
IPSJ SIG Technical Report

Algorithms for Happy Set Problem
on Interval Graphs and Permutation Graphs

Hiroshi Eto1,a) Takehiro Ito1,b) EijiMiyano2,c) Akira Suzuki1,d) Yuma Tamura1,e)

Abstract: In this technical report, we investigate the complexity of the Maximum Happy Set problem on subclasses
of co-comparability graphs. For a graph G and its vertex subset S , a vertex v ∈ S is happy if all v’s neighbors in G
are contained in S . Given a graph G and a non-negative integer k, Maximum Happy Set is the problem of finding a
vertex subset S of G such that |S | = k and the number of happy vertices in S is maximized. In this technical report, we
first show that Maximum Happy Set is NP-hard even for co-bipartite graphs. We then give an algorithm for n-vertex
interval graphs whose running time is O(k2n2); this improves the best known running time O(kn8) for interval graphs.
We also design an algorithm for n-vertex permutation graphs whose running time is O(k3n2). These two algorithmic
results provide a nice contrast to the fact that Maximum Happy Set remains NP-hard for chordal graphs, comparability
graphs, and co-comparability graphs.

Keywords: Graph Algorithm, Happy Set Problem, Interval Graph, Permutation Graph

1. Introduction
Easley and Kleinberg [7] said that homophily is one of the

most basic notions governing the structure of social networks.
Homophily is the principle that we are likely to associate with
people who are similar in characteristics, such as their ages, their
occupations and their interests. Motivated from homophily of so-
cial networks, Zhang and Li [12] formulated two graph coloring
problems, and recently Asahiro et al. [1] introduced another for-
mulation on graphs. In this technical report, we study the latter
formulation, defined as follows.

For a graph G = (V, E) and a subset S ⊆ V , a vertex v ∈ S is
happy if all its neighbors in G are contained in S . Given an undi-
rected graph G = (V, E) and a non-negative integer k, Maximum
Happy Set is the problem of finding a subset S ⊆ V such that
|S | = k and the number of happy vertices in S is maximized.

1.1 Known results
Although Maximum Happy Set was proposed recently,*1

it has been already studied from various viewpoints such
as polynomial-time solvability, approximability, and fixed-
parameter tractability.

Polynomial-time solvability: Maximum Happy Set is NP-hard

1 Graduate School of Information Sciences, Tohoku University
2 School of Computer Science and Systems Engineering, Kyushu Institute

of Technology
a) hiroshi.eto.b4@tohoku.ac.jp
b) takehiro@tohoku.ac.jp
c) miyano@ai.kyutech.ac.jp
d) akira@dc.tohoku.ac.jp
e) tamura@tohoku.ac.jp
*1 We note that the graph coloring problem introduced by Zhang and Li [12]

is called a similar name, Maximum Happy Vertices, but it is a different
problem from ours.

even for bipartite graphs [2], cubic graphs [2], and split
graphs [1]. On the other hand, the problem is solvable in O(k2n)
time for block graphs [2], and solvable in O(kn8) time for interval
graphs [2], where n is the number of vertices in a graph.

Approximability: Maximum Happy Set admits a polynomial-time
approximation algorithm whose approximation ratio depends on
the maximum degree of a graph [2].

Fixed-parameter tractability: Maximum Happy Set is W[1]-hard
when parameterized by k even on split graphs [1], and hence it
is very unlikely that the problem admits a fixed-parameter algo-
rithm even when restricted to split graphs and parameterized by
k. On the other hand, the problem admits fixed-parameter algo-
rithms when parameterized by graph structural parameters such
as tree-width, clique-width, neighborhood diversity, and twin-
cover number of a graph [1].

1.2 Our contributions
In this technical report, we further investigate the polynomial-

time solvability of Maximum Happy Set, by focusing on sub-
classes of co-comparability graphs. In particular, we consider
co-bipartite graphs, interval graphs, and permutation graphs.

We first show that Maximum Happy Set is NP-hard even for
co-bipartite graphs. As far as we know, this is the first in-
tractability result of Maximum Happy Set on subclasses of co-
comparability graphs. We thus need to focus on other subclasses
of co-comparability graphs, in order to seek polynomial-time
solvable cases, as below.

