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Abstract: Machine learning is now required to be built on embedded systems to realize edge-AI devices, where not
only weight reduction but also accuracy degradation that stems from domain shift need to be addressed. This paper
proposes Stepwise Cross-Domain Distillation (SCDD) that employs unsupervised domain adaptation for lightweight
models. By distilling knowledge from a pre-domain-adapted large model stepwisely through a teaching assistant
model, the final lightweight student model can effectively achieve good accuracy in a target domain. We also pro-
vide insights obtained through quantitative evaluations to improve stepwise knowledge distillation in various domain
shifts.Code is available at https://github.com/TaiseiYamana/SCDD.git
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1. Introduction
Machine learning traditionally has a trend of utilizing wide and

deep network structures trained by large scale dataset and requires
many computational resources. Along with the advance in In-
ternet of Things and artificial intelligence (AI) technologies, an-
other trend that increases the demands of edge AI (i.e., deploying
machine learning models on edge devices like mobile devices)
is arising. One of difficulties in edge AI stems from domain
shift [14], which is a gap between training data distribution and
environments where edge devices are deployed, leading to ac-
curacy drop in edge AI. Additionally, as edge devices generally
have severe constraints of computational resources, it is required
to compress the machine learning models into computationally
efficient and lightweight models, which may further reduce ac-
curacy. An effective solution to mitigate accuracy degradation
in edge AI is to create dataset for individual target environment
by labeling thousands of data manually and utilize it in training.
However, this approach is obviously inefficient and impractical.

The aforementioned problem was first defined as edge do-
main adaptation (EDA) [17], where model weight reduction and
adaptation should be dealt with simultaneously. Then, a frame-
work called MobileDA was proposed to resolve EDA. With cross-
domain distillation which combines unsupervised domain adap-
tation and knowledge distillation, MobileDA enabled to obtain
a lightweight model for the target environment. However, there
is still room for improvement in MobileDA, mainly in terms of
three issues as follows; (1) a teacher model is not trained for the
target domain and good knowledge is not distilled to a student
model, (2) the UDA method in MobileDA does not sufficiently
improve accuracy of student model, and (3) the size gap between
the teacher and student models, which affects knowledge distilla-
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tion, is not taken into account.
In this paper, we propose a novel stepwise cross-domain dis-

tillation (SCDD) method that tackles with the above three issues
in MobileDA. Specifically, we pre-train the teacher model in the
target domain to improve distilled knowledge (solution to the is-
sue (1)). Also, student model’s accuracy in the target domain is
improved by introducing Minimum Class Confusion (MCC) [7]
in cross-domain distillation (solution to the issue (2)). Finally, an
intermediate-sized Teacher Assistant (TA) [13] model is inserted
in the knowledge distillation path between teacher and student
models so that stepwise distillation is conducted to reduce the
size gap (solution to the issue (3)).

The contributions of this paper are summarized as follows:
• We propose a novel knowledge distillation method to dis-

till knowledge from domain-adapted teacher models to
lightweight student models.

• We improve cross-domain distillation by introducing MCC
to increase the accuracy of the student model in the target
domain compared with the original MobileDA.

• We propose stepwise cross-domain distillation (SCDD) that
makes training for lightweight student models under the tar-
get domain effective by accounting for the size gap between
teacher and student models.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly reviews knowledge distillation, unsupervised do-
main adaptation, and MobileDA. Section 3 presents our proposed
stepwise cross-domain distillation. Section 4 describes our ex-
perimental setup and results. Section 5 concludes this paper.

2. Preliminaries
This section briefly reviews baseline technologies that will be

applied to our proposed method and understand the problems in
MobileDA to be tackled.
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2.1 Knowledge Distillation (KD)
Conventionally, machine learning has achieved high inference

accuracy for a target classification task by using large models.
However, it is difficult to deploy the functions of these machine
learning models on edge devices because of the large models.
Various research has been conducted to reduce the weight by
model compression [3], [6], [5].

