2視点の分光画像からの液体の分光吸収係数の推定: 不定性の解析と応用

陰山 賢太^{1,a)} 川原 僚^{1,b)} 岡部 孝弘^{1,c)}

概要:液体を透過する光は,液体による光の吸収のためにそのエネルギーが減衰する.吸収による光のエ ネルギーの減衰は光路長と液体の分光吸収係数に依存し,ランバート・ベールの法則により記述される. 分光吸収係数は液体の種類・成分に依存するため,実シーンにおいてしばしば未知である.そこで本稿で は、液体中に存在する物体を液体外の2視点から撮影した分光画像から,液体の分光吸収係数を推定する 手法を提案する.具体的には,観測される分光輝度,分光吸収係数,光路長,および,フレネル項で表さ れる目的変数・説明変数が非負値であることから,非負値行列因子分解に基づいて分光吸収係数を推定す る.非負値行列因子分解による推定の不定性を解析するとともに,提案手法が液体中のシーンの形状と色 の復元に有効であることを示す.

1. はじめに

液体を透過する光は、液体による光の吸収によりそのエ ネルギーが減衰する.吸収による光のエネルギーの減衰は 光路長と液体の分光吸収係数に依存し、ランバート・ベー ルの法則により記述される [15].コンピュータビジョン分 野において、液体中における光の吸収は様々な問題解決の 手掛かりとされてきた.例えば、水による光の吸収を手掛 かりとして、物体表面上の水の検出 [19]、[20] や水中物体の 形状復元 [3]、[13]、[17] を行うことができる.しかし、分光 吸収係数は液体の種類・成分に依存するため、実シーンに おいてしばしば未知である.したがって、分光吸収係数の 計測や推定が必要となる.

液体の分光吸収係数は吸光光度法により計測することが できる [8], [11]. ランバート・ベールの法則より,吸収によ る減衰前後の分光強度と光路長から分光吸収係数を算出す ることができる.そこで,吸光光度法を用いた計測では, 入射光と透過光の分光強度の比の対数をとることで分光吸 収係数を求める.また,同様の原理で,液体中にある物体 からの放射輝度が既知である場合には分光画像から非接触 による推定も可能である.しかし,一般に液体中にある物 体の放射輝度が既知である場合は少なく,入射光の光路長 や液体中にある物体の放射輝度を必要としない非接触によ

- Kyushu Institute of Technology
- ^{a)} kenta.kageyama406@mail.kyutech.jp

 $^{\rm c)} \quad okabe@ai.kyutech.jp$

る推定手法が求められる.

そこで本稿では、受動的かつ非接触に液体の分光吸収係 数を推定する手法を提案する.本手法では、液体中に存在 する物体を液体外の2視点から撮影した分光画像のみを用 いて分光吸収係数を推定する.2視点から撮影した分光画 像において、液体中の光路長が異なることと、波長ごとに 減衰の仕方が異なることを手掛かりに分光吸収係数を推定 する.具体的には、分光強度、分光吸収係数、光路長、お よび、フレネル項で表される目的変数・説明変数が非負値 となることから、非負値行列因子分解 [4] に基づく最適化 により分光吸収係数を推定する.

また、本稿では提案手法による推定結果の不定性につい ても解析する.2視点の分光画像のみを用いた推定におい て、推定される分光吸収係数にスケールとバイアスの不定 性が残ることを示す.一方で、不定性があるものの、本手 法により推定される分光吸収係数が液体中物体の形状復元 や反射率推定に有効であることを示す.

本研究の主な貢献は以下の通りである.第一に,2視点 から撮影した分光画像のみを用いた受動的で非接触な手法 を実現する.第二に,分光吸収係数の推定が非負値行列因 子分解に帰着することを示すとともに,実画像を用いた実 験によりその動作を確認する.第三に,非負値行列因子分 解による推定結果の不定性がスケールとオフセットの2自 由度に帰着することを示すとともに,推定された相対的な 分光吸収係数が液体にある物体の形状復元や反射率推定に 有効であることを示す.

