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Abstract: Embedded systems, such as automotive systems, are becoming larger and more complex, requiring high
computing power and low power consumption. To meet these requirements, multi-/many-core processors and MAT-
LAB/Simulink are increasingly used. Moreover, to support multi-/many-core processors, model-based paralleliza-
tion tools have been developed. However, the problem of model-based parallelization tools estimated time for each
Simulink block has a large error compared to the execution time. Moreover, it is that only hardware information is
used to estimate the execution time of parallelized C code. Therefore, the estimation method is proposed to improve
the execution time of each Simulink block in comparison with existing methods. Also, a new estimation method is
proposed that uses both software and hardware information to estimate the overall execution time. The execution time
of the Simulink model is estimated by the conventional method, and the proposed method is measured and compared
with the actual execution time to evaluate the proposed method. The experimental results show that the execution time
of the parallelized model can be reduced by improving the estimation execution time of each block. It was also found
that the use of hardware and software information improved the estimation of the execution time of the parallelized
model.
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1. Introduction
In recent years, embedded systems, such as self-driving sys-

tems [1, 2], have become larger and more complex [3]. There-
fore, processors must have high computing power and low power
consumption. Traditionally, computing power has been improved
by increasing the frequency of a single core. However, the per-
formance improvement of a single core is limited, and many-core
processors have been developed [4]. Many-core processors have
high computing power, and the overall power consumption can
be reduced [5,6]. Parallelization is important for maximizing per-
formance. However, manual parallelization is difficult and time-
consuming. Model-Based Development (MBD), such as MAT-
LAB/Simulink [7], can reduce the software development time.

MBD is a software development methodology based on mod-
els. MBD using MATLAB/Simulink has the potential to be
applied in the development of self-driving systems [8]. MAT-
LAB/Simulink has an add-on called Embedded Coder [9] that
can automatically generate C code from the model. However,
MATLAB/Simulink can not generate parallelized C code. There-
fore, Model-Based Parallelizer (MBP) [10] has been developed
by the Embedded Multicore Consortium to automatically gen-
erate parallelized code. MBP estimates the execution time of
each Simulink block from the generated C code, and places
each Simulink block on the most appropriate core. In addition,
other information called Software-Hardware Interface for Multi-
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/Many-Core (SHIM) [11] is used to perform the estimation.
SHIM was developed to allow tools to understand information

about complex processors, such as multi-/many-core processors.
As a result, SHIM has a variety of software and hardware infor-
mation, such as the number of cores. However, MBP has a prob-
lem: the estimates used to perform core assignment take into ac-
count only information about SHIM hardware, such as the num-
ber of cores. In other words, software information is not used
in the estimation. Parallelization brings in software information
such as communication time. Therefore, if this information is not
taken into account, the accuracy of the estimated time will be de-
graded. This makes it impossible to achieve SHIM’s goal of an
error of less than 20%, and undermines the reliability of the tool.
The reasons for this include the fact that development using MBD
in self-driving is still in the infancy, and research on supporting
parallelization with MBD is new. Thus, parallelization in MBD
has not been optimized and still needs to be studied.

This paper proposes an estimation method that improves the
execution time of each Simulink block compared to existing
methods. This is because, the estimated execution time per block
needs to be improved to optimize the parallelization in MBD. In
addition, an overall execution time estimation method using both
hardware information and software information for a many-core
processor is proposed. This paper uses eMBP [12] with MAT-
LAB/Simulink, Kalray MPPA3-80 Coolidge processor [13], and
eMCOS [14] as a real-time operating system (RTOS) .

The main contributions of this paper are as follows:
• This paper investigates and improves the causes of errors in

the estimation execution time of a Simulink model.

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 21



C code

Embedded
Coder

Simulink
Model

MATLAB/Simulink

SHIM

MBP

Adding Information Phase

Core Allocation Phase

Code Generation Phase Parallelized
C code

Execution Time 
Estimation for 
Parallelized C Code

Hardware
Information

MPPA3-80 
Coolidge

Software
Information

Number of
cores

Instruction 
cycle count

Cluster 
structure

OS 
overheads

Proposed Framework

Proposed
Estimation 
Method

eMCOS

Fig. 1 System model with the proposed method

• This paper reduces the execution time of a parallelized
Simulink model using the improved estimation time.