We then give a polynomial-time algorithm for interval graphs.
Recall that the polynomial-time solvability for interval graphs is
already known [2]. However, our algorithm runs in O(k2n2) time
for n-vertex interval graphs, which improves the best known run-

1ⓒ 2022 Information Processing Society of Japan

Vol.2022-AL-186 No.7
2022/1/28

IPSJ SIG Technical Report

ning time O(kn8) [2].
We finally give an algorithm for n-vertex permutation graphs

which runs in O(k3n2) time. This is a new polynomial-time solv-
able case, and gives a nice contrast to the known fact that Max-
imum Happy Set is NP-hard for comparability graphs and co-
comparability graphs. We note that if k is a constant, then both al-
gorithms for interval graphs and permutation graphs run in O(n2)
time.

In this technical report, we briefly summarize the complexity
and the algorithmic results for Maximum Happy Set shown in [8].
See [8] for further details.

Technical highlight: Both our polynomial-time algorithms for in-
terval graphs and permutation graphs employ basically the same
technique, that is, a dynamic programming approach based on
graph representation models. Details and formal definitions will
be given later, but we here explain the key point. Given an n-
vertex graph G = (V, E), we define a subgraph Gi = (Vi, Ei) for
each integer i = 1, 2, . . . , n, depending on a representation model
for G. Then, we wish to compute a partial solution S i = S ∗ ∩ Vi

for each Gi, where S ∗ is an optimal solution of G. Note that S i is
not always optimal for Gi, and hence it is not enough to compute
an optimal solution of Gi. The key of our algorithms is that partial
solutions S i of Gi can be characterized by only two vertices that
are not contained in S ∗, when G is an interval graph or a permu-
tation graph. This efficient characterization of partial solutions
leads to improving the running time for interval graphs.

1.3 Contrasts to related results
Our initial motivation was to develop a polynomial-time algo-

rithm for Maximum Happy Set on co-comparability graphs, be-
cause it is known that several classical problems are tractable
for co-comparability graphs even if they are NP-hard on perfect
graphs. Such examples include Minimum Dominating Set [11],
Hamiltonian Cycle [6], and Minimum Feedback Vertex Set [4].
Our result of NP-hardness for co-comparability graphs gives an
interesting contrast to these complexity examples.

The Densest k-Subgraph problem [9], which has been studied
for more than two decades in the field of graph theory, can be
seen as an edge variant of Maximum Happy Set: given an undi-
rected graph G = (V, E) and a non-negative integer k, the task
of the problem is to find a vertex subset S ⊆ V of size exactly k
such that the number of edges whose both endpoints are contained
in S is maximized. Interestingly, the complexity of Densest k-
Subgraph remains open for interval graphs, permutation graphs,
and planar graphs. Although results on Maximum Happy Set can-
not be converted directly to Densest k-Subgraph, our complexity
results in this technical report may give new insights to Densest
k-Subgraph.

2. Preliminaries
Let G = (V, E) be a graph; we denote by V(G) and E(G) the

vertex set and the edge set of G, respectively. We assume that
all graphs in this technical report are simple, undirected, and un-
weighted. For a vertex v of G, we denote by NG(v) and NG[v]
the open and closed neighborhood of v in G, respectively, that is,

NG(v) = {w ∈ V(G) : vw ∈ E(G)} and NG[v] = NG(v) ∪ {v}. For a
vertex subset V ′ ⊆ V , we denote by G −V ′ the subgraph of G ob-
tained by deleting all the vertices in V ′ and their incident edges.
We shall often write G − v instead of G − {v} for a vertex v ∈ V .

For a graph G = (V, E) and its vertex subset S ⊆ V , we say
that a vertex v ∈ V is happy with respect to S on G if NG[v] ⊆ S ;
otherwise v is unhappy with respect to S on G. We denote by
H(G; S) the set of happy vertices with respect to S on G. We
note that H(G; ∅) = ∅. Given a graph G = (V, E) and a non-
negative integer k, Maximum Happy Set is the problem of finding
a vertex subset S ⊆ V such that |S | = k and the size of H(G; S) is
maximized. For simplicity, our algorithms in this technical report
only compute the maximum value of |H(G; S)|. However, one can
easily modify the algorithms so that they find an actual subset S
in the same time complexity.

3. NP-hardness for co-bipartite graphs
A graph is co-bipartite if it is the complement of a bipartite

graph. In other words, a co-bipartite graph is a graph whose ver-
tex set can be partitioned into two cliques. We give the following
hardness result, whose proof is omitted from this technical report.

Theorem 1. Maximum Happy Set is NP-hard for co-bipartite
graphs.

