VI RV T 122-5
(1999. 3. 18)

Sliéing Concurrent Java Programs

Jianjun Zhao
Department of Computer Science and.Engineering
Fukuoka Institute of Technology =
zhao@cs.fit.ac.jp

Abstract

Although many slicing algorithms have been pro-
posed for object-oriented programs, no slicing algo-
rithm has been proposed which can be used to han-
‘dle the problem of slicing concurrent Java programs
correctly. In this paper, we propose a slicing algo-
rithm for concurrent Java programs. To slice con-
current- Java programs, we present a dependence-
based representation called Multithreaded Depen-
dence Graph (MDG), which extends previous de-
pendence graphs to represent concurrent Java pro-
grams. Finally, we show how static slices of a con-
current Java program can be computed efficiently
based on its MDG.

1 Introduction

Java'is a new object-oriented (OQ) program-
ming-language and has achieved widespread ac-
ceptance because it emphasizes portability. Java
has multithreading capabilities for concurrent pro-
gramming.. To provide synchronization between
asynchronously running threads, the Java language
and runtime system uses monitors. Because of the
_ nondeterministic behaviors of concurrent Java pro-
grams, predicting, understanding, and debugging a
concurrent Java program is more difficult than a se-
quential OO program. As concurrent Java applica-
tions are going to be accumulated, the development
of techniques and tools to support understanding,
debugging, testing, maintenance, complexity mea-
surement of concurrent Java software will become
an-important issue. .
Program slicing, originally introduced by Weiser
- [23], is a decomposition technique which extracts
program elements related to a particular compiuta-
tion. A program slice consists of those parts of a
“program that may directly or indirectly affect the
values computed at some program point of inter-
est; referred to as a slicing criterion. The task to

compute program slices is called program slicing.
* Program ‘slicing has been studied primarily in
the context of procedural programming languages
[21]. Insuch languages, slicing is typically pér-
formed by using a control flow graph or a depen-
dence graph [7, 11, 9, 18]. . Program slicing has

many applications in software engineering activi-
ties such as program understanding [8], debugging
[1], testing [2], maintenance [10], reuse [17], reverse
engineering [3], and complexity measurement [18].

Recently, as OO software becomes popular, re-
searchers have applied program slicing to OO pro-
grams to handle various OO features such as classes
and objects, class inheritance, polymorphism, dy-
namic binding [5, 6, 13, 14, 15, 22}, and concur-
rency [24]. However, existing slicing algorithms
for OO programs can not be applied to concurrent
Java programs straightforwardly to obtain correct
slices due to specific features of Java concurrency
model. In order to slice concurrent Java programs
correctly, we must extend these slicing techniques
for adapting concurrent Java programs.

In this paper we present the Multithreaded De-
pendence Graph (MDG) on which static slices of
concurrent Java programs can be computed effi-
ciently. The MDG of a concurrent Java program
consists of a collection of thread dependence graphs
each representing a single thread in the program,

“and some special kinds ‘of dependence arcs to rep-

resent inter-thréad synchronization and communi-
cation. Once a concurrent Java program is rep-
resented by its MDG, the slicing of the program
can be computed by solving a vertex reachability.
problem in the graph. : :

The rest of the paper is organized as follows.
Section 2 briefly introduces the concurrency model
of Java. Section 3 discusses some related work
and explains why existing slicing techniques can
not handle concurrent Java programs: correctly.