¹ 九州工業大学

^{b)} rkawahara@ai.kyutech.jp

2. 関連研究

2.1 分光吸収係数の計測

分光吸収係数を計測する従来手法として吸光光度法があ る [8], [11].吸収による減衰前後の分光強度や光路長が既 知である場合,ランバート・ベールの法則から分光吸収係 数を算出することができる.そこで,吸光光度法を用いる 計測では,入射光と透過光の分光強度の比の対数をとるこ とで分光吸収係数を求める.計測器では試料室を透過する 光の分光強度を観測することで,試料室内にある液体の分 光吸収係数を計測する.したがって,これらの手法は能動 的な接触計測となる.同様の原理で,液体中の物体の放射 輝度が既知の場合には分光画像から非接触に分光吸収係数 を求めることも可能である.しかし,実シーンにおいて液 体中の物体表面の放射輝度が既知であることは少ない.そ こで,本手法では2視点の分光画像を用いることで,受動 的かつ非接触に液体の分光吸収係数を推定する.

コンピュータビジョン分野においては、液体の吸収係数 と散乱係数をまとめた減衰係数を計測・推定する手法が存 在する. 例えば, 光路長が既知であるキャリブレーション ターゲットを撮影した画像から液体の減衰係数を推定でき ることが知られている [1], [14], [18]. また, 同じ被写体を 距離を変えながら撮影した複数枚の画像から液体の減衰 係数や吸収係数を推定する手法も存在する.これらの手法 には、予め被写体までの距離が既知であることを仮定する 手法 [21] や、ソナーを利用して距離を計測する手法 [10], structure-from-motion を利用して形状を復元することで 推定を行う手法 [5], [9] がある. しかし, これらの手法はい ずれもキャリブレーションターゲットや距離の計測・推定 が必要となる.一方で、本手法は既知のキャリブレーショ ンターゲットや幾何学的なキャリブレーションを必要と せず,2枚の分光画像のみから液体の分光吸収係数を推定 する.

2.2 コンピュータビジョンにおける応用

液体による光の吸収を手掛かりに,撮影画像から液体中 物体の形状を復元できる. Asanoら [3] は水が近赤外光を 強く吸収するという特徴を持つ [7] ことから,2 波長の近 赤外画像から水中物体の形状を復元する手法を提案してい る.また,Takataniら [17] は近赤外波長2 波長の変調光源 で照らされた水中物体をイベントベースカメラで撮影する ことで水中物体の形状を復元する手法を提案している.さ らに,Muraiら [13] は多方向近赤外光源を利用することで 水中物体の法線と深度の両方を同時に推定する手法を提案 している.

吸収係数を手掛かりに液体の検出を行うこともできる. Wang ら [20] は水による光の吸収が物体表面の見かけの反 射率を低下させることを手掛かりに,可視域から近赤外域 までの分光反射率の線形近似を用いて,反射率が未知の物 体表面においてピクセルごとに水の検出を行う手法を提案 している.さらに,WangとOkabe[19]は,液体の種類と 光路長を同時に推定することで,未知の表面における水や 油の検出に手法を拡張している.

これらの手法は、対象となる液体の分光吸収係数が既知 であることを前提としている.しかし、実シーンにおいて 液体の分光吸収係数は未知である場合が多く、事前に測定・ 推定する必要がある.本手法により、受動的かつ非接触に 分光吸収係数を推定することは、これらのコンピュータビ ジョンの分野において重要である.

3. 提案手法

本稿では,液体の分光吸収係数を受動的かつ非接触に推 定する手法を提案する.図1に示すように,提案手法では 液体中のシーンを液体外の2視点から撮影した分光画像を 利用する.ここで,液体の濃度が空間的に均一であり,散 乱が無視できることを仮定する.

