

Maze Solving Algorithm for Autonomous Navigation Robot

RAJA KIRUTHIKA†1 TIPPORN LAOHAKANGVALVIT†1
PEERAYA SRIPIAN†1 MIDORI SUGAYA†1

Abstract: Autonomous navigation robots have the capability of moving from a point and finding the end point without any human
assistance. In this study, we designed and developed an autonomous line maze solving robot using the LSRB algorithm and a PID
controller. The designed robot uses the LSRB algorithm to learn and solve the maze by taking the shortest path after path
optimization. A PID controller is later added as feedback control to increase the accuracy of the design. As a result, our designed
robot is accurately able to learn and solve the maze by taking the shortest path.

Keywords: Maze solving robot, Algorithm, PID control, Navigation

1. Introduction

 A maze is a network of paths, that generally has an entrance as
well as an exit. Ever since the concept of Maze originated, many
mathematicians have considered various techniques and
algorithms to solve the maze [1]. Maze-solving problems and
algorithms are considered an important field of robotics as it
assists the rapidly growing field of Autonomous Technology.
 Automation technology has been growing rapidly in recent
years with the role of autonomous robots increasing in our day-
to-day life. These robots can be used to transport items quickly
from one location to another. An example of a day-to-day
application of having an autonomous maze-solving robot is in the
field of traffic navigation. Developing algorithms that allow one
to reach from one point to another in the shortest time enables
useful applications such as in emergencies for an ambulance [2].
Autonomous driving vehicles can also integrate the algorithms
and techniques discussed in maze solving problems.
 Currently, there are various algorithms used to design robots for
maze solving problems. Wall following, flood fill algorithms, and
pledge are popular algorithms employed while designing a maze-
solving robot [3]. In this study, we started by designing a simple
Line-Follower Maze solving robot consisting of IR sensors and
motors using the LSRB (Left Straight Right Back) algorithm. PID
control was then used to increase the accuracy of line tracing to
solve various maze paths. A line maze solving algorithm can
typically follow one of the two methods: LSRB algorithm or
RSLB (Right Straight Left Back) algorithm [3]. A robot that
follows the LSRB algorithm prioritizes taking a “left” turn when
met with an intersection whereas a robot following the RSLB
algorithm prioritizes a “right” turn. We used a feedback technique
called PID control to increase the accuracy and the line following
speed in addition to the LSRB algorithm.
 There are two goals for a typical autonomous maze-solving
robot: (1) to learn and map out the maze and (2) to optimize the
path by taking the shortest path to the desired endpoint. The
algorithm and design used to reach these goals are discussed in
the following sections of this paper.

 †1 Shibaura Institute of Technology

2. Robot Control

2.1 Following the Maze
 For the robot to follow the maze line, we used Infrared (IR)
sensors to keep track of the path, turns, and directions. IR sensors
contain a pair of the light-emitting diode and a receiver. The
infrared light from the LED reflects off the surface and is detected
by the receiver. They are often used to detect white and black
surfaces. The use of digital IR sensors provides us with two
outputs: 0 if it detects white and 1 if it detects black.
 In our project, we use “Zumo Shield for Arduino” as shown in
Fig. 1, which is equipped with 6 IR sensors. The IR sensor
readings are used to determine when the robot must turn and its
sense of direction. Fig. 2 shows sensor readings obtained from
the Zumo robot.

(a) (b)

Fig. 1 (a) Zumo Shield for Arduino (b) Bottom view of IR sensors
located on Zumo robot

Fig. 2. Example of IR sensor reading in ZUMO robot

The robot identifies the maze and the turns using the IR sensor

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 16

readings as seen in Fig 2. If the maze consists of a left turn the
IR sensor reads: 000001 or 000010. Depending on this the robot
changes its direction as seen in Table 1.