~ Section 4 presents the multithreaded dependence

graph for concurrent Java programs. Section 5
shows how to compute static slices based on the
graph. Concluding remarks are given in Section 7.
2 Concurrency Model in Java ,
The Java language support concurrent program-

ming.” The Java language and runtime system

support thread synchronization through the use of

‘monitors. In general, a monitor is associated with

a’specific data item (a condition variable) and finc-
tions 'as alock on that data. When a thread holds



cal clags Producer axtends Thread {
2 1

3 private int number;

ot public Producer(Cubbydole o, int mumber) { 37
85 cubbyhole = ¢; 838
6 this.nunber = number; Be3ds

40
841

&2
843

}
public void run() {
89 nt 105
while (1<10) -{
cubbyhole.put (1) . wdd
System.out.println(“Producer §° + w45
this.ouaber + "put:e + 1) A
sleep( (ubt) (Math.xandom() +100)); wad?
leiel; nde
15 ) ad9
16 3 s0
7y 851
clags Conpumer extends Thread {
19 1e;
20 privats int number;
public Consumer(Cubbyfiols ¢, int number). (
" cubbyhole = cj
this nusher = numbor;

55 )

24 ¥
public void run()
iat valus = 0;
int 4=0;
while (4<10) {
valua = cubbybole.get(); 63
gystem.out.printin(*Consumar $* + 64
" -this.number + “"get:® ¢ value);
slaep( (int) (Kath.random()*100));
1sisl;
33 }
38 b :

ce36 class CubbyHole {

private int seqs
privete booleen available = fals
public symchronized int get() {

}

while (available == false) {
walt()s

)

available = falee;

notity()s -

raturn s6qs

public synchronized int pu.t(sae v

}

while (available o= true) {
wait()s

}

sag « value;

available = true;

notify()s

class vtoducaxcon-mit {
public static void main(otringl]

CubbyHole ¢ = new CubbyHols()
Producer pl = new Producer(c,
Consumer ¢1 = new Consumer(c,
pl.start();
cl.ataxt{ls

Figure 1: A concurrent Java program.

the monitor for some data item, other threads are
locked out and cannot inspect or modify the data.
The code segments within a program that access
the same data from within separate, concurrent
threads are known as critical sections. In the Java
language, you may mark critical sections in your
program with the synchronized keyword. Gener-
ally, critical sections in Java programs are meth-
ods. So you can mark a method as synchronized
for synchronizations and communications.

For execution synchronization among different
threads, Java provides a few methods of Object
class, like wait(), notify(), and notifyall().
Using these operations and different mechanism,
threads can cooperate to complete a valid method
sequence of the shared object.

Figure 1 shows a simple concurrent Java pro-
gram that -implements the Producer-Consumer
problem. The program creates two threads
Producer and Consumer. The Producer gener-
ates an integer betwéen 0 and 9 (inclusive), and
stores ‘it in- a CubbyHole object. The Consumer,
being ravenous, consumes all integers from the
CubbyHole (the exact same object into which the
Producer put the integers in the first place) as
quickly as they become available. )

. Threads Producer and Consumer in this exam-
ple share data through a common CubbyHole ob-
ject. And you will note that neither the Producer

nor the Consumer makes any effort whatsoever to
ensure that the Consumer is getting each value
produced once and only once. The synchroniza-
tion between these two threads actually occurs at
a lower level, within the get and put methods of
the CubbyHole object.

Race condition in the producer-consumer exam-
ple are prevented by having the storage of a new in-
teger into the CubbyHole by the Producer be syn-
chronized with the retrieval of an integer from the
CubbyHole by the Consumer. The Consumer must
consume each integer exactly once.

The activities of the Producer and Consumer
must be synchronized in two ways. First, the
two threads must not simultaneously access the
CubbyHole. A Java thread can prevent this from
happening by locking an object. When an object
is locked by one thread and another thread tries
to call a synchronized method on the same ob-
ject, the second thread will block until the object
is unlocked. Second, the two threads must do some
simple coordination. That is, the Producer must
have some way to indicate to the Consumer that
the value is ready and the Consumer must have
some way to indicate that the value has been re-
trieved. The Thread class provides a collection of
.methods: wait(), notify(), and notifyAll() to
help threads wait for a condition and notify other
threads of when that condition changes.