Knowledge Distillation (KD) is one of the most popular model
compression methods [5]. KD compresses knowledge from large
models into a single and lightweight model. In general, the large
model is called teacher, and the lightweight model is called stu-
dent. The student model can be trained to mimic the output of
the high-performance teacher model in order to achieve better ac-
curacy than the normal training process. KD using the outputs
of the models scaled by temperature, called soft label. The soft
label makes the distribution soft, so student can efficiently learn
the teacher’s knowledge. As the accuracy of the teacher model
increases, the accuracy of the student model also improves.

2.2 Unsupervised Domain Adaptation (UDA)
In practical cases, using different datasets for training and test-

ing happens frequently. Hereafter, we refer to the datasets used
for the former and latter as source domain and target domain,
respectively. In such cases, these two domains may have signif-
icant property differences called “domain shift.” Domain shift is
a common problem in image classification tasks that can result
in poor inference accuracy. Fig. 1 shows some examples of the
Office-31 dataset [14] that represents domain shift. While each
domain shares the same class objects, we can visually see differ-
ent input properties such as angles and luminance.

A conventional approach to resolve domain shift is to uti-
lize transfer learning with data labeled in the target environ-
ment. However, this imposes a laborious effort for developers
to label a huge amount of data in each target domain. There-
fore, unsupervised domain adaptation (UDA) has been studied
as an alternative approach that uses a dataset from the source
domain and unlabeled images from the target domain to adapt
to the target. Thanks for the convenience in dataset prepara-
tion, UDA has been focused and studied in various ways (e.g.,
[1], [7], [10], [11], [12], [16]). They commonly adapt to the tar-
get domain using a loss that equalizes the output of the model
in the source domain and target domain. Distilling the Knowl-
edge in a Neural Network (DANN) [1] uses a domain discrimi-
nator to make the two domains indistinguishable. Deep-CORAL
[16] minimizes the distance between the co-variant matrices of
the model outputs for the two domains. Minimum Class Confu-
sion (MCC) [7] minimizes class confusion of the target domain
to improve accuracy. Since new methods are often proposed that
are better than the adversary methods, there is a need to improve
the approach to applying a particular DA method accordingly.

2.3 MobileDA
MobileDA [17] which is cross- domain distillation combining

KD and UDA to solve the EDA problem was proposed by Yang
et al. Cross- domain distillation performs UDA on lightweight
models while performing KD using inferred labels in the tar-
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Fig. 1: Office-31 dataset samples for five classes from three domains

get domain of a pre-trained large model. In MobileDA, Deep-
CORAL was adopted into UDA method to avoid computation
overloads. MoibleDA has been shown that computationally effi-
cient and lightweight models achieve better results than advanced
UDA methods [1], [7], [10], [11], [12], [16].

MobileDA still have room for improvement in three-
fold:(1) The teacher model is pre-trained only in the source
domain and is not adapted to the target domain. If the teacher
model does not perform well in the target domain, the distilled
knowledge may not be suitable for the target domain, which
would degrade the student model’s performance in the target
domain. (2) Necessity of reconsidering the UDA method. There
is a possibility that the accuracy of the student model can be
improved by introducing a UDA method that is more improving
accuracy than Deep-CORAL and less computationally expensive.
(3) The size gap between the teacher and student models is not
taken into account. In general, a large model is adopted for the
teacher for higher accuracy, while a lightweight model is adopted
for the intended student. Therefore, the size gap between models
is a problem. If this gap is large, KD may not be performed
effectively.

2.4 Teacher Assistant Knowledge Distillation (TAKD)
One drawback in KD is that distillation gets ineffective when

the gap between the student and teacher scales is larg. The rea-
son is mainly two-fold: (1) Even if the teacher is a rich model,the
student does not have the sufficient capacity to well mimic the
teacher’s behavior. And, (2) the softness of the soft target is re-
duced when the certainty of the inference in the teacher model
to the input is increased. In other words, it weakens knowledge
transfer as it undermines the information that the soft target has
about similar classes.