Table 1. Sensor readings and corresponding direction

Sensor Reading Direction
000100 or 001000 Go Straight

000001 or 000010 Right Turn

100000 or 010000 Left Turn

000000 Back Turn

2.2 Feedback Control
 The following are the motor movements for each direction:
l To move straight/forward, both motors are set at the

maximum speed and rotate forward simultaneously.
l To turn left, the right motor is set at the maximum speed

and the left motor speed is set to 0.
l To turn right, the left motor is set to the maximum speed

and the right motor is set to 0.
l To turn back, the robot makes a 180 degree turn in the left

direction thereby setting the left motor to maximum speed
and the right motor to 0.

 The different steering conditions, directions, and their sensor
values are illustrated in Table 1 and Fig. 3.

Fig. 3. Steering movements of Zumo robot

2.3 Feedback Control
 A PID controller is used for feedback control. More than 95%
of the control loops are of PID or PI type these days and can be
found in all areas where control is needed [4]. In line mazes it is
important for the robot to follow the line accurately despite steep
turns and curves. Using a PID controller allows our robot to do
this efficiently by monitoring the robot’s speed and increasing its
smoothness while making turns.

 PID controller uses the combination of the following 3 basic
values [5,6]:
l Proportional (P)
l Integral (I)
l Derivative (D)
 Proportional value gives us the position of our robot with
respect to the line. In this case, we control the speed of the right
and left motors of the robot, so that it follows the center of a black
line. So, when the robot is exactly on the maze-line we will get a
proportional number of 0. When it is to the left of the line the

value is positive and towards the right the value is negative.
Eq. 1 is the Proportional (P) controller in PID, where e is error, y
is the input (position obtained from IR sensor) and r is the
reference value (center value = 2500).
 𝑒	 = 𝑦 − 𝑟 (1)

 Eq. 2 is a P-controller that can be used as feedback control.
The constant Kp is multiplied with e where u is the output value.
 𝑢	 = 	𝐾! ∙ 𝑒 (2)
 This at times can lead to a never-ending overshoot of the robot
so we introduce the integral term (PI-controller) as follows:
 The integral value keeps track of the robot’s motion. In other
words, it is the sum of all the values of the proportional term (Eq.
3).

 𝑢 =	𝐾! ∙ 𝑒	 +	𝐾" ∙ ∫ 𝑒(𝜏)𝑑𝜏#
$ (3)

 The derivative value is the rate of change of the proportional.
A derivative term is added to manipulate the output value after
considering how fast the input values are changing (Eq. 4).

 𝑢 =	𝐾! ∙ 𝑒	 +	𝐾" ∙ ∫ 𝑒(𝜏)𝑑𝜏#
$ 	+	𝐾% ∙

%&(()
%(()

 (4)

 The proportional, integral, and derivative part together forms a
PID controller [5, 6].

3. Learning the Maze

 The first objective for an autonomous maze-solving robot is
to learn the maze. Here the robot must start and reach the endpoint
and learn all the possibilities it can take before reaching the end
goal.

3.1 Maze Possibilities
 Fig. 4. Illustrates all the possibilities the robot encounters while
navigating the maze to learn it.

Fig. 4. All maze path possibilities

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 17

3.2 Algorithm
 The robot operation for each possibility is decided based on
the LSRB algorithm mentioned before. The algorithm resorts to
taking a left turn when met with the different maze possibilities
(Fig. 3). Each operation/turn made by the robot is stored in
memory as a letter. This is later used by the robot to optimize the
path the robot has taken. Using this algorithm, the robot reaches
the end of the maze. Fig. 5 illustrates the flow chart for the LSRB
algorithm.

Fig. 5. Flowchart for LSRB algorithm

 The following shows the robot operation for each of the maze
possibilities discussed in Section 3.1.
l Possibility = Right: Operation = Right (R)
l Possibility = Right or left: Operation = Left (L)
l Possibility = Dead End: Operation = Back (B)
l Possibility = Straight or Left: Operation = Left (L)
l Possibility = Straight or Right: Operation = Straight (S)
l Possibility = All four ways: Operation = Left (L)
l Possibility = Finish/ End of Maze: Operation = Stop

4. Solving the Maze
 Once the maze has been learned by the robot, the path needs
to be shortened to avoid dead-end and solve the maze by taking
the shortest route. All the turns taken by the robot are stored in its
memory by using letters: “L” “S” “R” or “B”. The path
optimization algorithm is explained in the following.