3 Program Slicing for OO Programs

As an essential analysis technique for decom-
posing programs, program slicing has been widely
studied in the literatures.. In this section, we re-
view some related work on program slicing which
directly or indirectly influence our work on slicing
concurrent Java programs, and explain why these
slicing algorithms can not be applied to concur-
rent Java programs. Although program slicing has
been widely studied in the context of procedural
programming languages (for a detailed survey, see
[21]) program slicing of OO software is just start-

ing, and to the best of our knowledge, the work
presented in this paper is the first time to apply

and extend previous slicing techniques to concur-
rent Java programs.

Larsen and Harrold [14] proposed a static slic-
ing algorithm for sequential OO programs. They
extended the System Dependence Graph (SDG)
which was first proposed to handle interprocedu-
ral slicing of sequential procedural programs [11] to
the case of sequential OO programs. Their SDGs
can be use to represent many OO features such as
classes and objects, polymorphism, and dynamic
binding. Since the SDGs they compute for sequen-
tial OO programs belong to a class of SDGs de-
fined in [11], they can use the two-pass slicing al-
gorithm introduced in {11} for sequential procedu-
ral programs to compute slices of sequential OO
programs. Chan and Yang [5] adopted a similar
way to extend the SDGs for sequential procedural
programs [11] to sequential OO programs, and use
the extended SDG for computing static slices of se-
quential OO programs. On the other hand, Krish-
naswamy [13] proposed another approach to slicing
sequential OO programs. He used a program de-
pendence representation called the Object-Oriented

Program Dependency Graph (OPDG) to represent.

sequential OO programs and compute polymor-
phic slices of sequential OO programs based on the
OPDG. Chen et al. [6] also extended the program

- dependence graph to the Object-Oriented Depen-
dency Graph (ODG) for modeling sequential OO
programs. Although these representations can be
used to represent many features of sequential OO
programs, they lack the ability to represent con-
currency. Therefore, the slicing algorithms based
on these representations can not compute correct
static slices for concurrent Java programs.

In the meantime, slicing OO program with con-
currency has been also considered. Zhao et al.
[24] presented a dependence-based representation
called the System Dependence Net (SDN) to repre-
sent concurrent OO programs (especially Compo-
sitional C++ (CC++) programs [4]). In CC++,

synchronization between different threads is real-

ized by using a single-assignment variable. Threads
that share access to a single-assignment variable
can use that variable as a synchronization element.
Their SDN for CC++ programs is a straightfor-
ward extension of the SDG proposed by Larsen
and Harrold [14] for sequential OO programs, and
therefore:cah be used to represent many OO fea-
tures in a concurrent OO program. However, the
method they used to handle concurrency has some
problems when applied to concurrent Java Pro-
grams.

First, the concurrency models of bC++ and
Java is essentially different. While Java supports
monitors and some low-level thread synchroniza-
tion primitives, CC++ uses a single-assignment
variable to the thread synchronization. This dif-
ference leads to different sets of concurrency con-

" structs in both languages, and therefore requires
"different techniques.

Second, the construction of the SDN in [24] sim-
ply copies the construction method of the SDGs for
sequential OO programs, and did not consider the
multithread features in a concurrent OO program.

* This, among other things, may lead to incorrect

static slice when apphed to concurrent Java pro-
grams.

4 A Program Dependence Model for
Concurrent. Java Programs '

Generally, a concurrent Java program consists
of a number of threads each having its own con-
trol flow and data flow. These flows are not inde-
pendent because there exist inter-thread synchro-
nizations among multiple control flows and inter-
thread communications among multiple data flows
in-the program. To represent concurrency issues in
Java programs, we present a dependence-based rep- -
resentation called the Multithreaded Dependence
Graph (MDG). The. MDG of a concurrent Java
program is composed of a collection of TDGs each .
representing a single thread in the program, and, -
some special kinds of dependence arcs to represent
thread interactions between different threads. The
construction of the MDG for a, complete concur-

-tent Java program has two phases: we first con-

struct the TDG for each single thread, and then
combine the TDGs for all threads in the program
at synchronization and communication points by

.adding some special kinds of dependence arcs be-

tween these points.