散乱を無視できるような液体中において,吸収による光 のエネルギーの減衰はランバート・ベールの法則により記 述される [15].液体中のシーンのある位置 $x \in v(v = 1, 2)$ 番目の視点で撮影したとき,ある波長 λ で観測される分光 強度 $i_v(x, \lambda)$ は

$$i_v(\boldsymbol{x}, \lambda) = f_v(\boldsymbol{x}) r_v(\boldsymbol{x}, \lambda) e^{-\alpha(\lambda) l_v(\boldsymbol{x})}$$
(1)

のように表される.ここで、 $f_v(\boldsymbol{x})$ 、 $r_v(\boldsymbol{x},\lambda)$ 、 $\alpha(\lambda)$ 、 $l_v(\boldsymbol{x})$ はそれぞれ、フレネル反射による透過率、液体透過前の物体表面の分光強度、分光吸収係数、液体中の光路長である.

式 (1) により, それぞれの視点の分光強度 $i_1(\boldsymbol{x}, \lambda), i_2(\boldsymbol{x}, \lambda)$ について比の対数をとると

$$\ln \frac{i_1(\boldsymbol{x},\lambda)}{i_2(\boldsymbol{x},\lambda)} = \ln \frac{f_1(\boldsymbol{x})r_1(\boldsymbol{x},\lambda)e^{-\alpha(\lambda)l_1(\boldsymbol{x})}}{f_2(\boldsymbol{x})r_2(\boldsymbol{x},\lambda)e^{-\alpha(\lambda)l_2(\boldsymbol{x})}}$$

$$= \alpha(\lambda)[l_2(\boldsymbol{x}) - l_1(\boldsymbol{x})] + \ln \frac{f_1(\boldsymbol{x})}{f_2(\boldsymbol{x})}$$
(2)

となる.ここで、液体中のシーンの物体表面の反射特性は ランバートモデルに従うと仮定する $(r_1(\boldsymbol{x}, \lambda) \simeq r_2(\boldsymbol{x}, \lambda))$.

2 視点の分光画像から,式(2)で表されるような画素の 組が画素数 P 個分,バンド数 W 個分得られたとすると, 式(2) は W × P の観測行列 S, W × 2 の波長に依存する 行列 A, 2 × P の位置に依存する行列 B を用いて

$$\boldsymbol{S} = \boldsymbol{A}\boldsymbol{B} \tag{3}$$

となる. ここで, $s_{wp} = \ln \{i_1(\boldsymbol{x}_p, \lambda_w)/i_2(\boldsymbol{x}_p, \lambda_w)\}, \alpha_w = \alpha(\lambda_w), l'_p = l_2(\boldsymbol{x}_p) - l_1(\boldsymbol{x}_p), f'_p = \ln \{f_1(\boldsymbol{x}_p)/f_2(\boldsymbol{x}_p)\}$ と置くと,式(3)の行列はそれぞれ

図 1:2 視点の観測光のモデル

$$\boldsymbol{S} = \begin{pmatrix} s_{11} & s_{12} & \cdots & s_{1P} \\ s_{21} & s_{22} & \cdots & s_{2P} \\ \vdots & \vdots & \ddots & \vdots \\ s_{W1} & s_{W2} & \cdots & s_{WP} \end{pmatrix}, \quad (4)$$

$$\boldsymbol{A} = \begin{pmatrix} \alpha_1 & 1\\ \alpha_2 & 1\\ \vdots & \vdots\\ \alpha_W & 1 \end{pmatrix}, \qquad (5)$$

$$\boldsymbol{B} = \begin{pmatrix} l'_1 & l'_2 & \cdots & l'_P \\ f'_1 & f'_2 & \cdots & f'_P \end{pmatrix}, \quad (6)$$

のようになる. ここで,図1のように $l_1(x_p) \leq l_2(x_p)$ であ ると仮定すると, $i_1(x_p, \lambda_w) \geq i_1(x_p, \lambda_w)$, $f_1(x_p) \geq f_2(x_p)$ となる. つまり,式(3)の行列*S*,*A*,*B*の全ての要素が 非負値となる. したがって,本手法では非負値行列因子分 解[4]に基づく最適化により行列*S*を行列*A*と行列*B*に 分解することで,分光吸収係数 $\alpha(\lambda)$ の推定を行う.