An example maze path is shown in Fig. 6, where the blue
rectangular figure indicates the position of the Zumo robot. The
steps of the robot solving the maze is as follows:
1. The robot comes to a four-way point and takes a left turn. It

then reaches a dead end and turns back (Fig. 7).
2. The robot takes a left turn on its way back (Fig. 8).
3. The robot comes to a Straight or Right situation and continues

to go straight till it reaches a dead-end (Fig. 9).
4. The robot takes a back turn and finally takes a left turn to

reach its destination (Fig. 10).

Fig. 6. Example maze path

Fig. 7. Path stored in memory = [“L” “B”]

Fig. 8. Path stored in memory = [“L” “B” “L”]

L
B

L

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 18

Fig. 9. Path stored in memory = [“L” “B” “L” “S”]

Fig. 10. Path stored in memory = [“L” “B” “L” “S” “B” “L”]

 The final stored path when it reaches the end is observed in
Fig. 10 is [“L” “B” “L” “S” “B” “L”]. We can see that this is not
the shortest path for the robot to reach the end goal. Instead, we
need to shorten the stored path by reducing the stored memory
whenever it takes a back turn.
 By observing the path taken we can tell that the path [“L” “B”
“L”] is the same thing as if the robot were to store just “S”.
Similarly, the path [“S” “B” “L”] is simply just “R”. Thus, the
optimized path for the example maze in Fig. 6 is [“S” “R”].
 Considering all the possibilities we obtained the optimized
path stored in the memory as shown in Table 2.

Table 2. Optimization for path stored in memory

Memory Path Optimized Path
[“L” “B” “R”] B
[“R” “B” “L”] B
[“S” “B” “L”] R
[“L” “B” “L”] S
[“R” “B” “R”] S
[“S” “B” “R”] L
[“L” “B” “S”] R
[“R” “B” “S”] L
[“S” “B” “S”] B

 After learning the maze given in Fig. 6, we have [“L” “B”
“L” “S” “B” “L”] and by path optimization (see table 2 for
reference) we get the optimized path as [“S” “R”]. The robot after
learning will take this optimized path thereby solving the maze
by taking the shortest distance.
 If the second letter stored from the end in maze path is “B”
when maze length stored in memory is 3 or more then we
optimize the path stored in the memory. The following
pseudocode is used for the Path Optimization Algorithm:

Algorithm 1 Path Optimization Algorithm
Input: An array path containing the path stored in memory, as
well as the array length mazeLength.
Output: Optimized Maze path
1: if (mazeLength > 2 and path [mazeLength – 2] = ‘B’)
2: totalAngle ¬ 0
3: for i = 1 ® 3, do
4: if (path [mazeLength – i]) = “R” then
5: totalAngle += 90
6: else if (path [mazeLength – i]) = “B” then
7: totalAngle += 180
8: else if (path [mazeLength – i]) = “L” then
9: totalAngle += 270
10: else
11: totalAngle += 0
12: end
13: end
14: totalAngle ¬ totalAngle % 360
15: if totalAngle = 0 then
16: path [mazeLength – 3]) = “S” then
17: else if totalAngle = 90 then
18: path [mazeLength – 3]) = “R” then
19: else if totalAngle = 180 then
20: path [mazeLength – 3]) = “B” then
21: else if totalAngle = 270 then
22: path [mazeLength – 3]) = “L” then
23: else
24: do nothing;
25: end
26: end

Fig. 11 Algorithm for path optimization

 The algorithm (Fig. 11) was used to obtain path optimization
results as shown in Table 2. For example, [LBR] we would have
a total angle of 540, and after finding the remainder we have 180
thus optimized to ‘S’ in memory. The following algorithm is
followed until the end of the maze path.