To overcome the aforementioned gap issue, a distillation
framework called Teacher Assistant knowledge Distillation
(TAKD) [13] was proposed. TAKD fills the gap in scale by in-
troducing a Teacher Assistant (TA) as an intermediate model in
the distillation process between the teacher and student models.
The TA model should be smaller than the teacher and larger than
the student. The distillation is done in a stepwise manner such
that the teacher distills the knowledge to the TA, and then the
TA distills the knowledge to the students. This strategy mitigates
the gap issue and increases the effectiveness of knowledge trans-
fer, thereby improving the accuracy of the student model over the

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 2



Step1: Pre-domain adaptation Step2: Cross domain dsitillation Step:3 Stepwise cross domain 
distillation Source images Target images

Teacher 

MCCCE

Pretrained
Teacher / 

TA

Source images

Target images

TA /
Student

KD

MCC

CE

Domain adapted
teacher

Student

TA

:Cross domain dsitillation

Loss Function
CE - Cross-entropy loss
MCC - Minimum Class Confusion loss
KD – Knowledge Distillation loss

Source data flow
Target data flow

Notations
Trained parameters at current stage
Fixed parameters at current stage

One-hot
Source labels

One-hot
Source labels

Fig. 2: Stepwise Cross-Domain Distillation

traditional KD. In addition, the use of multiple TAs between the
teacher and student models is effective for the segmentation of
the scale gap.

3. Stepwise cross-domain distillation (SCDD)
In this work, in order to resolve the aforementioned issues that

reside in MobileDA, we propose a novel cross-domain distillation
(SCDD) method that can stepwisely distill knowledge from the
teacher to student models. First, to improve the accuracy of the
teacher model under the target domain, domain adaptation is in-
troduced to pre-train the teacher model (described in Section 3.2).
Next, to improve the effect of UDA in cross-domain distillation,
MCC is applied to cross-domain distillation (described in Sec-
tion 3.3). Finally, to reduce the size gap between teachers and
students, stepwise knowledge distillation using TA is introduced
to cross-domain distillation (described in Section 3.4).

Here we describe our target problem and assumptions and ex-
plain how each technique contributes to achieve our goal.

3.1 Problem Definition and Notation
We consider data from source and target domains in unsuper-

vised domain adaptation. The source data indicate accessible
dataset with labels, denoted as Ds = {xi

s, y
i
s}Ns

i=1. The target data
can get from new environment of edge device and are only cap-
tured without labels, denoted asDt = {xi

t}Nt
i=1. Ns,Nt are the num-

ber of data in each domain. Consider that the source and target
domains share the same task. However if there is domain shift be-
tween these two domains, mismatch between the input’s marginal
distributions of the two domains occurs. Under such a condition,
even if the model trained withDs predicts the target label {ŷi

t}Nt
i=1,

accuracy may be significantly degraded.
We assume that a lightweight model implemented on an edge

device tries to predict the label {ŷi
t}Nt

i=1 of the target domain in an
environment with domain shift. Although UDA can be used to
improve the accuracy of the lightweight models, it is difficult to
obtain sufficient improvement due to the low amount of parame-

ters in the model. Therefore, in cross-domain distillation, a large-
scaled, high-performance teacher model ΦT is used to train the
target lightweight student model ΦS . The teacher model ΦT is
trained in advance.

In our training method, we use the probability vector of a
model Φ f for a sample x, rescaled by temperature τ, where f
takes either student or teacher. Let the model’s logit be Φ f (x) =
z f = {z f

1 , . . . , z
f
|C|}, where |C| indicates number of classes. The k-th

rescaled probability vector p f is formulated as follow:

p f
k (τ, x) =

exp(z f
k /τ)∑|C|

j=1 exp(z f
j /τ)
, (1)

when τ = 1, we can use a normal probability vector. In KD,
rescaled vector by temperature is called soft label.

3.2 Pre-domain adaptation
In MobileDA, a pre-trained teacher model is used to train a stu-

dent model under the target domain. Because MobileDA’s teacher
model is pre-trained with Ds only, the teacher’s accuracy in the
target domain may not be good. This can be one factor that re-
duces the student’s accuracy in the target domain as the teacher’s
poor knowledge for the target domain would be distilled to the
student. From this perspective, our proposed method employs
UDA in pre-training of the teacher modelΦT for adapting it to the
target domain. The optimization problem of training the teacher
model ΦT is formulated as follow:

min
ΦT

L
(
xs, ys, xt;ΦT ) = LCE

(
pT (1, xs), ys;ΦT )

+ μLMCC
(
xt;ΦT ), (2)

LCE
(
p f (1, xs), ys;Φ f ) =

|C|∑

j=1

−y j log p f
j (1, xs) (3)

where μ is a trade-off for DA, and the classification loss LCE uses
a general cross-entropy loss.