本手法では,交互最小二乗法を用いて行列の分解を行う. 具体的には,目的関数

$$\sum_{w,p} (s_{wp} - \alpha_w l'_p - f'_p)^2 \tag{7}$$

が最小になるような非負の値 α_w , l'_p , f'_p を求める.本手 法では, α_w と (l'_p, f'_p) に非負制約を課しながら,目的関数 が収束するまで交互に最適化を繰り返すことで分光吸収係 数の推定を行う.

4. 不定性の解析

4.1 行列分解の不定性

一般に、非負値行列因子分解の結果には不定性が存在する.
 提案手法では W×Pの観測行列 SをW×2の行列 A
 と2×Pの行列 B に分解することから、その行列間には

2×2の正則な行列 C とその逆行列を考えることができる.

$$S = AB = ACC^{-1}B = (AC)(C^{-1}B).$$
 (8)

ここで、本手法により推定される分光吸収係数 $\hat{\alpha}_w = \hat{\alpha}(\lambda_w)$ と本来の分光吸収係数 $\alpha_w = \alpha(\lambda_w)$ の間には

$$\begin{pmatrix} \hat{\alpha}_{1} & 1\\ \hat{\alpha}_{2} & 1\\ \vdots & \vdots\\ \hat{\alpha}_{W} & 1 \end{pmatrix} = \begin{pmatrix} \alpha_{1} & 1\\ \alpha_{2} & 1\\ \vdots & \vdots\\ \alpha_{W} & 1 \end{pmatrix} \begin{pmatrix} c_{11} & c_{12}\\ c_{21} & c_{22} \end{pmatrix}$$

$$= \begin{pmatrix} c_{11}\alpha_{1} + c_{21} & c_{12}\alpha_{1} + c_{22}\\ c_{11}\alpha_{2} + c_{21} & c_{12}\alpha_{2} + c_{22}\\ \vdots & \vdots\\ c_{11}\alpha_{W} + c_{21} & c_{12}\alpha_{W} + c_{22} \end{pmatrix}$$

$$(9)$$

のような関係が成り立つ.一般に,分光吸収係数は波長に ついて一定ではないことから,式(9)について, $c_{12} = 0$ か つ $c_{22} = 1$ となる.つまり,不定性行列*C*は

$$\boldsymbol{C} = \begin{pmatrix} c_{11} & 0\\ c_{21} & 1 \end{pmatrix} \tag{10}$$

となる.したがって,提案手法により推定される分光吸収 係数の不定性はスケール *c*₁₁ とバイアス *c*₂₁ の 2 自由度に 帰着する.

$$\hat{\alpha}(\lambda) = c_{11}\alpha(\lambda) + c_{21}.$$
(11)

4.2 形状復元への応用

本節では、本手法により推定した分光吸収係数が液体中のシーンの形状復元に有効であることを示す. Asanoら [3] は、単視点で撮影した 2 波長の近赤外画像から液体中のシーンの形状を復元する手法を提案している. 物体表面上のある点 x の深度 l(x) は

$$l(\boldsymbol{x}) = \frac{1}{2\{\alpha(\lambda_2) - \alpha(\lambda_1)\}} \ln \frac{i(\boldsymbol{x}, \lambda_1)}{i(\boldsymbol{x}, \lambda_2)}$$
(12)

のようにして求めることができる.したがって,液体の分 光吸収係数が既知の場合には,液体中のシーンの形状を復 元することができる.

