
Section 2.1.

*14 The image data of the present map was downloaded from the web site of
Geospatial Information Authority of Japan [18].

*15 Since the purpose of this paper is to solve technical problems in the ge-
ometric correction of historical maps, we do not historically validate the
selection of the control points and control line segments shown in Fig. 5.

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 8 Geometric correction of the historical map Ushū Kubota Ōezu.

points of the control line segments in the present map are deter-
mined by converting the values of latitude and longitude, obtained
from Google Map [19], into the coordinates on the plane of the
Japanese Plane Rectangular Coordinate System X [11], [20].

The historical map of Fig. 4 is corrected by TIN, MLS and
VFA. In the experiments of TIN and MLS, the endpoints of the
control line segments are used as the control points (overlapping
ones are removed). On the other hand, the procedure of inverse
transformation is adopted in the experiments of TIN and VFA to
avoid the appearance of a blank part inside the image data of the
corrected historical map. As for the experiment of MLS, we use
the procedure of forward transformation instead of inverse trans-
formation, due to the fact that MLS cannot realize the unique
correspondence between the locations of the historical map and
those of the present map, as already mentioned in Section 3.2. In
this case, the information on the blank parts inside the corrected
historical map is given by nearest neighbor interpolation [21].

To evaluate whether the correction process is a homeomor-
phism or not, we draw a grid on the historical map as shown in
the leftmost map of Fig. 6 *16. When the correction process is

*16 In TIN and VFA, only the grid lines are converted by the forward-
transformation procedure, because their locations in the present map can-
not be known in advance.

a homeomorphism, no additional intersection between the grid
lines appears in the corrected historical map. In the cases of
TIN and MLS shown in Fig. 6, both the corrected historical maps
obtained by these methods give multiple additional intersections
(TIN: 15 and MLS: 20), whereas both the two corrected historical
maps obtained by VFA give no additional intersection. In other
words, only VFA can maintain the property of homeomorphism
for the historical map of Fig. 4.

On the other hand, to evaluate whether the straightness of the
control line segments is maintained or not, we introduce the con-
cept of the straightness error area shown in Fig. 7. The straight-
ness error area is an area of the region between the original con-
trol line segment in the present map and a curve (or a poly-line)
obtained by applying a correction method to the corresponding
control line segment in the historical map. When the straight-
ness is maintained, the value of the total straightness error area
becomes zero.

In the cases of TIN and MLS shown in the upper part of Fig. 8,
the corrected historical maps show errors in the straightness main-
tenance of the control line segments. The total straightness error
areas are 0.042 km2 for TIN and 0.152 km2 for MLS, i.e., non-
zero values. In addition, undesirable phenomena such as the dis-
continuity of a river and the disappearance of a geographic ele-

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

ment, caused by the violation of homeomorphism, are seen in the
cases of TIN and MLS. As for the cases of VFA shown in the
lower part of Fig. 8, on the other hand, the total straightness error
area is zero in both the cases. This means that the straightness is
maintained in both the corrected historical maps given by VFA.
However, a blurred part is seen in the q = 2 case. The blurring
is suppressed in the q = 3 case. This suggests the possibility that
inappropriate phenomena that appeared in a certain condition are
eliminated by adjusting a user parameter such as the q value.

3.4 Discussion
In both the case of the simple mapping models and that of the

historical map Ushū Kubota Ōezu, the proposed VFA method
showed more excellent characteristics than those of TIN and
MLS in maintaining both the property of homeomorphism and
the straightness of designated line segments. In addition, it was
also shown that only VFA gave a unique correspondence between
the locations of the historical map and those of the present map
through the forward and inverse transformation in every case.
This property provides advantages not only in avoiding the ap-
pearance of a blank part inside the image data of the corrected
historical map, but also in examining the links between the geo-
graphic situation in a particular age and that in the present day in
detail.

On the other hand, VFA has a disadvantage in calculation
time. The calculation times for the 1,003-px-width 1,024-px-
height part in Ushū Kubota Ōezu are as follows: TIN: 966 [s],
MLS: 1,498 [s] and VFA (q = 2, M = 5): 46,583 [s] (i.e., over
12 hours) (CPU: Intel Core i3-350M). To resolve this issue, the
introduction of an additional effective technique, e.g., a parallel
computing technique, etc. is required. Fortunately, it is possible
to apply a parallel computing technique to VFA, because stream-
line tracing for each pixel in the image data of the present map is
performed independently of other pixels.

4. Conclusion

The main contribution of this paper is that the two major
conditions required for the geometric correction of historical
maps (maintaining both the property of homeomorphism and the
straightness of designated line segments) are simultaneously sat-
isfied by the proposed VFA method. The experimental results
obtained by VFA show more excellent characteristics than those
obtained by the other conventional methods. This paper also sug-
gests the adjustability of VFA to obtain geographic elements with
a more preferable state, e.g., a more preferable shape with no
blurred part. On the other hand, the disadvantage that VFA takes
a very long calculation time is also pointed out. Additional re-
search is required to resolve this issue.
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