• This paper measures the inter-core communication time as
software information and proposes a new estimation method.

The remainder of this paper is organized as follows. Section 2
describes the system model of MPPA3-80 Coolidge, eMBP, and
SHIM. Section 3 describes our proposed approach, while Section
4 presents our experimental results. Section 5 discusses related
work, and Section 6 concludes this paper.

2. System Model
This section describes the system model, which illustrates in

Fig. 1. Section 2.1 describes the many-core processor architec-
ture, which is the target platform in this paper. Then, Sections
2.2, 2.3, and 2.4 describe SHIM, LLVM IR, and eMBP, respec-
tively, for automatically generating parallelized C code. Finally,
Section 2.5 describes eMCOS, an RTOS.

2.1 Many-core architecture
Karlay MPPA3-80 Coolidge is a third-generation processor

that follows Kalray MPPA2-256 Bostan [4]. The architecture
of MPPA3-80 Coolidge is illustrated in Fig. 2 and further dis-
cussed in [15]. MPPA3-80 Coolidge has 80 cores, which are
less than MPPA2-256 Bostan. Nevertheless, due to the increase
in frequency, the computing power has increased. MPPA3-80
Coolidge features five compute clusters (CCs) consisting of 16
cores each. In addition, it uses a NoC structure with multiple
paths to prevent path contention between CCs.
2.1.1 CCs

In MPPA3-80 Coolidge, the 16 internal nodes of the NoC cor-
respond to the CCs and consist of the processing engine (PE),
SMEM, NoC interface. Cluster local memory (SMEM) is 4 MB
and is shared by 16 PEs and RMs. Each PE has a Kalray-1 core
that implements a 64-bit, six-stage, Very Long Instruction Word
architecture with a frequency of 1.2 GHz.

2.2 SHIM
SHIM is an IEEE standard interface for describing hardware

for software tools [11]. SHIM is defined by an XML schema
and has hardware and software information for multi-/many-core
processor architecture. By using SHIM to represent hardware,
software verification can be performed without actual hardware.
Hardware information is stored in XML format as SHIM XML. A
SHIM XML consists of a tree structure with three superordinate
components of: ComponentSet, AddressSpaceSet, and Commu-
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nicationSet. It includes the number of cores, memory access, and
communication methods. SHIM allows for efficient use of multi-
/many-core processors without understanding hundreds of pages
of specifications. The estimation of execution time for SHIM is
intended to be used in upstream processes such as substrate se-
lection, and the goal is to keep the error within 20% [16].

2.3 LLVM IR
LLVM IR is compiled with LLVM [17], a compiler base ca-

pable of supporting any programming language, and a unique in-
termediate representation that is independent of language and ar-
chitecture. The value of LLVM IR is used in SHIM for machine-
independent descriptions, because LLVM IR can use the same
intermediate representation regardless of machine or language
combination.

2.4 eMBP
eMBP is a model-based parallelization tool developed by

eSOL based on MBP. The eMBP architecture is presented in
Fig. 3. eMBP can reduce development costs and time because
it automatically generates parallelized C code. An eMBP process
consists of three major phases: Adding Information phase, Core
Allocation phase, and Code Generation phase.
2.4.1 Adding Information phase

The purpose of this phase is to generate C code and cycle-
count-annotated Block-Level XML (BLXML). First, eMBP ex-
tracts the block information from the Simulink model. Next,
eMBP divides the C code generated using Embedded Coder
into code of blocks and generates code-annotated BLXML. The
block indicates the smallest unit block that constitutes a Simulink
model. The dependencies between the blocks are retained. Fi-
nally, eMBP extracts the hardware information from the SHIM
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1 #define INSTRUCTION NAME ”add”
2 continuity count = 1;
3 base cnt = 0;
4 memset(base, 0x00, sizeof (base));
5 start, end =0;
6 /*Measuring Overhead*/
7 AGGREGATION METHOD(base ,TRY, ITERATION, buff);
8 empty = buff[1];
9 base cnt = 0;