Minimum class confusion (MCC) loss: From the perspective
of knowledge distillation, we aim to improve the student’s accu-
racy by increasing the teacher’s accuracy under the target domain
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in advance. For this purpose, it is essential to adopt a DA method
with a high adaptive effect. In order to reduce the learning com-
putation cost, a method with low computational load is preferred.
Consequently, we adopt an MCC loss based on minimization of
class confusion. Class confusion happens when the probability
value of a model’s output becomes ambiguous between similar
classes. Because class confusion become large when domain shift
causes accuracy degradation, domain adaptation is performed by
quantifying the class confusion and minimize it. MCC has not
only an adaptive capability to achieve the top accuracy among
various DA methods including Deep CORAL, which was utilized
in the original MobileDA, but also high convergence speed. In
MCC loss, class confusion is quantified from the model’s logit
for a sample of the target domain. MCC loss is defined as fol-
lows:

LMCC
(
xt; Φ f ) =

1
|C|

|C|∑
j=1

|C|∑
j′, j

|C̃ j j′ |, (4)

C̃ j j′ =
C j j′∑|C|

j′′=1 C j j′′
(5)

where C is quantified alignment of class confusion and normalize
to C̃. Here we briefly explain the calculation of C̃. As mentioned
above, we use the model’s logits for the sample of the target do-
main to calculate C. According to [2], as deep neural network
tends to make overconfident predictions, we rescale the probabil-
ity vector by temperature τmcc. Next, for more accurate quantifi-
cation, class confusion is highlighted by uncertainty weighting.
Uncertainty weights W can be formulated as follows:

H(p f (τmcc, xt)) = −

|C|∑
j=1

p f
j (τmcc, xt) log p f

j (τmcc, xt), (6)

W =
B(1 + exp(−H(p f (τmcc, xt))))
B∑

(1 + exp(−H(p f (τmcc, xt)))
, (7)

where H is entropy function, B is batch size. After entropy is
adjusted by laplace smoothing [15], it is normalize in the batch.
Finally, using the uncertainty weights and the scaled probability
vector, C is calculated by the following equation:

C = p f (τmcc, xt)ᵀW p f (τmcc, xt). (8)

3.3 Cross-domain distillation with adapted teacher
In our method, we propose a new cross-domain distillation

based on MobileDA. The our method uses MCC, which was also
used in the pre-domain adaptation of the teacher model, to adapt
the student model to the target domain. This is the same rea-
son of pre-domain adaptation, because MCC has higher improve-
ment accuracy than Deep-CORAL in MobileDA and low compu-
tational load. Soft label is calculated from logits of pre-domain
adapted teacher model when samples of the target domain is in-
put to teacher model and use as ground true labels for distillation
Loss. The optimization problem of training of student model ΦS

is formulated as follows:

min
ΦS

L
(
xs, ys, xt; ΦS ,ΦT )

= LCE
(
pS (1, xs), ys; ΦS )

+ µLMCC
(
xt; ΦS )

+ λLKD
(
xt; ΦS ,ΦT )

(9)

Algorithm 1 Cross-domain distillation with adapted teacher

Pretrain: MCC train the Teacher model ΦT in Eq.2
1: for each epoch do
2: Obtain the high-confidence samples xhc from xt

3: Calculate the CE Loss LCE in Eq.3
4: Calculate the MCC Loss LMCC in Eq.4
5: Calculate the KD loss LKD in Eq.10
6: Optimize the total loss in Eq.9
7: end for

Output: The student model ΦS in the IoT device

LKD
(
xt; ΦS ,ΦT )

= τ2
kd

|C|∑
j=1

pT
j (τkd, xt) log

pT
j (τkd, xt)

pS
j (τkd, xt)

(10)

where µ and λ are coefficients of the trade-off between the dis-
tillation and domain adaptation losses, respectively. Kullback-
Leibler (KL) divergence loss [8] is used as LKD. Motivated by
self-training, we pre-select samples from the target domain where
the predicted category confidence score is higher than a threshold
γ similarly to MobileDA.

