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Abstract: In scheduling algorithms based on the Rate Monotonic (RM) method widely used in development
of real-time systems, tasks with shorter periods have higher priorities. In contrast, ones with longer periods
are likely to suffer from increased response times and jitters due to their lower priorities. We proposed the
Execution Right Delegation (ERD) method for uniprocessor systems based on RM where a high-priority
server for a privileged (or important) task is introduced to shorten response times of the task. In our previous
study, we evaluated algorithms from python-based scheduling simulator. In this paper, we implement sim-
plified ERD, named ERD-light, method on FreeRTOS without kernel modification. While many proposed
scheduling algorithms are evaluated by modifying the kernel scheduler, ERD-light was realized by combining
APIs without modifying the scheduler. In the evaluation, it is confirmed that behavior of ERD-light is same
as python-based simulation while response times of a privileged task are reduced compared with RM method.
We also confirmed that footprint penalty is less than 256 byte, and overhead penalty is less than 1% of total
CPU usage.
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1. Introduction

IoT device production is increasing year by year. Since

keeping CPU and memory constraints directly affects device

cost, efficient application/software development is required.

As a result, the existence of an real-time operating system

(RTOS) is essential for sharing various resources among dif-

ferent tasks. For example, ITRON [1] has a long history of

open specification RTOS, Mbed OS [2] targets ARM Cortes-

M processor, FreeRTOS [3] was acquired by Amazon in re-

cent year, and Azure RTOS ThreadX [4] was acquired by

Microsoft.

In order to maintain real-time performance, efficient

scheduling algorithms have been studied. The main pur-

pose of real-time scheduling algorithms is to achieve opti-

mal scheduling for tasks which have period, execution time

and/or deadline. It is important for the algorithms not only

to meet deadline of each task but also to shorten its re-

sponse time and jitter. For periodic task sets, there are two

categories in scheduling algorithms; one is Rate Monotonic

(RM) for static priority and the other is Earliest Deadline

First (EDF) for dynamic priority [5]. EDF has the advan-

tage of high CPU utilization, while RM causes less runtime

overhead and has predictable behavior. In RM, tasks with

shorter periods have higher priorities. In contrast, ones with

longer periods are likely to suffer from increased response

times and jitters due to their lower priorities.

We proposed Execution Right Delegation (ERD) method
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based on RM where a high-priority server for a particular

(or important) taski is introduced in the previous study [6].

In this paper, we implement the proposed scheduling algo-

rithms on FreeRTOS without kernel modification. In order

to avoid kernel modification, the scheduling algorithm of

ERD is implemented as a slightly simplified version, named

ERD-light.

This paper consists of six sections. Section 2 describes re-

lated work in terms of actual implementation study of real-

time scheduling algorithms. Section 3 reviews algorithm of

ERD method in brief. Section 4 shows requirement and im-

plementation of ERD-light. Evaluation of the performance

is shown in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

2.1 RTOSes and Scheduling Algorithm

The requirements for an RTOS are to ensure that time

constraints are met for the operation of a given computa-

tion (or process, task). For this purpose, the RTOS must

be able to schedule a given task within the expected time

without missing the deadline. In addition, it is necessary

to prevent that a low-priority task interferes with a high-

priority task which causes a deadline miss. Satisfying these

time constraints is referred to as ensuring real-time perfor-

mance. To ensure real-time performance, RTOS implements

a real-time scheduler. Many RTOSes, such as ITRON, have

i We assume the particular task has relatively lower priority due
to its longer period. For example, for CAN messages in in-
tegrated ECUs, control messages have a shorter period, but
notification messages have a longer period. However, some no-
tification messages are urgent and must receive a higher priority
(e.g. warning lamp, low fuel).
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a fixed-priority-based scheduler that is designed to prevent

a low-priority task from blocking a high priority task.

When designing a real-time system with multiple tasks

on an RTOS, there is a theory of scheduling algorithms that

models the system in order to examine whether those tasks

satisfy the time constraints. In many RTOSes, processing

is realized by persistent tasks, periodic tasks, and aperiodic

handlers invoked by interrupts. The models in scheduling

algorithms mainly treat these processes as periodic tasks ii.

RM is a typical model for handling periodic tasks in static

priority and EDF is for dynamic priority.