10 memset(base, 0x00, sizeof (base));
11 for (j = 0; j < TRY; j++) {
12 start = clock();
13 for (i = 0; i < ITERATION; i++) {
14 INSTR BODY 2(uix, uiy, uiz = uix + uiy); /*add*/
15 }
16 end = clock();
17 base[base cnt++] = (end − start);
18 }

Fig. 4 Part of LLVM intermediate representation measurement code
XML and uses the processor latency to estimate the perfor-
mance of each Simulink block. This information is used to gen-
erate cycle-count-annotated BLXML. The performance of each
Simulink block is calculated as typical (most frequently occur-
ring cycles).
2.4.2 Core Allocation phase

The purpose of this phase is to determine which blocks are as-
signed to the different cores. Using the C code and cycle-count
annotated BLXML generated in the Adding Information Phase,
eMBP generates mapping information as parallelized BLXML.
In other words, the estimated execution time for each Simulink
block estimated is used to allocate the blocks to the cores. eMBP
implements a double-hierarchical clustering scheme to ensure
proper core allocation [10].
2.4.3 Code Generation phase

The purpose of this phase is to generate parallelized C code.
eMBP generates parallelized C code by reconstructing the C code
for each assigned core according to the parallelized BLXML,
which includes core assignments. The parallelized C code in-
cludes the eMBP’s communication API (Application Program-
ming Interface), which enables communications between cores
and clusters.

In this paper, the estimation of the execution time for each
Simulink block used in Core Allocation phase in Section 3.3 and
4.3 is improved. In addition, the execution time of the parallelized
C code generated in Code Generation phase is reduced.

2.5 eMCOS
eMCOS is a real-time embedded operating system developed

by eSOL, a Japanese RTOS supplier, and was the first commer-
cially available many-core processor RTOS designed for use in
embedded systems [14]. eMCOS is also the only operating sys-
tem that supports many-core processors with a cluster structure.

eMCOS has a message communication function that can send
and receive arbitrary data (messages) between threads and per-
form synchronization control between threads. The message
communication function supports the following four types of
messages: Regular message, Fast message, Session message, and
Request reply message. Especially, Fast message can be used in
inter-core communication.

3. Proposal of a Method for Estimation of the
Execution Time of Simulink Models

This section presents our proposed approach for generating
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{
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while(1){

processing part

message_send
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}

}

main core
{

Variables and definitions...

while(1){

start=time_get();

processing part

for(N times)

message_recv

end=time_get();

for(N times)

message_send

}

}

×N

×N

* N = Total core number - 1

Executing 
time

Fig. 5 Method of measuring the execution time

Table 1 Information of use the Simulink model

Model Name Number of Edges Number of Nodes
e1000 1,509 1,031
e3000 4,522 3,099
e5000 7,564 5,171

parallelized code for Simulink models in eMBP and estimating
the execution time on multi-/many-core processors. SHIM of
the target processor requires to generating parallelized code for
Simulink models using eMBP. Therefore, we measure the execu-
tion time of each instruction in LLVM of MPPA3-80 Coolidge
required for SHIM. Furthermore, we explain how to measure the
execution time of the Simulink model on MPPA3-80 Coolidge.
Then, an improvement method for the current estimation error
and an estimation method using FPU for hardware information
are proposed. Next, efficient parallelization through improved
execution time estimation is explained. Finally, the inter-core
communication time of software information is measured, and an
estimation method using this information is proposed. The pro-
posed estimation method can be applied by preparing the SHIM
of the target processor, since SHIM can have information of any
processor.