Alg. 1 describes the cross-domain distillation with adapted
teacher. The teacher model is adapted to target domain with MCC
before training student model (line 1). The student is trained by
using the trained teacher model (lines 2 to 7). First, the data xt

from the target domain is input to the trained teacher model, and
the input data whose probability outputs above the threshold is
selected as xhc. Next, Loss (LCE , LMCC , LKD) are calculated from
xhc and source domain dataset Ds. Next, the student model is
tuned in Eq.9. Repeat this process for any epoch. Finally, the
trained student model is deployed to the target IoT device (line
8).

3.4 Stepwise knowledge distillation
TAKD [13] focuses on the impact of the size gap between the

teacher and student models and effectively implements knowl-
edge distillation into the student model via an intermediate
model. To address negative factors introduced by the scale gap
as described in Section 2.4, we present a stepwise distillation us-
ing Teacher Assistant (TA) into Alg. 1.

As shown in the right side of Fig. 1, the cross-domain distilla-
tion of our method is conducted from the teacher to the TA, and
then to the student. Here the TA adopts a model that is medium in
size between the teacher and student models. By this means, good
knowledge on the target domain in the teacher model is trans-
ferred to the student stepwisely. Finally, the trained, lightweight
student model can be deployed on the target IoT device.

4. Experimental Results
In this section, we first describe our evaluation dataset and

setup, and then discuss the effectiveness of our proposed method
over existing works.

4.1 Dataset
We validate our proposed method on two domain datasets,

Office-31 and Office-Home.
Office-31 is the most commonly used dataset for domain adap-

tation of image classification: it contains 31 categories and con-
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Table 1: Distillation paths (⇒ indicates cross-domain distillation).
Method Distillation
TA ResNet50⇒ResNet34
Student w/o TA ResNet50⇒ResNet18
Student w/ TA (Ours) ResNet50⇒ResNet34⇒ResNet18

Table 2: Number of parameters and MACs in each model.
Model Params (M) MACs (M)
ResNet50 23.57 4109.53
ResNet34 21.30 3670.77
ResNet18 11.19 1818.57
AlexNet 57.13 710.72

sists of 2817 images from Amazon (A), 795 images from webcam
(W), and 498 images from DSRL (D). The W and D domains
are very similar, but A contains most images in three domains.
The dataset size of Office-31 and and the number of images in
the three domains are disproportionate. We consider all cross-
domains (i.e., A→W, D→W, W→D, A→D, D→A, and W→A).

Office-Home is also a domain dataset for image classifica-
tion. It contains 65 categories and consists of 2,427 artistic im-
ages (Ar), 4,365 clip art (Cl), 4,439 product images (pr), and
4,357 real-world images (Rw) in four different domains. Here we
also consider all cross-domain (i.e., Ar→Cl, Ar→Pr, Ar→Rw,
Cl→Ar, Cl→Pr, Cl→Rw, Pr→Ar, Pr→Cl, Pr→Rw, Rw→Ar,
Rw→Cl, and Rw→Pr). The adaptation on Office-Home is more
difficult than Office-31 because Office-Home has 65 categories
and enormous domain shifts.

4.2 Setup
In our evaluation, we conducted two experiments to evaluate

the effectiveness of pre-domain adaptation and SCDD. In both ex-
periments, we train the target student model on a domain dataset
and evaluate accuracy for the target domain data. The unlabeld
target domain data is used for test but only 80 % of them is
used for training to make a fair experimental condition with Mo-
bileDA.

First, in the evaluation of pre-domain adaptation, we com-
pared three methods – MobileDA, MobileDA with a pre-domain
adapted teacher model, and our proposed method. Here Office-31
is set as the dataset. To compare with previous work, we selected
ResNet34 [4] as the teacher model and AlexNet [9] as the student
model. Next, in the SCDD evaluation, we adopted the ResNet
series [4] for all models due to their similar network structures.
We selected ResNet50 as teacher, ResNet34 as TA and ResNet18
as student to conduct our proposed cross-domain distillation. We
evaluated the accuracy effect on the student model in the target
domain by TA. Several distillation paths were evaluated as shown
in Table 1.

