
Self-driving Simulator Test Scenario Framework with
Event-triggered Functionality

Takuma Yabe1,a) Yuto Koyanagi1 KeitaMiura1 Takuya Azumi1

Abstract: This paper proposes a testing framework with an event-triggered functionality to validate flexible test sce-
narios of self-driving systems in a virtual environment. Autonomous vehicles have been developed and tested world-
wide, and virtual environments testing using simulators has become the mainstream driving test method for self-driving
systems. However, the virtual environment testing is difficult to set up complex movements of vehicles and pedestri-
ans, and to determine whether an ego vehicle is in dangerous states is difficult. The proposed framework provides the
event-triggered functionality to verify the movements of vehicles and pedestrians flexibly. With the event-triggered
functionality, the vehicle and pedestrian movement can be controlled by developers. The proposed framework consists
of SVL simulator, and the simulator can be linked to Autoware (open-source self-driving software) and configured
to move vehicles and pedestrians according to the position and speed of an ego vehicle. This relationship is used to
obtain the position and speed values of the ego vehicle. Experimental results demonstrate the degree to which the
event-triggered functionality affects simulation runtime.

Keywords: Self-driving System, Test Scenario, SVL Simulator, ROS, Autoware

1. Introduction
In recent years, the automotive industry has focused on plan-

ning, developing, and testing autonomous vehicles. The realiza-
tion of autonomous vehicles is expected to contribute to the re-
duction of traffic congestion and accidents. In addition, deploying
autonomous vehicles in rural areas where public transport is lack-
ing is expected to ensure that older people have access to trans-
portation, which will reduce the number of traffic accidents. Au-
tonomous vehicles; therefore, have the potential to resolve com-
plex problems in society.

Widespread use of autonomous vehicles requires a high-level
of safety; thus, a large number of sensors are used in self-driving
systems based on Robot Operating System (ROS) [1], which is a
widely used middleware robot development tool. ROS is used to
process sensor data from many sensors and is suitable for devel-
oping self-driving systems, e.g., Autoware [2], [3], open-source
self-driving software.

To ensure the safety of self-driving systems, self-driving tests
must be performed. Self-driving systems can be tested using two
different approaches. One is to drive an actual vehicle in a real
environment, (e.g., a public roadway or inside a facility). Real-
world testing can be conducted under the same operating condi-
tions as in production. However, real-world testing is expensive
and time-consuming, and it is impossible to manipulate the exter-
nal environment, such as non-ego vehicles, pedestrians, and the
weather. The other is a testing method that exploits a virtual en-
vironment using a simulator such as SVL [4], CARLA [5], and
CAT Vehicle Testbed [6]. Assuming developers have all required
testing tools, e.g., a simulator, the developers can reduce testing

1 Saitama University, Saitama-shi, Saitama-ken 338–8570, Japan
a) t.yabe.240@saitama-u.ac.jp

costs and easily test infrequent or outlier traffic scenarios, e.g.,
accidents. Testing in the virtual environments with self-driving
systems has become the norm in the automotive industry today.

Testing self-driving systems in a simulator have two problems.
The first problem is the inability to define flexible movement
settings for non-ego vehicles and pedestrians. This problem is
caused by the fact that simulators do not consider the interrela-
tionships among an ego vehicle, non-ego vehicles, and pedestri-
ans. The second problem is the difficulty in visually assessing
whether the ego vehicle is in a dangerous situation, e.g., a colli-
sion. These problems make it difficult to validate a wide range of
test cases and obtain the desired feedback.

This paper proposes a test scenario framework with the event-
triggered functionality to solve these problems. With the pro-
posed framework, developers can test self-driving systems while
controlling the non-ego vehicle and pedestrian movements us-
ing the SVL simulator. Currently, when developers simulate the
movements of non-ego vehicles and pedestrians using the SVL
simulator, the start and end points of their paths are set. The sim-
ulator automatically starts moving from the start point to the end
point when the simulation begins. However, these paths cannot
be changed or stopped after the simulation has begun, and thus
developers can only configure simple movements, e.g., straight
lines. Using the event-triggered functionality, these problems can
be solved, and the paths can be changed along the way.