3.1 The calculation method of LLVM IR
This section describes how to measure the execution time of

each instruction in LLVM with MPPA3-80 Coolidge. The LLVM
IR is the basic information needed for SHIM. The value of LLVM
IR depends on the performance of the target processor and is mea-
sured for each processor. SHIM is available to the public [18].
Therefore, the source code to measure the execution time of each
instruction in LLVM has been published. However, the published
source code includes an inline assembler. MPPA3-80 Coolidge
does not support the inline assembler. Therefore, the part that
measures the time with the inline assembler is rewritten as a clock
function. Part of the rewritten code is presented in Fig. 4. To set
the unit to the number of cycles, the following calculation is per-
formed.

secondinstruction = (timeend − timestart)/secondclock

cycleinstruction = secondinstruction ∗ (1/clock f requency)

The measurement start time is timestart, while the measure-
ment end time is timeend. Therefore, the measured time can
be expressed as timeend − timestart. The unit of the measured
time is clock, and it needs to be converted to the number of
cycles. Thus, the measured time is divided by the number of
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1 %3 = alloca double*, align 8
2 %4 = alloca double, align 8
3 store double* %1, double** %3, align 8
4 store double %0, double* %4, align 8
5 %5 = load double, double* %4, align 8
6 %6 = load double, double* %4, align 8
7 %7 = fadd double %5, %6
8 %8 = load double*, double** %3, align 8
9 store double %7, double* %8, align 8

10 ret void

Fig. 6 LLVM IR used for estimated execution time

1 %9 = load double, double* %3, align 8
2 %10 = load double, double* %3, align 8
3 %11 = fadd double %9, %10
4 store double %11, double* %2, align 8

Fig. 7 LLVM IR used for C code

clocks per second (secondclock) to obtain the number of seconds
per instruction (secondinstruction). Next, to convert the units from
seconds to cycles, multiply by the number of seconds per cy-
cle (1/clock f requency). This conversion produces the number of
cycles per instruction (cycleinstruction). For MPPA3-80 Coolidge,
secondclock = 1, 250, 000 and clock f requency = 1.2 GHz.

3.2 Description of the experimental environment and how
to measure the execution time

This section describes the Simulink model used for the exper-
iment and how to measure the execution time. Details of using
Simulink models are shown in Table 1. Using Simulink models
are random models. Random models mainly consist of an in-
tegration block, an additional block, and a math-function block.
In addition, each block for the Simulink model is repeated 100
times in order to make the process heavy. This is because a large
Simulink model is required for parallelization with MPPA3-80
Coolidge. Note that the Simulink models are created with refer-
ence to [19] to avoid bugs. The math-function block is mainly
used for non-quadratic calculations, such as log and power calcu-
lations. In addition, all blocks used in this model are the blocks
targeted by eMBP.

Next, a measurement method of the model execution time is
described. eMCOS has a function to measure time, and the unit
is the number of cycles. This function is used to measure the
overall execution time (exetime) of the model.
• One core: In the case of one core, the eMCOS function to

measure time is used before (exestart) and after (exeend) the
task part of the program. In addition, it measures of the func-
tion 10,000 times and determines the average overhead time
(overtg) to eliminate the overhead for the function to measure
time. Next, the following formula is used to measure exetime:

exetime = (exeend − exestart) − overtg

In this way, the overhead of the time measurement function
is subtracted from the measured execution time to obtain the
exact execution time.

• Two or more cores: In the case of two or more cores, it re-
quires synchronization. After coremain measures the process-
ing time, coremain sends messages to each core. Each core
does not perform the next process until it receives messages.
Thus, synchronization is achieved. The time measurement is
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Fig. 8 Detailed hardware and software information

shown in Fig. 5. N is the total number of cores minus one.
In addition, to measure the average time, it takes 10,000 exe-
cutions of sending and receiving messages (overmess). Next,
the following formula is used to calculate exetime:

exetime = (exeend − exestart) − overtg − overmess ∗ N

Thus, the overhead of the communication API is subtracted from
the measured execution time to compensate for the communica-
tion latency and get an accurate execution time.

3.3 Estimation error improved with different instructions
The errors in the execution time estimation are reduced by in-

vestigating the causes of the errors and using proposed methods.
To investigate the cause of this error, the LLVM IR code used

for estimation (Fig. 6) and the same processing part of the LLVM
IR code in the actual C code (Fig. 7) are compared. As a re-
sult, the alloca instruction is executed twice, the store instruction
twice, and the load instruction once more than when the actual C
code. The error is caused by the difference in whether the pro-
cess was a function or not. eMBP treats a Simulink block as a
function because eMBP takes into account the input and output
of the block. The reason for the increase in the number of these
instructions is to prepare the function arguments, assign numbers,
and assign the return value.

