
A Representation of Tree Matching and Rewriting for
Model Transformation

Yuki Hirano1,a) Nobuhiko Ogura1,b)

Abstract: This study proposes a simple representation of tree processing for model transformation. System develop-
ment with model transformation often processes the definition part of behavior and scope in the model. Even though
models are typically represented by graphs, in such cases , tree processing is required. However, the notation of tree
processing tends to be complicated because of the problem that recursion and complex conditional branching are re-
quired. To reduce such difficulty, we propose a simplified representation of tree bonding, constructing and matching
for model transformation. With these attempts, tree processing can be written in short notation like processing to other
data structures such as strings or lists. Also, that improves the efficiency and maintainability of model transformation.

Keywords: Tree rewriting, Model transformation, Tree searching, Tree data structure, Model-Driven Development

1. Introduction
Model transformation is effective for consistent and traceable

development and may also be used in model-driven development
for embedded systems. System development with model trans-
formation often requires processing behavior and scope written
in the model. There are cases where it becomes necessary to pro-
cess the tree in the model transformation, even though the model
is typically represented by a graph. For example, the syntax tree
of the action description in the action language and the scope tree
that defines the visible range of the scope are the trees described
in the model. In the model transformation for these models, it
is necessary to process the tree data structure. However, the no-
tation of tree processing tends to be complicated because many
tree processing requires scanning of trees using recursion to adapt
complex tree structure.

Therefore, we propose a representation of the tree reconnection
process for tree rewriting. Moreover, our representation provides
tree construction and matching, which are required for many tree
processing including tree connection. These attempts allow the
processing of trees to be written short and intuitive form. We
implemented the proposed method and tried that it could process
trees. In the future, we will confirm that these functions are ef-
fective for other typical model processing. Moreover, we aim to
provide these functions as a library to assist model transforma-
tion.

In the future, the tree processing by the proposed method can
be represented by a similar notation as other data structures such
as strings and lists. This attempt aims to contribute to improv-
ing the efficiency and maintainability of model transformation.
Furthermore, we will study matching based on both paths and
patterns, and matching patterns that specialize in extracting in-

1 Tokyo City University Yokohama Campus, 3-3-1, Ushikubonishi,
Tsuzuki-ku, Yokohama-shi, Kanagawa, Japan

a) g2183128@tcu.ac.jp
b) ogura@tcu.ac.jp

formation. As future issues, it is necessary to study pattern rep-
resentation in matching and an interface suitable for tree connec-
tion. We will also consider a method for quantitatively evaluating
that the proposed method contributes to reducing the problem of
model transformation.

2. Tree Processing Representation for Tree
Bonding

First, as preliminary of connection processing, we explain tree
construction and tree matching. After that, the connection pro-
cess is explained.

2.1 Subtree Generation
Tree processing such as matching and insertion requires quick

construction of subtree. However, the notation of construction
is complicated even for small subtree. Therefore, we propose a
shorter notation that can represent tree construction. In the pro-
posed notation, the following symbols (i) to (vii) are used. (i) >. . .
The left side is the parent node on the right side (ii) +. . . Both
sides are child nodes of the same parent. (iii) #. . . Define the
value of the node attribute. (iv) {}. . . Specify the attribute name.
(v) (). . . The bound parts are preferentially combined. (vi) \. . .
Escape the next character in the node name. (vii) ##. . . Spec-
ify node as “place”. Fig.1 is the syntax tree of the “if” statement

Fig. 1 Syntax tree of “if”

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 98

(partially omitted) and can be written as follows by the proposed
notation.

statement_list > statement > selection_statement >

IF + \(+(expr > ...)+ \) + statement >

compound_statement > \{ +(statement_list > ...)+ \}

The role of the place represented by ## at this time is explained in
Section 2.3.