In the RM model, task τi(1 ≤ i ≤ n) releases an infi-

nite sequence of jobs. Once job is released, it runs during

the defined time Ci. Job is released every period Ti. No-

tation of a task is τi = (Ci, Ti). A set of tasks is denoted

as Γ = {τ1, τ2, ..., τn}, where the smaller subscript figure a

task has, the shorter period and higher priority it has (i.e.

T1 ≤ T2 ≤ ... ≤ Tn). A deadline miss occurs if job does

not finish by the next task release. These are theories which

provide the correctness of timing guarantee from a math-

ematical point of view. In RM, utilization-based exam [5]

and Response Time Analysis [7] are well known.

2.2 Scheduling Algorithm in RTOS

RM is easy to realize on static-priority-based RTOSes such

as ITRON, Mbed OS and FreeRTOS by associating tasks’

priorities with their periods. In contrast, EDF requires spe-

cific implementation inside RTOS. There are a few RTOSes

that implement EDF (e.g. MaRTE OS [8], Plan 9 [9]). Linux

[10] supports not only time-sliced scheduling but also static

priority scheduling by SCHED FIFO/SCHED PR policy.

EDF is also supported by SCHED DEADLINE policy by

Linux since version 3.14.

While many scheduling algorithms have been proposed,

the evaluation was done on a simulation basis, or was per-

formed on real OS with the changed scheduler. Sape et al.

studied the implementation of the real-time scheduling algo-

rithm in Plan 9 and discussed findings that come from actual

operations including the cause of deadline misses ( [11] [12]).

In an embedded system with memory and CPU con-

straints, it is important to reduce the amount of memory

used by the OS and to reduce the overhead during opera-

tion. Some proposals for scheduling algorithms have been

evaluated by modifying the Linux kernel, but the evaluations

have focused only on testing task response time and schedu-

lability, not on overhead of scheduling cost itself ( [13], [14]).

Saranya et al. evaluated partitioning based scheduling algo-

rithm for multicore processors with respect to operational

overhead by modifying Linux [15].

While there are proposals to change the kernel scheduler,

most RTOSes in production are well tested and their opera-

tion is guaranteed. In particular, some RTOSes, such as eT-

Kernel [16] and QNX [17], are compliant with ISO-26262 [18]

ii Although some scheduling algorithms deal with aperiodic tasks
and sporadic tasks that have a minimum operation time instead
of period, this paper deals only with periodic tasks.

in consideration of automotive applications in order to en-

sure a certain level of safety. It is not desirable from a safety

standpoint to modify the OS scheduler even to introduce a

better scheduling algorithm. In this paper, we utilize the

APIs provided by the RTOS to realize a simplified version

of the ERD algorithm proposed by the authors in the past,

without modifying the kernel.

3. Execution Right Delegation (ERD)

3.1 Definition of ERD

Before implementing ERD on actual RTOS, we show ERD

algorithm in this section. [6] shows detailed definitions, the-

orems and examples. ERD is a method to shorten response

time and jitter of privileged task, τp, in a task set by using

a high-priority virtual server, VS, which has capacity of Cs

and period of Ts while satisfying all deadlines of the task

set. We assume τp has a relatively lower priority due to its

longer period. By making the priority of VS high with short

Ts, τp can be executed at the high priority while consum-

ing Cs. The behavior of VS is based on Priority Exchange

(PE) [19].

In ERD, the target system model is based on fixed task

priority where each task τi has its execution time Ci and

period Ti, and its deadline Di is equal to its period. A task

does not have a phase, which means that the first job is re-

leased at time instant t = 0. The scheduling rule follows

RM except for a privileged (target) task which the proposed

virtual server (VS) is applied to.

Definition 3.1 (Delegation of Execution Right): In

ERD method, VS is scheduled based on RM rule. When VS

is given the execution right, a privileged task τp is executed

instead of VS. This situation is called Delegation of Exe-

cution Right. If a job of τp has already finished when the

execution right is available, the behavior follows PE rule

where jobs of the other tasks are executed while the server

capacity is accumulated at the priority level of the running

job.

Next, the following definitions gives the algorithm for find-

ing Cs and Ts.