To realize the event-triggered functionality, the position and
velocity states of an ego vehicle need to be incorporated into the
movement conditions of non-ego vehicles and pedestrians. Con-
trolling the movement of non-ego vehicles and pedestrians using
the position and speed information of the ego vehicle is referred
to as a “trigger.” The proposed framework allows developers to
verify flexible test scenarios using the SVL simulator, thus ex-

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 8

Driving_Scenario.pyscenario_converter.py

MATLAB/
Simulink

testing tools

SVL Simulator

Automated
Driving
Toolbox

Driving_
Scenario.m

Simulator configuration

Pedestrians’
waypoint

Non-ego vehicles’
waypoints

Pedestrians’
waypoints

Non-ego vehicles’
waypoints

RUN

template.pyclothoid_curve.py

Ego vehicle
initial position

Simulator configuration

Ego vehicle
initial position

Simulator
configuration

Ego vehicle
initial position

Autoware
Map Generation

LiDAR

Camera

Copy
Waypoints

Curve
Waypoints

ROS

Driving Scenario
Designer

scenario_converter
trigger.py

Driving_Scenario
_trigger.py

Provided tools

Autoware Map

MATLAB Map
(Road Network)

Generate
3D MAP

Input

Sensor
Data

Control

Input

Output

O
u

tp
u

t
Input

agent.py

simulator.py

remote.py

module

Fig. 1 Detail system model

panding the scope of verification. The SVL simulator represents
the movements of non-ego vehicles and pedestrians using Python
APIs.

The primary contributions of this paper are summarized as fol-
lows.
• The scope of scenarios that can be verified using the SVL

simulator is expanded.
• Feedbacks are provided to the user in the event of a crash,

thereby making it easier to confirm safety.
• The impact of the event-triggered functionality on the pro-

cessing speed of Autoware and simulation runtime is re-
duced.

The remainder of this paper is organized as follows. Section 2
describes the proposed framework’s system model. Section 3
presents the proposed framework and event-triggered function-
ality in detail. Section 4 describes an evaluation of the proposed
framework, and Section 5 describes related work. Finally, Sec-
tion 6 explains a brief conclusion.

2. System Model
This section introduces the proposed framework’s system

model with the event-triggered functionality as shown in Fig. 1.
The event-triggered functionality is realized by allowing the trig-
ger configuration to be described for non-ego vehicles and pedes-
trians in a scenario file. After setting the trigger configuration, the
scenario file runs in the SVL simulator, and Autoware controlling
the ego vehicle movement to reflect the behavior of the non-ego
vehicles and pedestrians in a natural manner. The following intro-
duces ROS, Autoware, the SVL simulator, and the Python APIs
used to control the SVL simulator.

Camera node
（Process）

Publish

Subscri
be

Image Topic
(Data)

PD

Camera

Image

Pedestrians
Detection node
（Process）

・
・
・ ROS supporting

Publish/Subscribe model

SD

Signal Detection
node

（Process）

Adding
new node

Richness
libraries & packages

are open-source

Visualization
(RViz)

Fig. 2 Advantages of Robot Operating System (ROS)

2.1 Robot Operating System (ROS)

ROS is open-source middleware used for the robot develop-
ment as shown in Fig. 2. ROS utilizes a Publish/Subscribe com-
munication model. In this model, data are referred to as a topic,
and a process is referred to as a node. Topics are pushed by pub-
lishing and received by subscribing. ROS handles large-scale pro-
cessing by separating processes into nodes and communicating
between nodes, which enables distributed processing.

In addition, ROS includes many development libraries and
packages for the sensors and actuators, e.g., LiDAR, cameras,
and inertial measurement units, which are used in self-driving
systems. ROS includes RViz, a visualization tool that can display
three-dimensional (3D) maps of the vehicle, and topic data such
as the image topic and point cloud topic. As a result, real-time

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 9

Sensing

Computing

Perception module

Localization

Detection module

Detection

Prediction

Path Planning
module

Mission
Planning

Motion
Planning

・・・

LiDAR Camera

3Dmap

Actuation

Path Following

Steering Acceleration
Brake

Fig. 3 Autoware flow

Fig. 4 Cooperation between SVL simulator and Autoware

evaluation of vehicle behavior and sensor data is possible.

2.2 Autoware

Autoware [2] is open-source self-driving software based on
ROS. Autoware provides modules required for self-driving sys-
tems. In addition, Autoware can drive a real vehicle and perform
virtual simulations with excellent visualization graphics.

Autoware comprises sensing, computing, and actuation mod-
ules, as shown in Fig. 3. The sensing module processes sensor
data from LiDAR and cameras. This module also publishes sen-
sor topics, e.g., point-cloud topic and image topics. The comput-
ing module comprises localization, detection, and planning mod-
ules. Here, the localization module compares a pre-stored 3D
map to point-cloud data from the sensing module to determine
and publish a matching point as the current position. The detec-
tion module detects surrounding objects, e.g., pedestrians, vehi-
cles, and obstacles. The planning module generates a path from
the current position to the destination, and the actuation module
calculates the velocity and angular rate required to move along a
path generated by the planning module. Autoware supports self-
driving systems by processing these modules repeatedly.