提案手法で推定した分光吸収係数にはスケールとバイア スの不定性がある.そこで,式 (12)の分光吸収係数 α を 式 (11)の推定値に置き換えると,

$$\hat{l}(\boldsymbol{x}) = \frac{1}{2\{\hat{\alpha}(\lambda_2) - \hat{\alpha}(\lambda_1)\}} \ln \frac{i(\boldsymbol{x}, \lambda_1)}{i(\boldsymbol{x}, \lambda_2)}$$
$$= \frac{1}{c_{11}} \frac{1}{2\{\alpha(\lambda_2) - \alpha(\lambda_1)\}} \ln \frac{i(\boldsymbol{x}, \lambda_1)}{i(\boldsymbol{x}, \lambda_2)} \qquad (13)$$
$$= \frac{1}{c_{11}} l(\boldsymbol{x})$$

となる.したがって,推定される深度 $\hat{l}(\boldsymbol{x})$ について,ス

IPSJ SIG Technical Report

ケール 1/c₁₁ の不定性が残ることが分かる.一方で, c₁₁ は 全画素について一定の値を持つことから,深度にスケール の不定性はあるものの,液体中のシーンの形状を復元する ことができる.

提案手法で推定した分光吸収係数には近赤外波長が2 バンド以上含まれることから、本手法では重み付き最小 二乗法によりノイズに頑健な深度推定を行う.式(12)よ り、観測される輝度 $i(x, \lambda_n), i(x, \lambda_m)$ にそれぞれノイズ $\Delta i(x, \lambda_n), \Delta i(x, \lambda_m)$ が含まれることを仮定すると、

$$\hat{l}(\boldsymbol{x}) = \frac{1}{2\{\hat{\alpha}(\lambda_m) - \hat{\alpha}(\lambda_n)\}} \ln \frac{i(\boldsymbol{x}, \lambda_n)}{i(\boldsymbol{x}, \lambda_m)} + \frac{1}{2\{\hat{\alpha}(\lambda_m) - \hat{\alpha}(\lambda_n)\}} \left\{ \frac{\Delta i(\boldsymbol{x}, \lambda_n)}{i(\boldsymbol{x}, \lambda_n)} + \frac{\Delta i(\boldsymbol{x}, \lambda_m)}{i(\boldsymbol{x}, \lambda_m)} \right\}$$
(14)

となる.ここで、ノイズ $\Delta i(\boldsymbol{x}, \lambda_n)$ 、 $\Delta i(\boldsymbol{x}, \lambda_m)$ が、平均が 0、分散が σ^2 のガウス分布であるとすると、深度 $\hat{l}(\boldsymbol{x})$ に加 わるノイズの分散は

$$\sigma^{2}(\lambda_{n},\lambda_{m}) = \frac{i(\boldsymbol{x},\lambda_{n})^{2} + i(\boldsymbol{x},\lambda_{m})^{2}}{4\{\alpha(\lambda_{m}-\lambda_{n})\}^{2}i(\boldsymbol{x},\lambda_{n})^{2}i(\boldsymbol{x},\lambda_{m})^{2}}$$
(15)

となる.本手法では,最尤推定が重み付き最小二乗法に帰 着することから,任意の近赤外波長について

$$\sum_{n,m} w_{nm} \left[\hat{l}(\boldsymbol{x}) - \frac{1}{2\{\hat{\alpha}(\lambda_m) - \hat{\alpha}(\lambda_n)\}} \ln \frac{i(\boldsymbol{x}, \lambda_n)}{i(\boldsymbol{x}, \lambda_m)} \right]^2$$
(16)

を最小化することで,深度 $\hat{l}(x)$ を推定する.ここで,

$$w_{nm} = \frac{1}{\sigma^2(\lambda_n, \lambda_m)} \tag{17}$$

である.