4.1 Thread Dependence Graphs for Single
Java Threads :

The Thread Dependence Graph (TDG) is used
to represent a single Java thread in a concurrent
Java program. it is similar to the SDG presented

. by Larsen and Harrold [14] for modeling a sequen-



tial OO program. Since execution behavior of a
thread in a concurrent Java program is similar to
that of an sequential OO program: We can use the
similar technique used by Larsen and Harrold for
constructing the SDGs of sequential OO programs
to construct the TDG. The detailed information for
building the SDG for a sequential OO program can
be found in [14]. In the following we give a brief
description of construction method.

The TDG of a thread is an arc-classified digraph
that consists of a number of method dependence
graphs each representing a method that contributes
to the implementation of the thread, and some spe-

cial kinds of dependence arcs to represent direct -

dependencies between a call and the called method
and transitive interprocedural data dependenciesin
the thread. Each TDG has a unique vertex called
thread entry vertez to represent the entry into the
thread.

The Method Dependence Graph :of a method
is an arc-classified digraph whose vertices repre-
sent statements or control predicates of conditional
branch statements in the method, and arcs rep-
resent two types of dependencies, that is, control
‘dependence and data dependence. Control depen-
dence represents control conditions on which the
execution of a statement or expression depends in
‘the method. Data dependence represents the data
flow between statements in the method. For each
method dependence graph, there is a unique ver-

tex called method entry vertex to represent the en-.

try into the method. For example, me39 and me47
in Figure 2 are method entry vertices for methods
get () and put ().

In order to model parameter pa.ssmg between
methods in a thread, each method dependence
graph also includes formal parameter vertices and
actual parameter vertices. At each method en-
try there is a formal-in vertez for each formal pa-
rameter of the method and a formal-out vertez for

each formal parameter that may be modified by the

method: At each call site in the method, a call ver-
tezis created for connecting the called method, and
there is an ectual-in vertéz for each actual parame-
ter-and an actual-out vertez for each actual param-

“eter that may be modified by the called method.
Each formal parameter vertex is control-dependent
on the method entry vertex, and each actual pa-
rameter vertex is control-dependent on the call ver-
tex.

- Some special kinds of dependence arcs are cre-
ated for combining method dependence graphs for
all methods in a thread in order to form the whole
TDG of the thread. v

e A call dependence are represents call relatlon-

ships between a call method and the called

method, and is created from the call site of
a method to the entry vertex of the called
method.

® A Parameter-in dependence arc represents pa-
rameter passing between actual parameters
and formal input parameter (only if the formal
parameter is at all used by the called method).

e A Parameter-out dependence arc represents
parameter passing between formal output pa-
rameters and actual parameters (only if the
formal parameter is at all defined by the
called method). In addition, for methods,
parameter-out dependence arcs also represent
the data flow of the return value between the
method exit and the call site.

Figure 2 shows two TDGs for threads Producer
and Consumer. Each TDG has an entry vertex
that corresponds to the first statement in its run()
method. For example, in Figure 2 the entry vertex
of the TDG for thread Producer is te8, and the
entry vertex of the TDG for thread Consumer is

. te25.

4.2 Multithreaded Dependence Graphs for
Concurrent Java Programs

The MDG of a concurrent Java program is an
arc-classified digraph which consists of a collection
of TDGs each représenting a single thread, and
some special kinds of dependence arcs to model
inter-thread synchronization and inter-thread com-
munication between different threads in the pro-
gram. There is an entry vertex for the MDG rep-
resenting the start entry into the program, and
a method dependence graph constmcted for ‘the
main() method.