5. Results and Discussion
 Experiments were conducted to confirm the effectiveness of
our developed line-tracing robot with path optimization. At first,
we used a simple line maze (Fig. 11) without PID control.

Fig. 12. Simple line maze

 Initially while learning the maze the robot made 28 turns but
by path optimization, we reduced this to 10 turns.

S

B
L

En
d

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 19

Table 3. Comparison of the number of turns and time taken between
with and without path optimization

 When experimenting with only the LSRB algorithm and path
optimization there were times in the experiment where the robot
could not follow the line accurately while making sharp turns
when it comes across intersections. To increase accuracy of robot
while following the line we performed another experiment using
PID control along with the algorithm. After using PID control the
time decreased from 10.8 seconds to 10 seconds, thereby
increasing the speed of our robot. From our observation of the
robot behavior, this PID control also increased the capability of
the robot to trace the line smoothly in an S-shaped line track,
circular and straight motion. Systematic performance evaluation
will be performed in our future work.

6. Conclusion and Future Work
 In this study, we developed an autonomous navigation robot
with maze solving algorithm. We implemented a method for
solving and learning maze using the LSRB algorithm and path
optimization method. Then we used PID for feedback control to
improve our design by increasing speed of solving maze along
with its ability to trace line. Experiment results show that the
robot can effectively solve maze in less time by path optimization
with higher accuracy in line tracing by PID control.
 The PID control was tested in smaller mazes which involved
the robot to take circular motion, steep turns and move on S-
shaped tracks etc. The robot's behavior can be improved even
more by adding higher performance hardware and enabling it to
travel at higher speeds. For our future work, we will continue
measuring robot’s performance on various tracks as well as
employing other sensors such as replacing infrared sensors with
ultrasonic sensors to remove the need for a line. The robots can
they be compared based on various algorithms such as Wall
follower, Tremaux’s algorithm and Recursive algorithm etc. The
designed robot can then be used in real world applications that
requires one to reach from the start to end point in the shortest
distance available such as in traffic navigation. Factory or
industrial robots can use it to transport objects. It can learn the
maze path over time and take the shortest path to transport goods
to and from warehouses. The robots can also be used in home
automation for purposes such as in lawn mowers and cleaning
robots.

References
[1] M. Rahman, “Autonomous Maze Solving Robot”,

10.13140/RG.2.2.34525.82403, 2017.
[2] M. Ben-Ari and F. Mondada, “Robots and Their Applications”, In:

Elements of Robotics, Springer, Cham, pp. 1–20, 2018.
[3] B. Gupta and S. Sehgal, "Survey on techniques used in Autonomous

Maze Solving Robot,” In: 5th International Conference -

Confluence The Next Generation Information Technology Summit
(Confluence), pp. 323–328, 2014.

[4] K. J. Astrom, R. M. Murray, L. Desborough and R. Miller,
“Feedback Systems: An Introduction for Scientists and Engineers”,
Princeton University Press, 2002.

[5] M. Abdul Kader, M. Z. Islam, J. Al Rafi, M. Rasedul Islam and F.
Sharif Hossain, “Line Following Autonomous Office Assistant
Robot with PID Algorithm,” In: International Conference on
Innovations in Science, Engineering and Technology (ICISET), pp.
109–114, 2018.

[6] V. Balaji, M. Balaji, M. Chandrasekaran, M.K.A. Ahamed khan, I.
Elamvazuthi, “Optimization of PID Control for High Speed Line
Tracking Robots”, Procedia Computer Science, Vol. 76, pp. 147–
154, 2015.

 Acknowledgments We would like to thank Dr. Adilin Anuardi
for his lectures on IoT robotics and guidance on robot
development in this research.

Criteria
Without Path
Optimization

With Path
Optimization

No. of turns 28 10
Time taken 31.7 seconds 10.8 seconds

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 20