Definition 3.2 (Response Time Analysis (RTA) [7]

of RM): In a fixed-priority scheduling, the longest re-

sponse timeiii, Ri, of task τi is computed as:

Ri = Ci +

i−1∑
j=1

⌈Ri

Tj
⌉Cj . (1)

Definition 3.3 (Candidates of VS): Let Γ be a

schedulable task set and τp in Γ be a privileged task whose

response time and jitter should be shortened. Then, RTA

in Definition 3.2 is applied to τ1, ..., and τp. From the re-

lation between Rp and T1, ..., Tp−1, Cs and Ts for VS are

obtained as follows.

iii If the first jobs of all tasks are released simultaneously at the
instant t = 0, response time of the jobs becomes the worst-case
for the corresponding task (Critical Instant [5]).
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Cs =

{
Cp, if Rp ≤ Tp−1 (2)

idle′(Ts), otherwise (3)

Ts =

{
Th, if Rp ≤ Tp−1 (4)

t ∈ Ψ, otherwise (5)

where

Ψ = {T1, T2, ..., Tp−1}

Th = min( {t | t ∈ Ψ, Rp ≤ t} )

idle′(t) = t−
p−1∑
j=1

⌈ t

Tj
⌉Cj (t ∈ Ψ)

The following example shows how ERD works.

Example 3.1 (ERD method): With Γ =

{(1, 5), (2, 6), (4, 13)} and τp = τ3, RTA gives R1 = 1,

R2 = 3, and R3 = 10 (Fig. 1). VS is given by the

equations (3) and (5) as R3 > T2. With Ψ = {T1, T2},
idle′(Tj) is calculated for each period. Since idle′(T1) = 2,

VS1 = (2, 5) is derived. Similarly, VS2 = (2, 6) is obtained

from idle′(T2) = 2. In this time, we apply VS1 for example.

Fig. 2 shows scheduling result of ERD. At the instants 1,

2, 6, and 7, delegation of execution right can be confirmed.

As a result, response time of τp’s first job is reduced from

10 to 7.

Fig. 1 Schedule by RM for Γ = {(1, 5), (2, 6), (4, 13)}.

Fig. 2 Schedule by ERD with VS1 for Γ.

It is worth noting that Deadline Monotonic (DM) [20]

scheduling does not shorten the response time of τ3 with

the above Γ. DM is effective only when the relative dead-

line of τ3 can be made less than or equal to the deadline of a

higher-priority task. For Γ in this example, if the deadline is

set to be less than or equal to T2, τ2’s job results in missing

its deadline.

The worst-case response time (WCRT) of a task in RM is

response time of the task’s first job (Critical Instant), which

is calculated by (1). Unlike RM, Critical Instant of ERD is

not given by task’s first job. [6] describes WCRT, RTA and

simulation based results in detail.

3.2 Priority Exchange and ERD-light

VS in ERD operates according to the rules of PE. Specif-

ically, when VS has execution right and τp is running (or

ready), VS’s priority capacity is used for τp. Otherwise,

when VS has execution right but τp is not running (or not

ready), VS’s priority capacity is exchanged to the task’s ca-

pacity in ready que with the next highest priority. This be-

havior is confirmed from the time instant 11 to 12 of Fig. 2.

At the instant 11, VS has execution right but τp’s job is

not running (already finished). VS’s priority capacity is ex-

changed to τ1’s priority capacity, with the amount of 1. At

the instant 12, the VS’s capacity is discarded due to no ex-

istence of jobs. Then, τ1’s priority capacity is exchanged

to τ2’s priority at the instant 13 since τ3 is not ready. At

the instant 14, τ3 is ready and τ2’s priority capacity is used

for τ3 as the rule of PE. This PE rule is strictly required to

keep schedulability. If no exchange is performed but deferred

execution right is allowed, τ2’s 3rd job misses its deadline

(Fig. 3).

Fig. 3 Deferred ERD is not allowed.

In order to realize ERD in actual RTOS without kernel

modification, we relax priority exchange rule and named it

ERD-light. In ERD-light, when VS has execution right, ca-

pacity of VS is discarded unconditionally if τp’s job is not

ready. In other words, priority exchange does not occur.