4.3 反射率推定への応用

液体中シーンの反射率を推定する場合,吸収による光の 減衰を考慮する必要がある.光源とカメラがほぼ同じ位置 にあることを仮定し,吸収の影響を除去した際の物体表面 の放射輝度 $r(x, \lambda)$ は

$$r(\boldsymbol{x}, \lambda) = \frac{i(\boldsymbol{x}, \lambda)}{f(\boldsymbol{x})} e^{2\alpha(\lambda)l(\boldsymbol{x})}$$
(18)

となる.ここで,推定される分光吸収係数 $\hat{\alpha}(\lambda)$ と光路長 $\hat{l}(\boldsymbol{x})$ にスケールとバイアスの不定性があることを仮定す ると,

$$\hat{r}(\boldsymbol{x},\lambda) = \frac{i(\boldsymbol{x},\lambda)}{\hat{f}(\boldsymbol{x})} e^{2\hat{\alpha}(\lambda)\hat{l}(\boldsymbol{x})}$$

$$= \frac{e^{-2c_{21}l(\boldsymbol{x})}}{f(\boldsymbol{x}) - \frac{c_{21}}{c_{11}}l(\boldsymbol{x})} i(\boldsymbol{x},\lambda) e^{2\alpha(\lambda)l(\boldsymbol{x})}$$

$$= d(\boldsymbol{x})i(\boldsymbol{x},\lambda) e^{2\alpha(\lambda)l(\boldsymbol{x})}$$
(19)

となる.ここで、d(x)は未知の不定項である.このとき、

図 2: 実験のセットアップ

不定項 $d(\mathbf{x})$ は画素 \mathbf{x} の関数であり,波長に対しては一定 の値を持つ.したがって,復元した物体表面の放射輝度 $\hat{r}(\mathbf{x},\lambda)$ を正規化 (シェーディング除去) することで,吸収 の影響を除去した液体中物体の正規化した反射率を復元す ることができる.

5. 実験

5.1 セットアップ

提案手法の有効性を確認するために実画像を用いて実験 を行った.実験は3つのシーンを用いた.また,図2に示 すように,水槽内のシーンを液体外の2視点から撮影した. 撮影にはハロゲン光源と EBA JAPAN 製のラインスキャ ン型ハイパースペクトルカメラを用いた.実験で使用した ハイパースペクトルカメラは,近紫外域(380nm)から近赤 外域(1000nm)までの波長域を5nm ずつ,125 バンドに分 光して撮影することができる.

5.2 分光吸収係数

提案手法の有効性を確認するために,分光吸収係数の推 定結果と真値の比較を行った.それぞれの液体の分光吸収 係数の真値は,既知の被写体を水深を変化させながら撮影 することで算出した.また,分光吸収係数の真値は最大値 が1となるように正規化している.

3節より,本手法では2枚の分光画像間で対応点をとる必要がある.そこで今回は,MATLABのMSER(Maximally Stable Extremal Regions)特徴 [12] を利用して対応点を求めた.図3に入力画像について対応点を取得した例を示す.また,式(7)に示す最適化は初期値をランダムに設定する.そこで,今回はランダムな初期値100組について,目的関数を最も最小化した値を推定値とした.

図4にそれぞれのシーンにおける分光吸収係数を示す. 実験に用いた液体と液体中物体の組み合わせは(a)メチレ

図 3: 入力画像 (530nm) と対応点

ンブルーの希釈液と砂利,(b)メチレンブルーの希釈液と テクスチャのあるボード,(c)醤油の希釈液と砂利の3つ のシーンである^{*1}.なお、本手法では推定結果にスケール とバイアスの不定性が残るため、比較のために真値を既知 として最小二乗法で最適なスケールとバイアスを算出して いる.分光吸収係数を推定する波長の範囲は、メチレンブ ルーの希釈液では405nmから940nm、醤油の希釈液では 450nmから940nmとした.これは、光源が弱い、または 吸収が強いために、観測される分光強度の値が小さすぎる 波長では、分光吸収係数を推定できなかったためである.

図4より,推定された分光吸収係数について,メチレン ブルーの希釈液は赤と緑の波長を吸収して青く見え,醤油 の希釈液は青と緑の波長を吸収して赤く見え,それぞれの 液体の特徴をとらえていることが分かる.いずれの液体に ついても水で希釈しているため,近赤外の波長で水による 吸収がみられていることも分かる.さらに,スケールとバ イアスを合わせた推定結果は真値とほぼ同じ値になってい ることが分かる.また,分光吸収係数のRMS (Root Mean Square) 誤差は, (a), (b), (c) でそれぞれ 0.108, 0.108, 0.070 であった.これらのことから,提案手法による分光 吸収係数の推定が有効であることが分かる.