Next, the error caused by the different number of instructions
is improved. The basic flow is to subtract the number of cycles
of instruction increased by the function from the performance per
block calculated in Section 4.1. The number of instructions de-
pends on the number of inputs to the block. In this paper, allocac,
storec, and loadc are the number of cycles of the alloca, store, and
load instructions, respectively, and In are the number of inputs to
the block. However, if the inputs are equal (e.g., a = b + b), the
number of cycles when In = 1 is subtracted.

(allocac + storec) ∗ (In + 1) + loadc ∗ 1

3.4 Measurement of FPU performance required for estima-
tion and proposed the estimation method

This section proposes a measurement method for FPU of hard-
ware information, and an estimation method using that informa-
tion. The details of the measured information are presented in
Fig. 8. The float (single) type works for a 32-bit, the double type
works for a 64-bit. The measurement method is the same as that
used to measure the LLVM. Instruction cycle numbers at 64 bits
and 32 bits are obtained by setting the variables of the target in-
structions to double and float types, respectively.

Next, an estimation method is proposed that finds the portions
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of the parallelized C code where 32-bit and 64-bit instructions are
used and uses this information. The steps are as follows. First,
Adding Information Phase of eMBP using SHIM measured in 32
bits to obtain the necessary files. Second, the files are used to ob-
tain the block name containing the specific 64-bit instructions (in-
structions with a large difference in the number of cycles between
32 bits and 64 bits). Third, the specific instruction performance
of the retrieved block name to 64-bit performance is rewritten.
Finally, the remaining phases of eMBP are perform, and estima-
tion is performed that takes both 32-bit and 64-bit performance
into account.

3.5 Parallelization improvement by better the estimation ex-
ecution time

This section explains why improving the estimated execution
time will allow for efficient parallelization and reduce the overall
execution time. The mechanism for parallelizing MBP is to esti-
mate the execution time of each Simulink block, as described in
Section 2.4.1. Then, tasks are assigned to cores based on the es-
timated time. Therefore, if the estimated execution time of each
Simulink block has a large error, it may happen that tasks are not
allocated evenly even if the parallelization is appropriate in the
estimate. Furthermore, as explained in Section 3.3, MBP esti-
mates the estimation execution time to be long. Therefore, im-
proving the estimated execution time makes it shorter than the
existing one. In addition, the short estimated execution time of
each task allows communication to take place at a more optimal
time than existing. As a result, the waiting time due to synchro-
nization can be reduced. Thus, improving the estimated time for
each Simulink block can improve parallelization and reduce exe-
cution time.

3.6 Measurement of the inter-core communication time
required for estimation and proposed the estimation
method

A measurement method of the time of synchronous communi-
cation between cores is described in this section. In addition,
an estimation method that uses the measured time to improve
the execution time for multiple cores is proposed. The func-
tions used in parallelization include the communication functions
mbp channel send/recv which use eMCOS API.
• mbp channel send/recv: mbp channel send/recv is a func-

tion that sends and receives messages. This function deter-
mines which core to send a message. eMCOS API is used
for this function. The type of message is a regular message
for inter-core communication and a fast message for inter-
cluster communication.

In addition, two methods are available: synchronous com-
munication and asynchronous communication. However, the
proposed method measures the time of synchronous communi-
cation for the fast message because eMBP uses synchronous
and inter-core communication. The measurement method uses
the mbp channel send/recv function. The measurement method
of the inter-core communication time for each communication
method is as follows.
• Synchronous communication: The inter-core communica-

tion time varies depending on the timing of the other cores.

Table 2 Part of LLVM IR In MPPA3-80 Coolidge

LLVM IR typical cycle
fadd 9.60
fsub 9.60
fmul 9.60
fdiv 24.00

alloca 10.56
load 4.80
store 4.80
call 5.37
ret 8.24
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Fig. 9 The estimated time to the execution time with one core in MPPA3-80
Coolidge

In this experiment, additional processing (e.g., for statement)
is added before mbp channel send/recv to ensure that the re-
ceiving side is ready when the sending side is measured, and
the message has already been sent when the receiving side is
measured.