2.3 SVL simulator

The SVL simulator is an open-source simulator provided by
LG Electronics. The SVL simulator graphically recreates the vir-
tual environment described in a scenario file. The SVL simulator

1 sim = lgsvl.Simulator(os.environ.get("
SIMULATOR_HOST", "127.0.0.1"), 8181)

2 if sim.current_scene == "BorregasAve":
3 sim.reset()
4 else:
5 sim.load("BorregasAve")
6 spawns = sim.get_spawn()
7 ego_state = lgsvl.AgentState()
8 ego_state.transform = spawns[0]
9 ego = sim.add_agent("Lincoln2017MKZ (Apollo 5.0)",

lgsvl.AgentType.EGO, ego_state)
10 npc_state = lgsvl.AgentState()
11 npc_state.transform.position = spawns[0].position +

10 * forward
12 npc = sim.add_agent("Sedan", lgsvl.AgentType,

npc_state)
13 waypoints = []
14 z_delta = 12
15 for i in range(20):
16 speed = 24
17 px = 0
18 pz = (i + 1) * z_delta
19 angle = spawns[0].rotation
20 hit = sim.raycast(spawns[0].position + pz *

forward, lgsvl.Vector(0, -1, 0), 1)
21 wp = lgsvl.DriveWaypoint(hit.point, speed, angle,

0)
22 waypoints.append(wp)
23 npc.follow(waypoints)
24 sim.run()

Fig. 5 Sample Python file

sends sensor data to the self-driving software (i.e., Autoware) and
receives control values to test the movement of the ego vehicle in
the scenario.

The integration of the SVL simulator and Autoware is illus-
trated in Fig. 4. The SVL simulator (Fig. 4, right) shows the sim-
ulated environment and the ego vehicle with LiDAR. Sensor data
from LiDAR is sent to Autoware to calculate the current position.
RViz (Fig. 4, left) shows the output from Autoware, including the
current position, upcoming the angular rate, and velocity calcu-
lated by the computing module.

2.4 Python APIs to control SVL simulator

The SVL simulator uses Python APIs to build a virtual simu-
lation environment. For example, developers can manipulate the
object placement and vehicle movements in a scenario, obtain
sensor configuration and data, and control the weather and time
state. These Python APIs can be divided into the following main
types.
Simulator

The main object for connecting to the simulator and creating
other objects.

Agent
The superclass of an ego vehicle, a non-ego vehicle, and a
pedestrian.

Ego vehicle
The ego vehicle with accurate physics simulation and sen-
sors.

Non-ego vehicle
The non-ego vehicle with simplified physics (useful for cre-
ating many background vehicles.)

Pedestrian
A pedestrian walking on sidewalks.

The ego vehicle, non-ego vehicle, and pedestrian are sub-
classes of the agent, and these have common properties, e.g., con-

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 10

SVL Simulator
Autoware

Driving_Scenario
_trigger.py

Trigger
configuration Run

Position Speed

Ego vehicle Point

Pedestrian Trigger
Start
Walking

・Controlling the movement of non-ego vehicles and pedestrians by the position of ego vehicle
・Controlling the movement of non-ego vehicles and pedestrians by the speed of ego vehicle
・Clear notification of collisions with other agents and obstacles

Steering Accelerator
Brake

LiDAR

3D MAP

Camera
Python API module

agent.py

remote.py

simulator.py

Fig. 6 The workflow of a trigger scenario linking Autoware and SVL simulator

version, position, and speed. One functionality of the ego vehi-
cle is the connect bridge, which is used to activate a bridge that
establishes the communication between Autoware and the SVL
simulator. Through this connection, the movement of the ego ve-
hicle can be controlled by Autoware.

A sample description of a virtual environment using Python
APIs is shown in Fig. 5. This code is output as a Python file and
is reflected in the SVL simulator as the vehicle and pedestrian
movements and the environment. Here, lines 1-6 describe the
connection with the simulator, loading map data, and setting ini-
tial variable values. Lines 7-9 represent the generation of an ego
vehicle, and lines 10-12 show the generation of a non-ego vehi-
cle. The npc is a variable representing a non-ego vehicle. In this
code, the non-ego vehicle with the same orientation as the ego
vehicle is placed 10 m in front of the ego vehicle. Lines 13-22 set
the waypoints on the path traveled by the non-ego vehicle. Then,
follow() (Line 23) defines that the non-ego vehicle passes through
a specific waypoint, and run() (Line 24) indicates simulator exe-
cution.