We implemented SCDD based on pytorch and employed the
ImageNet pre-trained parameters as the model initialization. The
whole model was trained with the learning rate of η for the classi-
fier and η

10 for the encoder. The initial learning rate η0 was set to
0.001 and updated with ηn+1 = ηn/(1.001 × n)0.9, where n is iter-
ation. We adopted mini-batch stochastic gradient descent (SGD)
with momentum of 0.9 and weight decay of 0.001. We also set
the losses as λ = 1 and µ = 1, the temperature τmcc = 2.5, and
the threshold γ = 0.7. In pre-domain adaptation experiments, we

Table 3: Accuracy comparison of teacher models (ResNet34) on
Office-31.

Method A→W D→W W→D A→D D→A W→A Avg
Source Only 71.82 97.86 99.60 76.10 60.45 60.70 77.76
Deep-CORAL 77.74 96.60 99.80 76.10 61.70 61.16 78.85
MCC 87.15 98.49 99.80 87.22 70.61 72.56 85.97

set τkd = 4, and in SCDD experiments, we set τkd = 8. These pa-
rameters are adopted empirically. The parameter sizes and MACs
in each model are shown in Table 2. It is clear that the computa-
tional efficiency increases from the teacher model to the student
model.

4.3 Results
As shown in Table 3, the accuracy of the teacher model in

the target domain is improved by using the domain adaptation
method compared with the source only. The MCC we employed
improves the accuracy over Deep-CORAL used in MobileDA. As
shown in Table 4, where the pre-domain adapted teacher model
is used for cross-domain distillation, the average accuracy of the
student model is improved by 0.13% in the same MobileDA. As
the accuracy of the teacher model increases, the correctness of
the soft labels on the teacher’s side used in the distillation loss
increases, thus training of the students model is improved. More-
over, our proposed method with MCC-adapted teacher improves
the accuracy by 7.84 % from MobileDA with Source only.

In terms of teacher pre-training, MCC is better than Deep-
CORAL because it can be trained with lower batch size and
higher accuracy than Deep-CORAL. To confirm the effectiveness
of the cross-domain distillation employing MCC, we compared it
to MobileDA under the condition that trained model with Source
only is set as teacher. We can see that cross-domain distillation
employing MCC is 0.33 % higher accuracy of student model than
MobileDA employing Deep-CORAL one.

Next, as shown in Table 5, in the experiment of SCDD on the
OfficeHome dataset, adapting TA to the proposed cross-domain
distillation improves the accuracy of the student model under par-
ticular domain shifts. For example, in Rw→Cl, the TA improves
the accuracy of the student model by 0.83%. However, there are
another particular domain shifts where TA produces poor train-
ing results. In Rw→Cl, there is a 0.87% decrease in accuracy
even though TA is used. Comparing the accuracy of the teacher
to TA, accuracy of TA is better than teacher even though the TA
size is smaller than Teacher. However, accuracy of Student dis-
tilled form TA may became deteriorate even when TA have better
accuracy than teachers. We need to find out the cause of this phe-
nomenon in order to improve SCDD.

4.4 Analysis and ideas for improvement
In this sub section, we will discuss the trends and causes of

each domain shifts while analyzing the experimental results of
SCDD. From these considerations, we will mention suggestions
for improvement of the SCDD.

First, we investigated the structural compatibility of the
ResNet34 and ResNet18 models, as shown in Figure.5. When
ResNet34 is set as the TA, the change in accuracy of ResNet18
from ResNet34 is decreased under most domain shifts. However,
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Table 4: Accuracy comparisons of student models (AlexNet) between MobileDA and CDD by MCC on Office-31.
Method Teacher’s method A→W D→W W→D A→D D→A W→A Avg
Source Only 49.69 93.46 95.78 47.79 32.69 33.01 58.74

MobileDA Source only 76.86 97.48 99.80 76.31 61.34 60.56 78.73
Deep-CORAL 78.11 96.73 99.60 78.71 60.21 60.03 78.90

CDD by MCC Source only 76.98 97.48 99.60 77.51 61.77 60.99 79.06
MCC 91.45 98.74 99.80 87.15 69.58 72.70 86.57

when ResNet34 is set as the teacher, the change in accuracy of
ResNet18 from ResNet34 approximated to change in accuracy
when ResNet18 is trained directly using ResNet50 as a teacher.
Therefore, the poor results of cross-domain distillation from the
TA to the students indicate that there is no structural causality be-
tween the ResNet34 and ResNet18. Therefore, the reason for the
poor results of SCDD is not the structural relationship between
the models set up, but the difference in the output data of TA and
teacher models.