The proposed measurement method inserts the function to
measure the time before and after messages send, and receive to
obtain exestart and exeend, and subtract overtg.

Then, an estimation method of the execution time is described.
First, the number of communication channels used by coremain is
measured. coremain is the core where the task is executed first.
The way to find is to count the portion of the function that is cre-
ating the communication channel from the parallelized C code.
Next, the communication time obtained by the following formula
is added to the original estimated time. In this paper, add time
is the time to be added to the estimate, sendtime size represents
the time to send a fast message, recvtime size represents the time
to receive a fast message, block size represents the average of es-
timation time of each Simulink block, com time represents the
total time required for communication, and com num represents
the number of communication channels. Synchronous communi-
cation causes the waiting time if the timing of sending and receiv-
ing is different. The estimation method considers the waiting time
as one block in the Simulink model and expresses it as block size.

comtime = (sendtimesize + recvtimesize + block size)

addtime = comtime ∗ comnum

4. Evaluation
In this section, the proposed method is evaluated. First, the

execution time of each instruction of LLVM is measured, and
the execution time of the Simulink model is estimated. In addi-
tion, the Simulink model execution time is measured, the error
from the estimated execution time is calculated, and the cause of
the difference is discussed. Next, the performance of the FPU as
hardware information is measured. Based on this information,
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Table 3 LLVM IR of FPU32, FPU64

LLVM IR 32-bit 64-bit
fadd 9.64 9.64
fsub 9.64 9.64
fmul 9.64 9.64
fdiv 24.10 317.11
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Fig. 10 The execution time with 16 cores in MPPA3-80 Coolidge

the execution time of each Simulink block is estimated, and it has
made improvements. Finally, this communication time is mea-
sured for each size of the transmitted data as a necessary informa-
tion to improve the execution time estimation after parallelization
on many-core processors. Then, we improve the estimation by
taking into account the communication.

4.1 Measurement results of LLVM IR
The number of LLVM IR cycles in the SHIM basic informa-

tion for MPPA3-80 Coolidge is calculated, and the results are
presented in Table 2. The columns display the typical values,
and the units are the number of cycles. eMBP used the typical
values for estimation and core assignment.

4.2 Estimation and measurement results using existing
methods

The estimated execution time on eMBP with one core and the
actual execution time on MPPA3-80 Coolidge is measured for
comparison. The execution times were calculated as the average
of 1,000 runs. The bar graph (Before improvement) on the left
side of Fig. 9 shows the estimated execution time divided by the
actual execution time. The results show that the execution time
estimated by eMBP and the actual execution time on the MPPA3-
80 Coolidge differs significantly. eMBP uses the estimated time
at one core (in other words, the estimated time for each Simulink
block) to perform parallelization. Therefore, large errors affect
the parallelization.

Then, the performance differences by instruction type are mea-
sured. FPU performances for 64 bits and 32 bits are presented
in Table 3. The result shows that the fadd, fsub, and fmul (ad-
dition, subtraction, and multiplication of floating-point numbers,
respectively) instructions had no performance difference between
32 bits and 64 bits, and only the fdiv (division of floating-point
numbers) instruction differed. The existing measurement method
calculates the estimated time of a Simulink block with a 32-bit
type fdiv instruction. Therefore, the estimation of the execution
time of Simulink blocks containing fdiv instructions is improved
to the correct estimated time by determining whether it is of type
double or float.

e1000 e3000 e5000

Simulink Model name

E
s
ti
m

a
te

d
 t
im

e
 (

1
6
c
o
re

) 
n
o
rm

a
liz

e
d
 b

y
 e

xe
c
u
te

d
 t
im

e

Before improvement

After improvement

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Fig. 11 The estimation time with 16 cores in MPPA3-80 Coolidge

4.3 Improved estimation of Simulink blocks and associated
parallelization efficiency

In this section, the estimation of the execution time of Simulink
blocks is improved with the proposed methods in Section 3.3.
Furthermore, the execution time of parallelization has been re-
duced by improving the estimates. Since the estimated execution
time for each Simulink block was used, the estimated execution
time on one core is measured. The execution time was calcu-
lated as the average value of 1,000 runs. The bar graph (After
improvement) on the right side of Fig. 9 shows the estimated exe-
cution time calculated using our estimation method divided by the
actual execution time. Therefore, the closer the value is to one,
the better the accuracy of the estimate. The results show that the
improvement estimation method able to keep the estimated exe-
cution time of the target Simulink model within the target error
of 20%.