2.5 Testing tools

A previous study [7] proposed a framework to convert MAT-
LAB files created in the Driving Scenario Designer (DSD) [8]
to Python file format that can be run in SVL simulations. This
existing framework allows developers to test scenarios created
in MATLAB/Simulink on the SVL simulator. The DSD creates
an original scenario file (Driving Scenario.m); then the original
scenario is converted to a scenario file that can be run in the
SVL simulator, and the scenario file can be verified by execut-
ing it in the SVL simulator. The conversion to scenario file

flow includes a smoothing function for vehicle movements. The
clothoid curve.py file generates a smooth path along the way-
points in the Driving Scenario.m file that is created by the DSD
tool.

The DSD tool is included in the Automated Driving Toolbox
(ADT) within MATLAB/Simulink. MATLAB/Simulink software
is commonly used in the automotive industry because it allows
developers to analyze data, design algorithms, generate mod-
els, and supports model-based development. MATLAB/Simulink
also supports ROS toolbox, a set of tools to communicate with
ROS-based systems, e.g., Autoware. ADT provides tools to
design, simulate, and test advanced driver assistance systems
(ADAS) and self-driving systems. The DSD creates a virtual en-
vironment by placing the environmental elements (e.g., roads, ve-
hicles, and pedestrians), and developers can set the parameters of
these elements.

3. EVENT TRIGGER
This section presents the proposed framework as shown in

Fig. 1 and Fig. 6. Firstly, this section describes the testing flow
of the proposed framework. Secondly, this section explains the
method used to realize the event-triggered functionality. Finally,
this section describes the use case that can be achieved with the
proposed framework.

3.1 Auto scenario converter of event-triggered functionality

The proposed tool to convert trigger scenarios is shown in
Fig. 1. A trigger is a condition that a non-ego vehicle moves.
The scenario converter trigger.py file can convert the trigger ob-
ject and output a python scenario file that differs from the sce-

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 11

Ego

��

�

TP

CP

Ego

NPC

��

�

TP

CP

!

!�!�

" =
#$

%$

#& = " ∗ %&

((�
()

(a) Define TP and CP

(b) Calculate !�

Ego TP

(c) Automatic Setting

NPC

��

Fig. 7 Automatic settings

nario converter.py output. The scenario converter trigger.py file
has two different functionalities from scenario converter.py.

The first functionality is a trigger position. Previously, devel-
opers must calculate the proper position of the non-ego vehicle
when the trigger occurs, and transfer the non-ego vehicle; there-
fore, creating the trigger scenarios for many test cases manually
is difficult for developers. In the proposed tool, the DSD can au-
tomatically set the trigger position in scenarios. A trigger object
is added as a new object, and the proposed framework extracts
the object’s position as the trigger position.

The second functionality is automatic settings of a non-ego ve-
hicle. The scenario test has an issue, which is necessary for devel-
opers to adjust the start position of a non-ego vehicle repeatedly.
To reduce developer workload, the proposed framework deter-
mines a non-ego vehicle’s position automatically. Fig. 7 shows
an example. TP is the trigger position to start a non-ego vehicle
when the ego vehicle reaches the position. TP also has a speed pa-
rameter (v1), i.e., the speed of the ego vehicle. CP is the crossover
position of the ego vehicle’s path and the non-ego vehicle’s path.
CP has the orientation and speed parameter (v2) of the non-ego
vehicle. The proposed framework calculates the distance d1 be-
tween TP and CP, and then estimates the time t to move d1 at v1.
To determine distance d2, time t and v2 (i.e., the non-ego vehicle’s
speed) are multiplied. The points that are d2 distant from CP in
a direction toward the opposite CP’s orientation (w1), CP’s posi-
tion (w2), and d2 distant from CP in a direction toward the CP’s
orientation (w3) are set as the non-ego vehicle’s waypoints. This
allows developers to create the scenario as shown in Fig. 7 by only
setting TP, CP, CP’s orientation, v1, and v2. This reduces that the
developers adjust the position of the non-ego vehicle repeatedly.