To capture the synchronization between thread
synchronization statements and communication
between shared objects in different threads, we de-
fine some special kinds of dependence arcs iri the
MDG. A wait vertex is a vertex that denotes a
wait () method call in a thread. A notify vertex is
a vertex that denotes a notify() or notifyall()
method call in a thread.

o Synchronization dependence arc captures the

- dependence relationships due to inter-thread
synchronization. Informally, a statement u
in one thread is synchronization-dependent on

_a statement v in another thread if the start
and/or termination of the execution of u di-
rectly determinates the starts and/or termi-

- ‘nation of the execution of v through an inter-
thread synchronization.



Thread (Producer)

Thread (Comsumer) -

£1_in: cubbyholeecubbyhole_in’
£1_out: cubbyhole_ocutmeéubbyhole £7_in: valuesvalue_in
£2_in: this.number=thisnumber_in al_in: value_inei
£2_out: this.number_outethis.nwmber o3 in, o inee

£3_in: cwc_in a3_in: numbar_in=l
£4_in: numbaer=number_in
£5_in: seqeseq_in

£6_in: availablewavailable_in

£6_out: available_out=available

a¢_out: cubbyhola=cubbyhola_out
aS_in: this.number_insthis_number
aS_out: this.number=thig.numbar_out

call dependence arc

Figure 2: The TDGs for threads Producer and Consumer.

A synchronization dependence arc is created
from a vertex u to a vertex v if u is a notify or:

notifyall vertex in thread t1 and v is a wait ver-
tex in thread t2 for some thread object o, where
threads t1 and t2 are different. Note that in the
case of that there is more than one thread waiting
for the notification from some thread t, we cre-
ate synchronization dependence arcs from the no-
tify vertex of t to each wait vertex of the other
threads respectively. For example, in the program
of Figure 1, methods put() and get() use Java
Object’s notify() and wait() methods to coop-
erate their activities. In this way, each seq placed
in the CubbyHole by thread Producer is retrieved
onceand only once by thread Consumer. Therefore,
there exist synchronization actions between weit ()
method call in thread Producer and notify()
method call in Comsumer which are sharing one ob-
ject CubbyHole. This implies that synchronization
dependencies may exist between these synchroniza-
tion points, that is, between notify () method call
in thread Producer and wait() method call in
thread Consumer, and between notify() method
call. in thread Consumer and wait() method call
in thread Producer As a result, synchronization
dependence arcs can be. created from s53 to s41,
and s44 to s49 as showed in Figure 3.

.o Communication dependence arcrepresents de-

pendence relationship due to inter-thread
communication. Informally a statement u
in one thread is directly communication-
dependent on a statement v in another thread
if the value of a variable computed at u has
direct influence on the value of a variable com-
puted at v through an mt;er-thread communi-
cation. .

Note that_in the case of that there is more than
one thread waiting for the notification from some
thread t, and there is an attribute a shared by these

~threads, we create communication dependence arcs
" from each attribute variable a in each statement of

the threads to the statement containing the vari-
able ain thread t respectively.
For example, in the program of Figure 1, meth-

“ods put () and get() use Java Object’s notify()

and wait() methods to cooperate their activities.

In this way, each seq placed in the CubbyHole by
-the Producer is retrieved once and only once by

the Consumer. By analyzing the source code we

know that there exist inter-thread communication

between statement s51 in thread Producer and
statement s45 in Comsumer which shares variable .
seq. This implies that communication dependence
may exist between statements s51 and 845. Sim-

-ilarly, communication dependencies may also exist
- between statements s51 and s45, s43 and s48. As



£1_in: cubbyholescubbyhole_in  £6_out:
£1_ouc:. cubbyhole_out=cubbyhole £7_
£2_in: this.numbers=thisnumber_inal .
£2_out: this.number_owt=

cubbyhole_out
£a_in mBer mnumer_in this.number_in=this_nunber
£S_in: seg=seq in

£6_in: mvailable=available.in

as_in: -
a5_out: this.number=this.number_OUE Larameter Qependence arc

CTasrimerbarshin Spendence arc

—— e
Control dependence arc .
symehs endence arc

. -
communica. v ion deperfance mrc

Figure 3: The MDG of a concurrent Java program in Figure 1.

a result, communication dependence arcs can be
created from s52 to s40, s51 to s45, and s43 to
548 as showed in Figure 3.