The execution time of parallelized code is reduced by 4% to
8%. Fig. 10 shows the result, where the left side is the time before
the improvement, and the right side is the time after the improve-
ment, which is the execution time with 16 cores divided by the
execution time with one-core. Therefore, the smaller the value,
the shorter the execution time due to parallelization. The results
show that both are faster than the execution time with one core.
In addition, it shows that the execution time after the improve-
ment is even shorter than before the improvement. This is due to
the improved estimation of each Simulink block, which enables
parallelization with finer granularity. Based on these results, the
proposed improvement methods of the estimation time of each
Simulink block and parallelization.

The estimation execution time when parallelized is shown in
Fig. 11. The bar graph on the left side of Fig. 11 (before improve-
ment) shows the estimated execution time with 16 cores. The ver-
tical axis of this graph is the execution time on 16 cores divided
by the execution time on one core. The results show that the esti-
mated time is shorter than the execution time for all models. This
is due to the fact that the communication time is not taken into
account in the estimation of the parallelized model. Therefore, in
the next section, the estimated time taking into account the com-
munication time is measured.

4.4 Estimated execution time improvement using inter-core
communication time

The time of synchronous communication between the cores is
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Fig. 12 The synchronous inter-core communication time

measured. The measured time is used to improve the estimate of
the execution time when multiple cores.

The inter-core communication time is measured by varying the
size of the message. The measured values were the average of the
middle 80% of the 1,000 measurements of the communication
time. The maximum value was 200 bytes, as this is the maximum
size that MPPA3-80 Coolidge can send. The communication time
between cores is proportional to the size of the message sent, pre-
sented in Fig. 12.

Next, the execution time estimated by the proposed improve-
ment method is described. The bar graph on the right side of
Fig. 11 (after improvement) shows the improved estimated exe-
cution time with 16 cores. The vertical axis of this graph is the
estimated execution time of 16 cores divided by the execution
time of 16 cores. Therefore, the closer the value is to one, the
better the accuracy of the estimate.

The proposed method uses the communication time between
cores to improve the estimation time. For this purpose, we ob-
tained the number of communication channels for each Simulink
model. As a result, the number of communication channels was
41 for e1000, 99 for e3000, and 150 for e5000. In addition, the
size of the communication messages for each model is all the
same. As a result, the error in the estimation of the execution
time when e1000 and e3000 are used is within 20%.

However, the error in the estimated execution time of e5000 is
33%, which is not on target. This is due to the fact that as the scale
of the model increases and the communication becomes complex,
the time spent waiting for synchronous communication becomes
larger than that of a single Simulink block. The estimation of the
waiting time for synchronous communication to be an issue for
the future. However, the proposed method is effective because it
improves the error of the estimated execution time.

4.5 Discussion
In this section, scalability and limitations of the proposed es-

timation method are discussed. The proposed method can sup-
port not only MPPA-80 Coolidge but also other hardware plat-
forms [20]. In particular, the proposed method can be directly
used for parallelization using MBP. This is because MBP has im-
proved the part of the process that uses the SHIM information to
estimate the Simulink blocks. SHIM can have information on any
processor as described in Section 2.2, and therefore the proposed
method can be applied to any processor. MPPA3-80 Coolidge
is not yet capable of inter-cluster communication. However, the

present method can apply to the related work [21]. Thus, the pro-
posed method can apply to processors with a cluster structure.
Furthermore, the proposed estimation method can be automated
and requires little time for improvement.