3.2 Driving scenario for event-triggered functionality

To realize the event-triggered functionality using the SVL sim-
ulator, linking Autoware and the SVL simulator is necessary. The
workflow of a trigger scenario linking Autoware and SVL simu-
lator is shown in Fig. 6. The trigger scenario file makes the SVL
simulator receive the ego vehicle’s position published by Auto-
ware and determines whether the ego vehicle is at the trigger
position. When Autoware operates the ego vehicle in the SVL

1 sim = lgsvl.Simulator(LGSVL__SIMULATOR_HOST,
LGSVL__SIMULATOR_PORT)

2 ...
3 def waypoint_reached(agent, index):
4 ...
5 def collision(agent1, agent2, contact):
6 ...
7 def trigger(agent):
8 ...
9 npc.on_waypoint_reached(waypoint_reached)

10 ego.on_collision(collision)
11 ego.on_trigger(trigger)
12 npc.follow(npc_waipoint)
13 sim.run()

Fig. 8 Trigger scenario file

NO

data == None

trigger_data → data

does event
occur?

does trigger occur?

event_data → data

YES YES

NO

YES
NO

event_name
in data

waypoint_func() collision_func() stop_func() trigger_func()

waypoint_reached collision stop_line trigger

Fig. 9 Event processing flowchart for SVL simulator with the event trigger
functionality

simulator, a time delay occurs from the time that the simulator
launches until the time Autoware can control the ego vehicle. The
non-ego vehicle starts running during this delay. The trigger sce-
nario does not allow a non-ego vehicle to move before the ego
vehicle reaches the trigger position; therefore, using the trigger
scenario, the non-ego vehicle waits for the ego vehicle to reach
the trigger position, and the test is performed as expected.

The event-triggered functionality is performed in a scenario file
that can be validated in the SVL simulator. An example of a trig-
ger scenario file as shown in Fig. 8 is described as follows. This
scenario file is a trigger scenario file that is written without the
codes shown in Fig. 5. This trigger scenario file contains three
callback functions, which are called when an event occurs. The
first is the waypoint reached function in Line 3, which is called
when the non-ego vehicle reaches a waypoint. The second is the
collision function in Line 5, which is called when the ego vehicle
collides with another object. This function allows to help devel-
opers find out that the ego vehicle is in danger, e.g., an accident.
As well as these two callback functions, the provided tool also
can define a new callback function for when a trigger occurs. In
this trigger scenario file, the trigger function corresponds to this

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 12

N
P
C

EGO TP

N
P
C

TPEGO
N
P
C

TPEGO

A

B

C

Fig. 10 Use case

callback function. The callback function can set the path of the
non-ego vehicle after the trigger condition is satisfied. This al-
lows developers to increase the scope of scenarios. To execute a
callback function, a function that calls the callback function, such
as the on waypoint reached function (Line 9) and the on collision
function (Line 10), is required. This function is defined in the
Python APIs module file, such as agent.py and simulator.py in
Fig. 1. The Python APIs module file contains the definitions, e.g.,
the Agent class, Pedestrian class and the functions that will help
developers to execute the scenario file. The on waypoint reached
function and on collision function are already defined in the mod-
ule file, and we defined the on trigger function (Line 11) in the
same way as them.

The flow after the on trigger function has been called is shown
in Fig. 9. The process written in red is the new process that we
added. First of all, the process enters a branch to check whether
data is stored or not. If the data does not exist, the process will
continue to loop. This data is a structure in a JSON format, which
contains the information, such as the name of the event and the
agent. If the data is not stored, it enters a conditional branch to
check whether the event has occurred or not. If an event (e.g., the
collision the objects or reach the waypoint) has occurred, the tran-
sition is made in the “YES” direction, and the data of the event
are assigned to data. If no event has occurred, it checks whether
the trigger condition is satisfied or not. If the trigger condition is
satisfied, the data of the trigger are assigned to data; otherwise,
the loop is executed again. If the event occurs or the trigger con-
dition is satisfied, the data is stored, and the process can exit the
first conditional branch. After exiting the first conditional branch,
the name of the event in the data is checked, and a different func-
tion is executed for each event. In the proposed tool, we add the
event of the trigger to the event name.

To check if the trigger condition is satisfied, the system re-
ceives the position and speed information of the ego vehicle from
Autoware. The current pose topic, which is obtained using ROS
communication, is used to obtain the position of the vehicle, and
the current velocity topic is used to obtain the velocity informa-
tion.

3.3 Use case

This section explains the use case of the proposed framework.
The proposed framework allows developers to create and con-
duct the flexible test scenarios to verify a self-driving system us-

1 2

3 4

Fig. 11 Evaluation a trigger scenario in SVL simulator

Table 1 Software versions

Software Version
ROS Melodic

Ubuntu (OS) 18.04
Autoware Autoware.AI 1.14.0

SVL simulator 2021.1

ing the SVL simulator. In addition, when verifying dangerous
scenarios, the proposed framework provides easy-to-understand
feedback about whether an ego vehicle has collided with non-ego
vehicles, pedestrians, or obstacles.