Figure 3 shows the MDG for the program in Fig-
ure 1.

5 Slicing Concurrent Java Programs
~Our purpose for constructing the MDG of a con-
current Java program is to use it for computing
static slices of the program. In this section, we de-
fine some notions about statically slicing of a con-
current Java program, and show how to compute
static slices of concurrent Java programs based on
the MDG.

A static slicing criterion for a concurrent Java
program is a tuple (s,v), where s is a statement
in the program and v is a variable used at s, or'a

method call called at s. A static slice SS(s,v) of a

“concurrent Java program on a given static slicing
criterion (s,v) consists of all statements in the pro-
gram that possibly affect the value of the variable
v at s or the va.lue returned by the method call' v
at s.

Since the MDG proposed for a concurrent Java
program can be regarded as an extension of the
SDGs for sequentlal 00 programs in [14] and pro-
cedural programs in [11], we can use the two-pass
slicing algorithm proposed in [11, 14] to compute
static slices of a concurrent Java program based
on the MDG. In’ the first step, the algorithm tra-
verses backward along all arcs except parameter-
out arcs, and set marks to those vertices reached
in the MDG, and then in.the second step, the algo-
rithm traverses backward from all vertices having



marks during the first step along all arcs except,. call
and parameter-in arcs, and sets marks to reached
vertices in the MDG. The slice is the union of the

* vertices of the MDG have marks during the first
and second steps. Similar to the backward slic-
ing described above, we can also apply the forward
slicing algorithm [11] to the MDG to compute for-
ward slices of concurrent Java programs.
3 shows a backward slice which is represented in
shaded vertices and computed with respect to the
slicing criterion (s37, seq).

In addition to slicing a complete concurrent Java

program, we can also perform slicing on a single
Java thread independently based on its TDG. This
may be helpful for analyzing a single thread which
is not involved in inter-thread synchromzatlon and
communication.

A static slicing criterion for a thread in a con-

current Java program is a tuple (s,v), where s is a
statement in the thread and v is a variable used at
s, or-a method call .called at s. A static thread slice
SS(s v) of a concurrent Java program on a given
static slicing criterion (s,v) consists of all state-
ments in the thread that possibly affect the value
of the variable v at s or the value returned by. the
method call v at s. ,
Similarly, we can use the two-pass slicing algo-
rithm proposed in [11, 14] to compute static thread
slices of a thread in a concurrent Java program.

6 Cost of Constructing the MDG

The size of the MDG is critical for applying it to
the practical development environment for concur-
rent Java programs. In this section we try to pred-
icate the size of the MDG based on the work done
by Larsen and Harrold {14] who gave an estimate of
the size of the system dependence graphs (SDGs)
of sequential OO programs.
the MDG is similar to an SDG of a sequential OO

‘program, we can apply their approximation here to
estimate the size of the TDGs of threads, and then
combine the results to form the whole cost of the
MDG of a concurrent Java program.

" Table 1 lists the variables that contribute to the
size of a TDG. We give a bound on the number
of parameters for any method (Param Vertices(m)),
and use this bound to compute upper bound on
the size of a method (Size(m)). Based on the
Size(m) and the number of methods Methods in
a single thread, we can compute the upper bound
Size(TDG) on the number of vertices in a TDG in-
cluding all classes that contribute to’ the size of the
thread.:

- ParamVertices(m) =
ClassVar

Figure

Since each TDG of

- Params + Ob]ectVar +

Size(m) = O(Vertices * CallSites*

(1 + TreeDepth = (2 x ParamVertzces)) + 2 x

ParamVertices)

Size(TDG) = O(Size(m) * Methods)

Based on the above result of a single thread, we
can compute the upper bound on the number of
vertices Size(MDG) in an MDG for a complete con-
current Java program including all threads.