Fig. 4 shows an example. The left figure shows the origi-

nal ERD with priority exchange, and the right figure shows

ERD-light. At the instant 25 to 27, priority exchange is

confirmed in the left figure. On the other hand, VS’s first

execution capacity is discarded at the instant 25 in the right

figure. As a result, behaviors of τ2 and τ3’s jobs are differ-

ent between the left and right figures. Nevertheless, response

time of τ3’s job is the same, 31.

Fig. 4 Priority Exchange vs ERD-light.
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4. Requirements and Implementation

In this section, we show requirements and implementa-

tion methods of ERD-light on RTOS without kernel modi-

fication. We use FreeRTOS V10.4.4 iv for reference imple-

mentation in this paper. In regard of requirements, first, we

have the following three premises:

A1 A task is implemented as a periodic task.
A2 A task with shorter period has higher priority.
A3 Priority of a task can be changed dynamically.

Most of RTOSes support the above requirements except A3.

In the case of FreeRTOS, A1 is satisfied. A periodic task τi

is created by xTaskCreate() as a normal task at first. Once

specific work that requires time period Ci is finished, the

task calls vTaskDelayUntil() in order to change the state to

blocked/sleep until Ti period. A2 is also met by that prior-

ity of a task can be given by xTaskCreate(). In FreeRTOS,

vTaskPrioritySet() satisfies A3.

Second, ERD-light requires RTOS which supports the fol-

lowing APIs (or System Call/Service Call):

B1 API which provides the current system tick.
B2 API which provides the elapsed time in ticks that was

consumed by a task.

In regard of B1, most RTOSes provide this function. On

the contrary, a few RTOSes provide B2. For FreeRTOS,

xTaskGetTickCount() and vTaskGetInfo() satisfy the above

requirements, respectively.

Finally, ERD-light requires two timer handlers that most

RTOSes support. The timer handlers are invoked every VS

period and specific tick, which is discussed in the next para-

graph. In the implementation of ERD-light, the task infor-

mation (WCET, period) and VS are given in advance. The

WCRT (=RS) of VS is assumed to be calculated by the

formula (1). There is no additional description in the task

code to realize ERD-light. ERD-light can be implemented

by adding two timer handlers that control priority of τp and

a few tens of bytes of memory to store status of operation.

Algorithm 1 describes pseudo code of the timer callback

handler which corresponds to VS. The callback is invoked

every VS’s period. The objective of this handler is to raise

τp’s priority. First, the absolute tick when the callback is

invoked is given by B1 at line 1. At line 2, the number of

ticks that are spent by τp is retrieved by B2. Finally, pri-

ority of τp is changed to the same priority as VS at line 3

(requirement of A3). By changing the priority of τp, τp can

operate as a high-priority task, and behave in the same way

as the example in the previous section.

Next, pseudo code of the timer handler, whose role is to

restore priority of τp to the original (base priority), that is

invoked every specific tick is described in Algorithm 2.

In our implementation, period of the handler is 100 ticks v.

iv API and configuration is described in [21].
v Fewer cycles allow for more precise priority control, but they

also increase the overall overhead of the system. From our
evaluation, 100 ticks are enough to keep accuracy.

Algorithm 1 VS Callback

1: st = current tick()

2: ccon = consumed(τp)

3: τp.priority = vs.priority

Algorithm 2 Tick Callback

1: if τp.priority = τp.base priority then

2: return

3: end if

4: now = current tick()

5: if st+RS ≤ now or consumed(τp)− ccon > CS then

6: τp.priority = τp.base priority

7: end if

Line 1 checks whether priority of τp is changed. If not, it

quits the operation. Recalling Section 3.2, unused capacity

is required to be discarded. If the capacity is not discarded,

the response time of task τh, whose priority is higher than

τp but lower than VS, is increased.

Because of the implementation complexities of discarding

capacity, we adopt the following approach. To eliminate the

influence on τh, it is necessary to ensure that τp does not run

with VS’s priority beyond the WCRT(Rs) of VS. Regardless

of whether the capacity of VS has been consumed or not,

the requirement is satisfied by restoring the priority of τp

to the original at the time instant Rs has passed since the

VS was released (the first condition of line 5). In addition,

priority of τp must be restored to the original when VS’s

capacity is fully consumed (the second condition of line5).