5.3 形状復元

推定した分光吸収係数が液体中のシーンの形状復元に有 効であることを実画像実験により確認した.撮影の際に は、Asanoら[3]の手法と同様に、ハイパースペクトルカ メラと光源をほぼ同じ位置に配置した.また、形状復元に 用いる波長について、分光反射率はほぼ同じだが、分光吸 収係数は大きく異なることを仮定している.ほとんどの物 体の分光反射率は近赤外波長ではほぼ一定となる[6]こと から、実験では分光吸収係数が大きく変化する 825nm から 900nmの波長域を利用した.また、比較のために、ノイズ の影響を強く受ける2波長のみを利用した推定も行った. 推定には分光強度が小さく、分光吸収係数が近い 890nm と 900nm を用いた.

図5は撮影した分光画像から再構成した疑似 RGB 画像 とその相対的な深度マップである.深度マップでは,浅い 画素を黄色に,深い画素を青色に表示している.深度マッ プの白い画素は,反射率が低いために,深度を推定するに

*1 (a) と (b) は液体の濃度が異なるため真値が異なる.

図 4: 分光吸収係数の推定結果

は放射強度が小さすぎる画素を示している. (a), (b) は深 度が上から下へかけて深くなり, (c), (d) は深度が左上か ら右下へかけて深くなっていく. 深度マップから, 液体中 のシーンの形状特徴が復元できていることが分かる. ま た, (a) と (b), (c) と (d) をそれぞれ比較すると, 重み付 き最小二乗法により推定することでノイズに頑健に液体中 のシーンを復元できることが分かる.

5.4 反射率推定

推定した分光吸収係数が液体中シーンの物体表面の反射 率推定に有効であることを確認した.比較として,吸収に よる影響を考慮する/しない場合に推定される反射率と無 色透明な液体中(水)のシーンから復元した反射率画像を

(d) ボード (ノイズの影響の強い 2 波長から推定)図 5: 形状復元の結果

比較した.図6は(d)吸収の影響を除去したデータと(e) 補正前のデータにおけるメチレンブルーの希釈液の疑似 RGBと反射率画像,(f)無色透明の液体(水)における疑似 RGBと反射率画像である.吸収による影響を考慮するこ とで本来の物体色に近い反射率が得られていることが分か る.また,(d)補正後の画像と(f)水画像,および,(e)補 正前の画像と(f)水画像のPSNRはそれぞれ 26.21,22.39 であった.これらのことから,推定した分光吸収係数が液

体中物体の反射率推定に有効であることが分かる.

6. まとめと今後の展望

本稿では、液体の外側から受動的かつ非接触に撮影した 2 視点の分光画像から、液体の分光吸収係数を推定する手 法を提案した.具体的には、分光吸収係数の推定が非負値 行列因子分解に帰着することを示し、行列分解の不定性を 解析した.また、実画像実験により提案手法の有効性を確 認し、推定された分光吸収係数が液体中シーンの形状復元 や反射率推定に有効であることを確認した.推定精度の向 上や不定性の解消は今後の課題である.また、散乱を含む 液体への拡張や分光画像と偏光画像の併用 [16]、および、 減衰/吸収係数に関する事前知識の利用 [2] などは今後の 検討課題である.

謝辞 本研究の一部は, JSPS 科研費 JP20H00612 の助 成を受けた.