4. Polynomial-time algorithm for interval
graphs

A graph G = (V, E) with vertices v1, v2, . . . , vn is called an in-
terval graph if, for some family I = {I1, I2, . . . , In} of intervals
on the real line, there is a one-to-one correspondence between V
and I such that viv j ∈ E if and only if Ii intersects I j for each
i, j ∈ {1, 2, . . . , n}. Such a family I of intervals is called an in-
terval representation of G. In this section, we give a polynomial-
time algorithm for Maximum Happy Set on interval graphs.

Theorem 2. Given an n-vertex interval graph G and a non-
negative integer k, Maximum Happy Set is solvable in O(k2n2)
time.

Before the detailed description of our algorithm, we give the
following simple but useful lemma.

Lemma 1. Let G = (V, E) be a graph and let V ′, S be subsets of
V. Then, it holds that H(G; S)\V ′ ⊆ H(G−V ′; S \V ′). Moreover,
if V ′ ⊆ S , then it holds that H(G; S) \ V ′ = H(G − V ′; S \ V ′).

Notice that Lemma 1 is applicable to general graphs as well as
interval graphs.

To explain our algorithm, we need several assumptions and no-
tations. Given an interval graph G, an interval representation I
of G can be constructed in linear time [3], [5], [10]. Therefore,
we may assume without loss of generality that an interval graph
G and its interval representation I are both given. In the re-
mainder of this section, we do not distinguish between vertices
of G and intervals of I, that is, we regard Ii as not only an in-
terval of I but also a vertex of G. We denote by left(Ii) and
right(Ii) the left endpoint and the right endpoint of an interval
Ii ∈ I, respectively. It is easy to see that an interval represen-
tation I can be transformed into another one without changing

2ⓒ 2022 Information Processing Society of Japan

Vol.2022-AL-186 No.7
2022/1/28

IPSJ SIG Technical Report

G so that distinct integers between 1 and 2n are assigned to the
endpoints left(Ii) and right(Ii) of every interval Ii. Moreover, we
assume that intervals of I are sorted in increasing order of the
right endpoints, that is, right(Ii) < right(I j) for any integers i, j
such that 1 ≤ i < j ≤ n. We then add dummy intervals I0 and
In+1 with left(I0) = −1, right(I0) = 0, left(In+1) = 2n + 1 and
right(In+1) = 2n + 2 into I. Note that, the dummy intervals I0

and In+1 correspond to the isolated vertices of G. The addition of
I0 and In+1 is not essential for proving Theorem 2, but this sim-
plifies the description of our algorithm. In the remainder of this
section, we assume that G has I0 and In+1. Let Gi be the subgraph
of G induced by a vertex set Ii = {I0, I1, . . . , Ii}. We also define
I+

i = NGi [Ii] and I−i = Ii \ I
+
i .

We describe the idea of our algorithm. Let S ∗ be a subset of
V(G)\{I0, In+1} such that S ∗ maximizes |H(G; S ∗)| among all sub-
sets of V(G) \ {I0, In+1} of size k. Since I0 and In+1 are the iso-
lated vertices on G, S ∗ is also the optimal solution of the original
graph that has no dummy vertices I0 and In+1. In order to find S ∗,
we wish to compute a partial solution S i = S ∗ ∩ V(Gi) for each
i = 0, 1, . . . , n + 1 by means of dynamic programming. Since
G = Gn+1, we have S ∗ = S n+1. Notice that a partial solution S i

is not always optimal for Gi, because a happy vertex Ii′ ∈ Ii with
respect to S i on Gi may be unhappy with respect to S ∗ on G. This
implies that it is not enough to find only an optimal solution of
Gi. To correctly compute S i, we guess integers r, u, k′ that satisfy
the following three conditions for S ∗:

• the interval Ir has the smallest left endpoint among all inter-
vals in V(G) \ (V(Gi) ∪ S ∗);

• the interval Iu has the largest right endpoint among all inter-
vals in V(Gi) \ S ∗, that is, Iu < S ∗ and Ii′ ∈ S ∗ for every i′

with u < i′ ≤ i; and
• |S i| = k′.

We say that a quadruple (i, r, u, k′) is compatible with S ∗ if
i, r, u, k′ satisfy the above three conditions. Clearly, if (i, r, u, k′)
is compatible with S ∗, then 0 ≤ u ≤ i < r ≤ n + 1 holds. For
integers i and r, we denote by Gi,r the subgraph of G induced by
V(Gi) ∪ {Ir}. We then obtain the following lemma.