Using the proposed framework with the event-triggered func-
tionality, a scenario such as shown in Fig. 10, can be verified eas-
ily using the SVL simulator. Fig. 10 shows a scenario in which
a non-ego vehicle makes a sudden start, which is triggered by
the ego vehicle reaching TP. We uploaded a demo movie using
the proposed framework on this use case (https://youtu.be/
yCTYmegdYpc). This scenario is designed with a single NPC
to clarify the capabilities of the proposed framework, but event-
trigger functionality is also available for scenarios with multiple
NPCs.

If developers want to realize a scenario without the event-
triggered functionality, the distance from the location of the non-
ego vehicle to TP must be calculated when configuring the non-
ego vehicle. In contrast, if using the event-triggered functionary,
the distance from the location of the non-ego vehicle to TP is not
needed because the event-triggered functionary is activated when
TP is reached. The event-triggered functionality, therefore, real-
izes intuitive scenario creation and validation.

In addition to the conditions in the scenario shown in Fig. 10,
the event-triggered functionality can be used to verify a scenario
in which the non-ego vehicle makes a sudden start when it reaches
TP exceeds a certain value. The event-triggered functionality al-
lows developers to easily create and verify a wider range of the
complex scenarios. In addition, by linking the simulator to self-
driving systems, e.g., Autoware, and using collision feedback,
developers can verify the safety of the self-driving system.

4. EVALUATION
This section examines how much the event-triggered function-

ality affects a simulation runtime. The environment versions used

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 13

for the evaluation are summarized in Table 1. The evaluation of
this paper used the scenario shown in Fig. 10, which is described
in Section 3.3. This scenario includes a trigger event that could
not be simulated in existing studies. In the SVL simulator, this
scenario is executed as shown in Fig. 11. The first step is to con-
nect the SVL Simulator to the Autoware bridge. The second step
is to control the ego vehicle from Autoware, and the ego vehicle
starts. Next, when the ego vehicle reaches the trigger position,
the non-ego vehicle starts moving and passes in front of the ego
vehicle. Finally, the ego vehicle moves forward.

For comparison with the proposed tool, this paper implemented
the event trigger function using only the scenario file. In this
implementation, the trigger function was placed in the way-
point reached function in Line 3 of Fig. 8, and the waypoint was
constantly updated to check if the trigger was satisfied. The cur-
rent pose topic and the current velocity topic for obtaining the
position and velocity from Autoware were also written in the sce-
nario file.

The simulation runtime of the provided tools and when only
the scenario file was changed is shown in Fig. 12. The simulation
runtime of only the scenario file changed is 36 seconds, while
the simulation runtime with the proposed tool is 17 seconds. The
results show that the proposed tool is superior in terms of speed
to the case using only modified scenario files. The reason for
the delay in the case of changing only the scenario file is that
the waypoint reached function loops repeatedly until the trigger
is satisfied. During the loop, objects such as non-ego vehicles are
redrawn in the waypoint reached function. This redrawing pro-
cess is executed many times, which causes a large delay problem
in the case of changing only the scenario file.

To solve this problem, this paper will use the time.sleep func-
tion within the waypoint reached function. The time.sleep func-
tion can stop the process for a certain amount of time; thus,
this function is expected to reduce the number of times the way-
point reached function loops unnecessarily. The simulation run-
time of the only scenario file using the time.sleep function is also
shown in Fig. 12. Using the time.sleep function, the simulation
runtime is shorter than without the time.sleep function; however,
compared to the provided tools, it is more than 1.8 times slower.

In this paper, the event-triggered functionality is implemented
using the callback function of the trigger to achieve both a small
impact on simulation runtime and natural vehicle behavior. The
proposed framework allows developers to verify previously un-
feasible scenarios or create scenarios in a more intuitive manner
at an increased time cost.

5. RELATED WORK
This section summarizes work related to simulators and test

environments for self-driving systems. Table 2 describes the
comparison of the proposed framework and related work on sim-
ulator and test environments. The proposed framework supports
multiple test environments including event-triggered functional-
ity.