Next, regarding the marginal nature of the approach. The esti-
mated time normalized by executing time in Fig. 9 is close to one,
which is a sufficient improvement with respect to the estimation
by using hardware information. However, the estimation of ex-
ecution time after parallelization using software information has
room for improvement. Although software information was used
in this study, the delay due to synchronization of communication
was not taken into account, resulting in this result.

5. Related Work
This section describes studies that perform estimation for

MATLAB/Simulink, the mainstream platform for MBD, and the
research that targets MPPA2-256 Bostan, the previous generation
of MPPA3-80 Coolidge.

5.1 Code parallelization tool
MBP is a code parallelization tool for model-based develop-

ment. Zhong et al. [10] proposed a model-based paralleliza-
tion approach for parallelizing embedded systems built in the
Simulink environment on a multi-core processor. Moreover,
MBP extended to support heterogeneous multi-cores [25].

Another study proposed the SLX tool [22], which provides the
ability to partition existing source code for a single core and map
partition source code to hardware. SLX also allows users to es-
timate processing performance and power consumption for both
heterogeneous and homogeneous multi-core environments based
on an abstracted hardware information description.

5.2 Improved core allocation is using eMBP
Remapping Block Method (RBM), which uses eMBP results

to remap blocks to the core. In addition, Deciding Execution Or-
der Method (DEOM) is the process of determining the order of
execution in which the entire process can be completed. Two
methods are proposed by Kojima et al. [21]. These methods can
be used to improve the parallelism of blocks and speed up the pro-
cessing while distributing the load compared to existing methods.

In another study, MAPA and RCAA were proposed by Honda
et al. [23]. These algorithms determine core allocation to many-
core processors with a cluster structure such as MPPA2-256
Bostan. MAPA uses the result of allocating N cores in eMBP
(N is the number of cores used by the user) to determine the clus-
ter allocation according to the communication contention of NoC.
RCAA takes 16*N core allocations from eMBP and remaps these
allocations to perform cluster allocation (N is the number of clus-
ters to be used). The combination of MAPA and RCAA provides
better results than using MAPA, RCAA, or eMBP alone.

In contrast to existing studies, which use the eMBP estimation
results and aim to improve performance by mapping. This paper
aims to improve the estimation time itself.

5.3 Improved the eMBP estimation time
The estimation method of the execution time considering the

overhead in model-based development was proposed by Honda
et al. [24]. They proposed an estimation method for the execution
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Table 4 Comparison of proposed method and other methods

MATLAB/

Simulink
Estimation

of Simulink block
Cluster

Structure
OS

Overhead
MPPA3-80 Coolidge

Architecture
MBP [10] X X

SLX tool [22] X X
RBM and DEOM [21] X X
MAPA and RCAA [23] X X X

Honda et al. [24] X X X X
Proposed Method X X X X X

time of applications developed using MATLAB/Simulink mod-
els on many-core platforms in MBD. SHIM was used for the es-
timation, and various performance information on MPPA2-256
Bostan, which was required information for SHIM, was mea-
sured. This estimation method took into account the operating
system overhead and the cluster structure, which differed from
existing methods. Existing studies used MPPA2-256 Bostan to
measure the eMBP estimation time and evaluate the error. On the
other hand, this paper uses techniques to reduce the error in the
estimation time using the hardware information and the software
information.

As described above, many studies have been done on the esti-
mation of execution time in model-based development. However,
as far as we know, no research has been done on model-based
development using the MPPA3-80 Coolidge.

6. Conclusion
This paper proposed the estimation time and execution time of

the Simulink model before and after parallelization are improved
using the proposed method. The proposed method estimated the
execution time for each Simulink block used for parallelization
and FPU. In addition, it estimated the execution time after paral-
lelization using communication time. The results showed that the
proposed method improved the estimation execution time of each
block and reduces the execution time during parallelization. In
addition, the estimation execution time after parallelization was
improved by considering the communication time. Since this pa-
per proposed an estimation method using SHIM, it can be ap-
plied to other processors. Future work includes investigating how
to measure the estimated execution time taking into account the
latency due to synchronous communication and improving the
MBP allocation method. In addition, we would like to compare
the results with the latest estimation methods.
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