Lemma 2. Let S ∗ be a subset of V(G) \ {I0, In+1} such that S ∗

maximizes |H(G; S ∗)| among all subsets of V(G) \ {I0, In+1} of size
k, and let S i = S ∗ ∩ V(Gi) for an integer i with 0 ≤ i ≤ n. For
integers r, u, k′ with 0 ≤ u ≤ i < r ≤ n+1 and k′ ≤ k, suppose that
a quadruple (i, r, u, k′) is compatible with S ∗. Then, S i maximizes
|H(Gi,r; S i)| among all subsets S i ⊆ V(Gi,r) \ {I0, Ir, Iu} of size k′

such that Ii′ ∈ S i for every i′ with u < i′ ≤ i.

Lemma 2 suggests that, for the sake of computing S i for each
i, it suffices to guess integers r, u, k′ and compute S maximizes
|H(Gi,r; S)| among all subsets S ⊆ V(Gi,r) \ {I0, Ir, Iu} of size k′

such that Ii′ ∈ S for every i′ with u < i′ ≤ i. In fact, to compute
the size of S ∗, our algorithm uses the following two main func-
tions fin(Gi,r; k′), fout(Gi,r; k′) and the subfunction f ′in(Gi,r; j, k′),
where i, r, j, k′ are integers such that 0 ≤ i < r ≤ n + 1,
0 ≤ j ≤ min{k′, i} − 1 and 0 ≤ k′ ≤ k;

• fin(Gi,r; k′) returns the maximum of |H(Gi,r; S)| among all
subsets S ⊆ V(Gi,r) \ {I0, Ir} such that Ii ∈ S and |S | = k′;

• fout(Gi,r; k′) returns the maximum of |H(Gi,r; S)| among all
subsets S ⊆ V(Gi,r) \ {I0, Ii, Ir} such that |S | = k′; and

• f ′in(Gi,r; j, k′) returns the maximum of |H(Gi,r; S)| among all
subsets S ⊆ V(Gi,r) \ {I0, Ii− j−1, Ir} such that {Ii . . . , Ii− j} ⊆ S
and |S | = k′.

We let fin(Gi,r; k′) = −∞, fout(Gi,r; k′) = −∞ and f ′in(Gi,r; j, k′) =

−∞ if there exists no subset S that satisfies all the prescribed
conditions for fin, fout and f ′in, respectively. We remark that
fout(Gi,r; k′) corresponds to the case where u = i and f ′in(Gi,r; j, k′)
corresponds to the case where u = i − j − 1 on Lemma 2. The
main function fin(Gi,r; k′) is used to improve the running time of
our algorithm. We also remark that the integer j must be less
than k′ and i because j ≥ k′ violates |S | = k′ and j ≥ i vio-
lates I0 < S . We will compute values fin(Gi,r; k′), fout(Gi,r; k′)
and f ′in(Gi,r; j, k′) by means of dynamic programming. By taking
the maximum of fin(Gn,n+1; k) and fout(Gn,n+1; k), we obtain the
maximum size of H(G; S) such that S ⊆ V(G) \ {I0, In+1} and
|S | = k.

4.1 The computation of fin(Gi,r; k′)
If i = 0, then we have fin(Gi,r; k′) = −∞ for any r and k′ be-

cause there is no subset S ⊆ V(Gi,r) \ {I0, Ir} such that Ii ∈ S .
Similarly, if k′ = 0, then we have fin(Gi,r; k′) = −∞ for any i and
r. Suppose that i > 0 and k′ > 0. We then compute fin(Gi,r; k′)
from f ′in(Gi,r; j, k′) under the assumption that f ′in(Gi,r; j, k′) has al-
ready been computed for each j with 0 ≤ j ≤ min{k′, i} − 1.
Obviously, we have

fin(Gi,r; k′) = max
0≤ j≤min{k′ ,i}−1

f ′in(Gi,r; j, k′).

We explain how to compute f ′in(Gi,r; j, k′) for each quadruple
(i, r, j, k′). We assume that the main function fout and the sub-
function f ′in have been already computed in accordance with the
lexicographical order of (i, r, j, k′). We consider the two subcases:
(I) j = 0 and (II) j > 0.

Case (I): j = 0
In this case, f ′in(Gi,r; j, k′) returns the maximum of |H(Gi,r; S)|

such that S ⊆ V(Gi,r) \ {I0, Ii−1, Ir}, Ii ∈ S and |S | = k′. From
Lemma 1, it holds that H(Gi,r; S) \ {Ii} = H(Gi−1,r; S \ {Ii}). We
thus compute f ′in(Gi,r; j, k′) from fout(Gi−1,r; k′ − 1) by deciding
whether the vertex Ii is happy with respect to S on Gi,r. Clearly,
if Ii is adjacent to the vertex Ii−1 or Ir, then Ii is unhappy. Con-
versely, if Ii is adjacent to neither Ii−1 nor Ir, then Ii is the iso-
lated vertex on Gi,r from the assumption that the intervals of I
are sorted in increasing order of the right endpoints. Thus, Ii is
happy and we have f ′in(Gi,r; j, k′) in this case as follows:

f ′in(Gi,r; j, k′) = fout(Gi−1,r; k′ − 1) if IiIi−1 ∈ E(Gi,r) or IiIr ∈ E(Gi,r),

fout(Gi−1,r; k′ − 1) + 1 otherwise.