CARLA [5]: CARLA is an open-source simulator that sup-
ports the development, training, and validation of self-driving

36

17

31

0

5

10

15

20

25

30

35

40

s
im

u
la

ti
o
n

 r
u

n
ti

m
e
 (

 s
)

Only scenario file (time.sleep function not available)

Provided tools

Only scenario file (time.sleep function available)

Fig. 12 Comparison of the simulation runtime

Table 2 Comparison of previous work on simulator and test environments

Test cases C
A

R
L

A
[5

]

3x
D

si
m

ul
at

or
[9

]

A
ut

on
oV

i-
Si

m
[1

0]

A
sF

au
lt

[1
1]

M
on

tiS
im

[1
2]

A
D

-E
Y

E
[1

3]

Fo
rc

e-
ba

se
d

C
on

ce
pt

[1
4]

A
ut

om
at

ic
al

ly
ge

ne
ra

tin
g

te
st

sc
en

ar
io

s
[1

5]

Se
lf

-d
riv

in
g

V
eh

ic
le

ve
ri

fic
at

io
n

[1
6]

Sc
en

ar
io

-F
ra

m
ew

or
k

[7
]

Pr
op

os
ed

Fr
am

ew
or

k

Weather X X L X X X

Time X X X X

Machine learning X

The behavior of
other actors L X X X

The study of
driver’s behavior X

Automatically generating
the road networks X X

Detail and unit test X X X X

Event-triggered
functionality X

*“L” means “Limited.”

systems. CARLA provides open-source code and protocols, as
well as digital assets, e.g., urban layouts, buildings, and vehicles.
The simulation-executable agents in CARLA include Autoware
agents and conditional imitation learning agents.

Warwick 3xD [9]: The Warwick 3xD simulator tests real vehi-
cles weighing up to 3,000 kg on a six-degree-of-freedom hexapod
system. This simulator considers communication with both the
front and rear of the vehicle, and the developers test co-adaptive
cruise control systems. This simulator offers a wider range of
testing options for autonomous vehicles compared to other phys-
ical testing methods.

AutonoVi-Sim [10]: AutonoVi-Sim is a new algorithm for
autonomous vehicle navigation that satisfies traffic codes and
norms. AutonoVi-Sim improves learning with its new algorithm,

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 14

allowing it to simulate critical situations, e.g., jaywalking pedes-
trians or non-ego vehicles suddenly moving into the roadway.

AsFault [11]: AsFault automatically creates a virtual test en-
vironment for a lane-keeping system, which is a function of self-
driving systems. It allows for more complex and challenging
tests than randomly creating a road network. However, the only
strength of the AsFault is the creation of the road network; thus,
sensor information and surrounding buildings must be generated
separately.

MontiSim [12]: MontiSim is a framework for testing the be-
havior of self-driving systems using a model environment that
simplifies the real world. Map data are generated from Open-
StreetMap, and road signs and traffic lights are generated on a
map in an intersection-by-intersection manner. However, this
simulator only supports either high-level simulations performed
in large-scale environments, e.g., urban areas, or low-level simu-
lations performed on individual components.

Force-based concept [14]: Force-based concept is a simulator
that determines how an ego vehicle and other actors, e.g., pedes-
trians, and non-ego vehicles, move. It uses the force factor to
represent the impact of the ego vehicle on other actors. Here,
each parameter is represented by a force parameter to mimic a
real-world scenario.

Architectural implications [17]: Architectural implications
of autonomous driving is a study of self-driving tests. This study
introduced the physical testing of self-driving platforms and sum-
marized the results of real-world experiments on design con-
straints, e.g., performance, predictability, storage, temperature,
and power, associated with self-driving systems. However, this
study focused on hardware testing, which differs from the objec-
tive of the current study.

6. Conclusion
This paper has proposed a testing framework with an event-

triggered functionality to verify test cases while controlling the
movement of non-ego vehicles and pedestrians according to the
position and speed information of an ego vehicle. High-safety
standards have been required for the widespread use of au-
tonomous vehicles, and accurate driving tests must be performed.
Tests using conventional simulation techniques could not con-
sider the flexible movements of non-ego vehicles and pedestrians;
thus, determining whether the ego vehicle is in a dangerous state
is difficult.

The proposed framework realized three primary contributions:
the proposed framework increased the number of easily verifi-
able scenarios, showed collision feedback, and reduced the neg-
ative impact on the verification time by implementing the event-
triggered functionality. The proposed framework allowed devel-
opers to verify previously unfeasible scenarios and create scenar-
ios in a more intuitive manner at increased time cost. Specifi-
cally, developers could create scenarios intuitively, e.g., the sce-
nario described in Section 3.3. In addition, the collision feedback
made it easier to determine if the ego vehicle was in a dangerous
state. The simulation time when using the proposed framework
was verified in Section 4. The verification results showed that the

proposed framework took at least 1.8 times faster than changing
only the conventional scenario file. Note that the methodology
of the proposed framework does not depend on ROS; therefore,
the proposed framework can be applied to ROS 2 [18] such as
Autoware.Auto [3], [19].