Size(MDG) = vk, Szze(TDG )

Note that Size(MDG) provides only a rough up-
per bound on the number of vertices in an MDG. In
practice an MDG may be considerably more space
efficient.

7 Concludmg Remarks

In this paper we presented the Multzthrea.ded De-
pendence Graph (MDG) on which static slices of
concurrent Java programs can be computed effi-
ciently. The MDG of a concurrent Java program

.consists of a collection of thread dependence graphs

each representing a single thread in‘the program,
and some special kinds of dependence arcs to rep-
resent inter-thread synchronization and communi-
cation. Once a concurrent Java program is repre-
sented by its MDG, the slicing of the program can
be computed by solving a vertex reachability prob-
lem in the graph. Although here we presented the
approach in term of Java, we believe that many
aspects of our approach are more widely applica-
ble and could be applied to slicing of programs
with a monitor-like synchronization primitive, i.e.,
Ada95’s protected types. Moreover, in order to de-
velop a practical slicing algorithm for concurrent
Java programs, some specific features in Java such
as-interfaces and packages must be considered. In
[25], we presented a technique for constructing a
dependence graph for representing interfaces and
packages in sequential Java programs. Such a tech-
nique can be used directly for representing inter-
faces and packages in concurrent Java programs.

Now we are developing a slicing tool using .
JavaCC [20], a Java parser generator developed by
Sun Mlcrosyste.,, to automatically construct MDGs
of concurrent Java programs. We are also imple-
menting an MDG-based shcer for concurrent Java
programs.

References
[1] H. Agrawal, R. Demillo, and E. Spafford, “Debugging
- with Dynamic Slicing -and Backtracking,” Softuiare-
Practice and Ezperience, Vol.23, N06 pp 589-616,
1993.

[2] S. Bates, S. Horwitz, “Incremental Program Test-
ing Usmg Program Dependence Graphs,”  Conference
Record of the 20th Annial ACM SIGPLAN-SIGACT
Symposium of Principles of Programming Languages,



_Table 1 Parameters Whlch contrxbute to the size of a TDG
Vertices Large number of statements in a smgle method
Arcs Large number of arcs in a single method
Params Targest number of formal parameters for any method
Class Var Targest number of class variables in a class
ObjectVar Targest number of instance variables in a class
CallSites ] Largest number of call sites in any method
TreeDepth " Depik of inheritance tree determining number of possible indirect call destmatlons
Method Number of methods

' pp.384-396, Charleston South Cahforma, ACM Press,

3]

14

5

_—

1993,

J. Beck and D. Eichmand, “Program and Intetface
Slicing for Reverse. Engineering,” Proceeding of the
15th International Conference on Software Engineer-
‘ing, pp-509-518, Baltimore, Maryland, IEEE Com-
puter Society Press, 1993.

P. Ca.rhn M. Chandy and C. Kesselman, “The Compo-
sitional C’++ Language Definition,” Techmcal Report
CS-TR-93-02, Department of Computer Science, Cali-
fornja Institute of Technology, 1993.

J.T. Chan and W, Yang, “A program slicing system for
Object-Oriented programs,” Proceedings of the 1996

. International Computer Symposium, Taiwan, Decem-

ber 19-21, 1996.

[6].

7

8l

i

[10]

J. L. Chen, F. J. Wang, and Y. L. Chen, “Slic-
ing Object-Oriented Programs,” - Proceedings - of ‘the
APSEC’97, pp.395-404, Hongkong, China, December

-1997.

J. Cheng, “Shcmg Concurrent Programs — A Graph-

‘Theoretical Approach,” in P. A. Fritzson (Ed.), “Auto-

mated and. Algonthmlc Debugging, AADEBUG '93,”
Lecture Notes in Computer Science, Vol.749, pp.223-
240, Sprmger-Verlag, 1993.