Next, to get a trend of the SCDD results, the accuracy improve-
ment by TA with descending order is shown in Table 6. The
number of soft labels of TA, selected by the threshold is less
than teacher’s soft label under most domain shifts. This indi-
cates that there is a difference in the outputs of the teacher and
TA. There are three possible factor where SCDD can improve ac-
curacy; (1) where there is a sufficient number of target samples
available, (2) where the number of soft labels of the TA selected
by the threshold is not much less than the number of soft labels of
the teacher, and (3) where the TA’s accuracy is sufficiently high.
The reason for (1) is the more data of the target domain is avail-
able, the more generic the model becomes to unknown samples
in the target domain. Therefore, The reason for (2) is the effect
of TA distillation is inferior to that of teacher because it impairs
(1). Finally, the reason for (3) is that when the accuracy of TA is
high, the number of correct soft labels increases. This shows an
improvement in the quality of training of student models.

For example, in Rw→Cl, the accuracy of TA is low, but the
accuracy is improved because the number of data in the target
domain is large enough, and the number of soft labels of TA is
larger than that of the teacher. In the case of Rw→Pr, even though
the number of soft labels of TA is much smaller than that of the
teacher, the number of data in the target domain is large and the
accuracy of TA is high. Those factors indicates that accuracy of
student is improved. When Ar is specified as the target domain,
the number of datasets in Ar is too smalle. So the cross-domain
distillation from any source domain to Ar will result in a decrease
in accuracy.

Considerations for the number of soft labels selected: The
reason why the number of soft labels selected for TA decreases
from the teacher in most domain shifts is that the TA’s prediction
became to a uniform distribution than the teacher and the peak
against predict category is weak. Therefore, even if the accuracy
of TA is improved, the number of labels that exceed the threshold
are reduced. Observe the MCC loss of the TA and the teacher as
shown in Table 6. The MCC loss quantifies the class confusion
in the model. So the larger MCC loss, the more ambiguous the
predictions are among similar classes. This indicates that the pre-

dictions are uniformly distribute and having weak peaks. In the
only case where the number of soft labels increased, Rw→Cl, the
MCC Loss of TA is less than that of the teacher. Therefore, the ac-
curacy of the students is improved due to the increased soft labels
of the TA In the domain shifts where the number of soft labels
decreased, the MCC loss increased. It is clear that the prediction
of TA is closer to uniform distribution than that of the teacher,
and the decrease in the number of labels occurs even though the
accuracy is improved. Therefore, the improvement in accuracy
by TA may not be achievable due to the loss of the factor (2) for
improvement.

Discussion for improvement: Expecting that increasing the
number of soft labels on TAs will improve SCDD, we discuss
two possible approaches for future improvement. The first one is
to increase the trade-off ratio of the MCC loss. By increasing the
ratio, we can induce the MCC loss to be smaller in training than
usual. However, it is necessary to check the impact of lowering
the rate of other loss trade-offs, and investigation for empirical
knowledge should be conducted. The second point is the adjust-
ment of the threshold.When student model is trained with TAs,
threshold is set lower than when training TAs with teachers, in
order to gain more soft labels. However, there is a possibility that
the number of wrong soft labels will increase. So effect of wrong
soft labels needs to be investigated as well.

5. Conclusions
In this paper, we proposed SCDD to solve the problems of

MobileDA. Our method stepwisely distills the knowledge of a
teacher model and excellent student models in targeted environ-
ments can be trained. The approach using a pre-domain adapted
teacher is better than the approach without pre-domain adapta-
tion. The stepwise distillation approach further improved the ac-
curacy of the student models in some domains. An investigation
of the SCDD results for each domain showed that improving the
number of soft labels could improve the accuracy of student in
the future. Future work will improving the iterative distillation
approach to extend the current methodology.
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