Acknowledgments This work was partially supported by
JST PRESTO Grant Number JPMJPR1751.

References
[1] Open Robotics: Robot Operating System, https://www.ros.org/.
[2] Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M.,

Kitsukawa, Y., Monrroy, A., Ando, T., Fujii, Y. and Azumi, T.: Auto-
ware on Board: Enabling Autonomous Vehicles with Embedded Sys-
tems, Proceeding of IEEE conference on International Conference on
Cyber-Physical Systems (ICCPS) (2018).

[3] Azumi, T., Maruyama, Y. and Kato, S.: ROS-lite: ROS Framework
for NoC-Based Embedded Many-Core Platform, Proceeding of Inter-
national Conference on Intelligent Robots and Systems (IROS) (2020).

[4] LG Electronics: SVL simulator, https://www.svlsimulator.
com/.

[5] Alexey, D., German, R., Felipe, C., Antonio, L. and Vladlen, K.:
CARLA: An Open Urban Driving Simulator, Proceeding of Confer-
ence on Robot Learning (CoRL) (2017).

[6] Bhadani, R. K., Sprinkle, J. and Bunting, M.: The CAT Vehicle
Testbed: A Simulator with Hardware in the Loop for Autonomous
Vehicle Applications, Proceeding of International Workshop on Safe
Control of Autonomous Vehicles (SCAV) (2018).

[7] Miura, K. and Azumi, T.: Scenario-Framework: Converting Driving
Scenario Framework for Testing Self-Driving Systems, Proceedings
of IEEE International Conference on Embedded and Ubiquitous Com-
puting (EUC) (2020).

[8] The MathWorks: Driving Scenario Designer,
https://jp.mathworks.com/help/driving/ref/
drivingscenariodesigner-app.html.

[9] Siddartha, K., Stewart, B., Gunwant, D. and Paul, J.: Identifying a Gap
in Existing Validation Methodologies for Intelligent Automotive Sys-
tems Introducing the 3xD Simulator, Proceeding of IEEE Intelligent
Vehicles (IV) (2015).

[10] Andrew, B., Sahil, N., Lucas, P., Daniel, B. and Dinesh, M.:
AutonoVi-Sim: Autonomous Vehicle Simulation Platform with
Weather, Sensing, and Traffic Control, Proceeding of IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW) (2017).

[11] Alessio, G., Marc, M. and Gordon, F.: Automatically testing self-
driving cars with search-based procedural content generation, Pro-
ceeding of International Symposium on Software Testing and Analysis
(ISSTA), pp. 318–328 (2019).

[12] Grazioli, F., Kusmenko, E., Roth, A., Rumpe, B. and Von, Wenckstern,
M.: Simulation Framework for Executing Component and Connector
Models of Self-Driving Vehicles, Proceeding of International Confer-
ence on Model Driven Engineering Languages and Systems (MOD-
ELS) (2017).

[13] Mohan, N. and Torngren, M.: AD-EYE: A Co-Simulation Platform
for Early Verification of Functional Safety Concepts, Proceeding of
WCX SAE World Congress Experience (WCX) (2019).

[14] Filippo, G., Evgeny, K., Alexander, R., Bernhard, R. and Michael,
Von, W.: Force-based Heterogeneous Traffic Simulation for Au-
tonomous Vehicle Testing, Proceeding of IEEE conference on Inter-
national Conference on Robotics and Automation (ICRA) (2019).

[15] Feng, G., Jianli, D., Yingdong, H. and Zilong, W.: A Test Scenario
Automatic Generation Strategy for Intelligent Driving Systems, Math-
ematical Problems in Engineering (MPE), Vol. 2019, p. 10 (2019).

[16] Nima, R., Ramneet, K., James, W., Oleg, S. and Insup, L.: Self-
Driving Vehicle Verification Towards a Benchmark, arXiv 1806.08810
(2018).

[17] Shih-Chieh, L., Yunqi, Z., Chang-Hong, H., Matt, S. M. E. H., Lingjia,
T. and Jason, M.: The Architectural Implications of Autonomous
Driving: Constraints and Acceleration, Proceeding of ACM Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pp. 751–766 (2018).

[18] Maruyama, Y., Kato, S. and Azumi, T.: Exploring the performance
of ROS2, Proceeding of International Conference on Embedded Soft-
ware (EMSOFT) (2016).

[19] The Autoware Foundation: Autoware.Auto, https://www.
autoware.auto/.

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 15