A. De Lucia, A. R Fasolino, . and-M. Munro, “Under-
standing function behaviors through program slicing,”
Proceedings of the Fourth Workshop on Program Com-
prehension, Berlin, Germany, March 1996.

J.Ferrante, K.J.Ottenstein, J.D. Wa.rren, . “The "Pro-
gram Dependence Graph and Its Usein Optimization,”
ACM Transaction on Programmmg Language and Sys-
tem, Vol 9, No.3, pp. 319«349 1987.

K. B. Ga.llagher and J. R. Lyle “Using Program Slicing
in Software Maintenance, "IEEE Transaction on Soft-

" ware Engmeemng, Vol.17, No.8, pp. 751 761, 1991.

1]

[12}

[13]

S. Horwitz, T. Reps and D. Bmkley, “Interprocedural
Slicing Using Dependence Graphs,” ACM Transaction
on Programming Language and System, Vol.12, No. 1

pp.26-60, 1990.

]- B. Korel, Progra.m Dependence Graph in Static Pro-
gram Testing,” Information Processing Letters, Vol.24,
pp-103-108, 1987.

A. Krishnaswamy, ' “Program Slicing: -An Applica-
tion of Object-Oriented Program Dependéncy.Graphs,”

. Technical Report TR94-108, Department of Computer
. .Science; Clemson University, 1994.

(14

{15]

{16]

17

- (18]

[19]

[20]
1]

(221

{23

{24]

L. D. Larsen and M. J Harrold “Slwmé Object-

" Oriented Software,” Proceeding of the 18th Interna-

tional Conference on Software Engineering, German,

March, 1996.

R. C. H. Law and R: B. Maguire, “Debugging of Object-
Oriented Software,” Proceeding of the 8th International

. Conference on Software Engineering end Knowledge

Engineering, pp.T7-84, June 1996.
B. A. Malloy and J. D. McGregor, A. Krishnaswamy,

-and M. Medikonda, “AN Extensiblesible Program Rep-

resentation for OO Software,” ACM Sigplan Notices,
Vol.29, No.12, pp.38-47, 1994.

J. Q. Ning, A. Engberts, and - W. Kozaczynski, “Au-
tomated Support for Legacy Code Understanding,”
Commaunications of ACM, Vol.37, No.5, pp.50-57, May
1994.

K. J. Ottenstein and L. M. Ottenstein, “The Program
Dependence Graph in a software Development Envi-
ronment,” ACM Software Engineering Notes, Vol.9,
No.3, pp.177-184, 1984.

T. Reps; S. Horwitz, M. Sagiv, and G. Rosay, “Speed-
ing Up slicing,” Proceeding of Second ACM Conference
on Foundations of Software Engmeermg, pp. 11 20, De-
cember 1994.

Sun Microsystems, http://www.sunt‘est,cém/JﬁvaCC.

F. Tip, “A Survey of Program’ Slicing- Techniques,”
Journal of Programming Languages, Vol3 No.3,
pp.121-189, September, 1995." . ;

F. Tip, J. D. AChoi, J. Field, and G. Ramalingam
“Slicing Class Hierarchies in C++,” Proceedings of the
11th Annual Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, 2.8 179-
197, October, 1996.

M. Weiset, “Program Slicing,” IEEE Transaction on
Software Engineering, Vol.10, No.4, pp.352-357, 1984. -

J. Zhao,
Concurrent Object-Oriented -Programs,”

J. Cheng, and K. Ushijima, “Static Slicing of
Proceedings

, of the 20th IEEE Annual International Computer Soft-

| 25]:

ware and Applications Conference, pp.312-320, August
1996, IEEE Computer Society Press.

J. Zhao, “Applymg Program Depeudence Analysw to
Java Software, Proc. Workshop on Software Engineer-

_-ing and Database Systems, 1998 International Com-

puter Symposium, pp.162-169, Tainan, TAIWAN De«

_cember 1998.