参考文献

- Akkaynak, D. and Treibitz, T.: Sea-thru: A method for removing water from underwater images, In Proc. IEEE/CVF CVPR2019, pp.1682–1691 (2019).
- [2] Akkaynak, D., Treibitz, T., Shlesinger, T., Loya, Y., Tamir, R., and Iluz, D.: What is the space of attenuation coefficients in underwater computer vision?, In Proc. IEEE CVPR2017, pp.568–577 (2017).
- [3] Asano, Y., Zheng, Y., Nishino, K., and Sato, I.: Shape from water: Bispectral light absorption for depth recovery, In Proc. ECCV2016, pp.635–649 (2016).
- [4] Berry, M., Browne, M., Langville, A., Pauca, V., and Plemmons, R.: Algorithms and applications for approximate nonnegative matrix factorization, Computational Statistics & Data Analysis, 52(1), pp.155–173 (2007).
- [5] Bryson, M., Johnson-Roberson, M., Pizarro, O., and Williams, S. B.: *True color correction of autonomous underwater vehicle imagery*, Journal of Field Robotics, 33(6), pp.853–874 (2016).
- [6] Choe, G., Narasimhan, S. G., and Kweon, I. S.: Simultaneous estimation of near IR BRDF and finescale surface geometry, In Proc. IEEE CVPR2016, pp.2452–2460 (2016).
- [7] Curcio, J. A. and Petty, C. C.: The near infrared absorp-

tion spectrum of liquid water, JOSA A, 41(5), pp.302–304 (1951).

- [8] Jones, M. W. and Kao, K. C.: Spectrophotometric studies of ultra low loss optical glasses II: double beam method, Journal of Physics E: Scientific Instruments, 2(4), pp.331–335 (1969).
- Jordt-Sedlazeck, A. and Koch, R.: Refractive structurefrom-motion on underwater images, In Proc. IEEE ICCV2013, pp.57–64 (2013).
- [10] Kaeli, J. W., Singh, H., Murphy, C., and Kunz, C.: Improving color correction for underwater image surveys, In Proc. MTS/IEEE OCEANS2011, pp.1–6 (2011).
- [11] Kao, K. C. and Davies, T. W.: Spectrophotometric studies of ultra low less optical glasses I: single beam method, Jornal of Physics E: Scientific Instruments, 1(11), pp.1063–1068 (1968).
- [12] Matas, J., Chum, O., Urban, M., and Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions, Image and Vision Computing, 22(10), pp.761–767 (2004).
- [13] Murai, S., Kuo, M., Kawahara, R., Nobuhara, S., and Nishino, K.: Surface normals and shape from water, In Proc. IEEE/CVF ICCV2019, pp.7829–7837 (2019).
- [14] Murez, Z., Treibitz, T., Ramamoorthi, R., and Kriegman, D.: *Photometric stereo in a scattering medium*, pp.3415–3423 (2015).
- [15] Reinhard, E., Khan, E. A., Akyuz, A. O., and Johnson, G.: Color Imaging: Fundamentals and Applications, A K Peters/CRC Press (2008).
- [16] Schechner, Y. Y. and Karpel, N.: Clear underwater vision, In Proc. IEEE CVPR2004, pp.536–543 (2004).
- [17] Takatani, T., Ito, Y., Ebisu, A., Zheng, Y., and Aoto, T.: Event-based bispectral photometry using temporally modulated illumination, In Proc. IEEE/CVF CVPR2021, pp.15638–15647 (2021).
- [18] Tsiotsios, C., Angelopoulou, M. E., Kim,T.-K., and Davison, A. J.: Backscatter compensated photometric stereo with 3 sources, In Proc. IEEE ICCV2014, pp.2259–2266 (2014).
- [19] Wang, C. and Okabe, T.: Per-pixel water and oil detection on surfaces with unkown reflectance, In Proc. EUSIPCO2021, pp.601–605 (2021).
- [20] Wang, C., Okuyama, M., Matsuoka, R., and Okabe, T.: Per-pixel water detection on surfaces with unknown reflectance, IEICE Trans. Information and Systems, E104-D(10), pp.1555–1562 (2021).
- [21] Yamashita, A., Fujii, M., and Kaneko, T.: Color registration of underwater images for underwater sensing with consideration of light attenuation, In Proc. IEEE ICRA2007, pp.4570–4575 (2007).