5. Evaluation

In our evaluation, we use FreeRTOS on Raspberry Pi

Pico [22] Single Board Computer (SBC). Source code is

available at [23]. We test 4 task sets (Table 1), which in-

clude τp whose response time cannot be shortened by Dead-

line Monotonic except Test Set1. We compare the results

those of our simulation that is presented by our previous

work. Even though the evaluation is performed on actual

RTOS and SBC, not python-based simulation, we imple-

ment every task by using busy loop until its Ci to simulate

consumption of CPU resource since timing correctness is re-

quired in our study. In the busy loop, 1 tick is 12,475 Clock

Count (e.g. a period of 10,000 ticks requires 12,475 * 10,000

Clock Count). In the evaluation, WCRT of τp is compared

to the simulation-based ERD (priority-exchange version).

Table 2 shows the results. In the table, ERD-l(RT) rep-

resents WCRT values of FreeRTOS implementation of ERD-

light, and ERD(Sim) represents WCRT of python-based

simulation, respectively. The table also contains results of

RM (fixed-priority based result, without ERD-light imple-

mentation) on FreeRTOS, and python-based simulation of

RM. With a comparison, the implementation of ERD-light
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Table 1 Task Sets.

Ci Ti, (Rp) pri

τ1 2000 4000 3
Test Set1 τ2 3000 12000 1

τp 3000 14000 0
VS 3000 12000, (12000) 2
τ1 2000 5000 2

Test Set2 τ2 2000 7000 1
τp 2000 10000 0
VS 1000 5000, (1000) 3
τ1 1000 5000 2

Test Set3 τ2 2000 6000 1
τp 4000 13000 0
VS 2000 5000, (2000) 3
τ1 1000 5000 4
τ2 1000 6000 3

Test Set4 τ3 2000 8000 1
τp 4000 14000 0
VS 2000 8000, (4000) 2

on FreeRTOS is confirmed to be correct since WCRTs of

each task are almost the same as the simulation (excluding

calculation/clock ratio errors). Importantly, WCRT of τp is

shortened compared with the results of RM.

Table 2 Evaluation Result (WCRT).

ERD-l(RT) ERD(Sim) RM(RT) RM(Sim)

τ1 1998 2000 1998 2000
Test Set1 τ2 11990 12000 6994 7000

τp 6994 7000 11990 12000
τ1 2998 3000 1998 2000

Test Set2 τ2 4996 5000 3997 4000
τp 5995 6000 9992 10000
τ1 2999 3000 999 1000

Test Set3 τ2 4997 5000 2998 3000
τp 8992 9000 9992 10000
τ1 999 1000 999 1000
τ2 1998 2000 1998 2000

Test Set4 τ3 7996 8000 3997 4000
τp 9992 10000 13989 14000

Table 3 shows results of GNU size command vi to ERD-

l(RT) and RM(RT) program images for Test Set1. It is

confirmed that footprint penalty of ERD-light is less than

256 bytes. In regard of runtime overhead penalty, we gain

stat information by using vTaskGetRunTimeStats() API.

We could not find any differences in CPU usage since the

timer call back usage was less than 1%.

Table 3 Program sizes (bytes).

text data bss

ERD-light 43,212 36 53,544
RM 43,008 36 53,508

6. Conclusion

We proposed ERD-light, a simplified version of ERD, and

showed requirement definitions for implementing it on RTOS

without kernel modification, by combination of APIs. With

FreeRTOS on Raspberry Pi Pico, ERD-light was imple-

mented and evaluated with several task sets. We confirmed

the correctness of the requirement and implementation from

the results of experiment that shows the same result as the

vi arm-none-eabi-size Version 2.27.

python-based simulation. Implementations penalty of foot-

print is less than 256 bytes. We also measured runtime over-

head by stat API and confirmed the overhead is less than

1% of CPU usage.

In regard of the algorithm, a real-time penalty of discard-

ing capacity in ERD-light is not compared to ERD (priority

change version) in our evaluation since the aim of this pa-

per is to propose requirement and implementation of our

proposed algorithm on actual RTOS without kernel mod-

ification. Comparing ERD with ERD-light from real-time

performance point of view with large task sets is future work.
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