2.2 Subtree Matching
Tree matching processing is required for many processes such as

identifying the processing part and extracting information from the
tree. However, the matching process of a tree tends to be complicated
because the notation is complex compared to other data structure such
as strings or lists. In addition to exact pattern matching, flexible match-
ing may be required. For example, in the matching process, it is neces-
sary to consider the case where the matched ranges overlap. We use an
extended section 2.1 notation. In the notation, by writing a minus sign
in front of a node, subtree rooted at that nodes will not be excluded
from subsequent scans. (M1) in Fig.2 is an example of matching that
allows duplication of matching range by specifying a node .

A > -A + B A >B >C A ; B >C
(M1) (M2) (M3)

Fig. 2 Samples of tree matching

Other tree matchings may be needed. First, it may be necessary to
match using ancestor paths as well as tree patterns. (M2) in Fig. 2 is an
example of matching only patterns. While (M3) in Fig. 2 is an example
of matching that combines paths and patterns. In the representation of
(M3), the semicolon separates the path A and the pattern B >C.

Also, in matching, both the node name and other attributes of the
node may be required. Matching of arbitrary nodes, repetition of pat-
terns, etc. can also be conditions for matching. It is a future task to
expand the matching notation and propose a more flexible notation.

2.3 Connection of Whole Tree and Insertion Part Tree
Connecting the whole tree and the subtree is a necessary process

for rewriting the tree. As an example of the tree insertion process, the
syntax tree of program 1 in Fig.3 is rewritten and changed as in pro-
gram 2. T1 in Fig.4 is the syntax tree of program 1, and T2 is the
syntax tree of program 2. In this rewriting example, the “if” syntax
tree shown in Fig.1 is inserted in T1. In T2, as shown in the following
(i) to (iii), multiple edges are reconnected. (i) e1→ e1´ The child node
has been rewritten from S2 to S2´. (ii) e2→ e2´ The parent node has
been rewritten from S2 to S2´. (iii) A new edge e3 is added and S2 is
reconnected to the inserted “if” subtree.

In the proposed expression, when constructing a subtree, the part
that connects to the whole tree can be specified as a ”place“. In the
subtree construction notation proposed in Section 2.1, it is possible to
specify a node as a ”place“ using the ## symbol. The ”place“ itself and
the edge pointing to the joint can be easily obtained from the subtree.
When connecting trees, ”place“ can be used as a joint.

event1();
event2();
event3(); =⇒

event1();
if(){
event2();

}
event3();

Program1 Program2

Fig. 3 Programs before and after syntax tree processing

(T1) (T2)

Fig. 4 Insert “if” subtree

3. Future Issues or Future Development
As a future task, it is necessary to study more flexible matching

expressions. For example, matching using an amorphous tree repre-
sented like a regular expression may be suitable. In addition, in order
to examine an intuitive matching pattern expression suitable for a tree
structure, we refer to Emmet and yml related to data structure expres-
sion. Further, regarding the tree connection in the proposed method,
the process of reconnecting multiple edges to the corresponding nodes
is still complicated. It is necessary to extend the proposed method and
consider an interface that can describe multiple reconnection processes
at once. As a future plan, we will examine the validity of the processing
representation in a typical model transformation example, and support
multiple tree-structured data representations and languages.

4. Related Works
As a related study, there is a study of graph rewriting by Barendregt

et al[1]. Studies on term graph rewriting examine in detail the theoret-
ical aspects of tree rewriting. In addition, there are Emmet and YAML
formats that handle tree structures. These formats provide simple tree
construction notations for different purposes.

5. Conclusion
In this study, we examined a concise expression method for ba-

sic processing such as connection, matching, and generation, which
is required for tree structure processing for model transformation. In
addition, these functions were implemented using the programming
language Perl, and future issues in tree structure processing in model
transformation were clarified.

References
[1] Barendregt H.P., van Eekelen M.C.J.D., Glauert J.R.W., Kennaway

J.R., Plasmeijer M.J., Sleep M.R. (1987) Term graph rewriting. In:
de Bakker J.W., Nijman A.J., Treleaven P.C. (eds) PARLE Parallel
Architectures and Languages Europe. PARLE 1987. Lecture Notes in
Computer Science, vol 259 ,pp.141–158. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-17945-3 8

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 99