Case (II): j > 0

This case means that f ′in(Gi,r; j, k′) returns the maximum of
|H(Gi,r; S)| such that S ⊆ V(Gi,r) \ {I0, Ii− j−1, Ir}, {Ii, . . . , Ii− j} ⊆ S
and |S | = k′. In particular, Ii−1 ∈ S holds. We thus take a value

3ⓒ 2022 Information Processing Society of Japan

Vol.2022-AL-186 No.7
2022/1/28

IPSJ SIG Technical Report

f ′in(Gi−1,r; j − 1, k′ − 1) to compute f ′in(Gi,r; j, k′). We then deter-
mine whether the vertex Ii is happy with respect to S on Gi,r. If
Ii is adjacent to Ii− j−1 or Ir on Gi,r, then Ii is unhappy because
Ii− j−1, Ir < S . If Ii is adjacent to neither Ii− j−1 nor Ir on Gi,r, then
Ii− j−1 ∈ I

−
i . This implies that I+

i ⊆ {Ii, . . . , Ii− j} ⊆ S and hence
Ii is happy. Therefore, it suffices to check whether Ii is adjacent
to Ii− j−1 or Ir on Gi,r, and we have f ′in(Gi,r; j, k′) in this case as
follows:

f ′in(Gi,r; j, k′) = f ′in(Gi−1,r; j − 1, k′ − 1) if IiIi− j−1 ∈ E(Gi,r) or IiIr ∈ E(Gi,r),

f ′in(Gi−1,r; j − 1, k′ − 1) + 1 otherwise.

4.2 The computation of fout(Gi,r; k′)
Let S be a subset of V(Gi,r) \ {I0, Ii, Ir} such that S maximizes

|H(Gi,r; S)| among all subsets S ⊆ V(Gi,r)\{I0, Ii, Ir}with |S | = k′.
Then, all vertices in I+

i and Ir are unhappy with respect to S on
Gi,r. However, some vertices in I+

i \ {Ii} may be contained in
S because they can be used to make vertices in I−i happy. We
thus consider which vertices in I+

i \ {Ii} are contained in S . In
the naive way, we enumerate all subsets of I+

i \ {Ii} of size at
most k′; it takes superpolynomial time in general. The following
lemma provides us that the number of subsets of I+

i \ {Ii} to be
enumerated is at most k′.

Lemma 3. Let Gi,r be an interval graph and suppose that there
exist intervals Ix, Iy ∈ I+

i \ {Ii} such that left(Ix) < left(Iy) for inte-
gers x, y. Then, for any subset S ⊆ V(Gi,r) such that Ii, Ix, Ir < S
and Iy ∈ S , it holds that H(Gi,r; S) ⊆ H(Gi,r; S ∪ {Ix} \ {Iy}).

Suppose that |S ∩ I+
i | = p for an integer p. We note that p is

not greater than k′ and |I+
i | − 1 because p > k′ violates |S | = k′

and p > |I+
i | − 1 violates Ii < S . We denote by Ip

i the set pro-
duced by picking the first p intervals in increasing order of the
left endpoints of intervals in I+

i \ {Ii}, that is, left(Ix) < left(Iy) for
any Ix ∈ I

p
i and any Iy ∈ I+

i \ (Ip
i ∪ {Ii}). By applying Lemma 3

to S iteratively, we can obtain a subset S ′ ⊆ V(Gi,r) \ {I0, Ii, Ir}

with |S ′| = k′ such that S ′ ∩ I+
i = I

p
i and H(Gi,r; S) ⊆

H(Gi,r; S ′). From the maximality of |H(Gi,r; S)|, S ′ also maxi-
mizes |H(Gi,r; S ′)| among all subsets of V(Gi,r) \ {I0, Ii, Ir} of size
k′. Thus, without enumerating all subsets of I+

i \ {Ii} of size at
most k′, it suffices to guess exactly p vertices in I+

i \ {Ii} are con-
tained in S and assume that S ∩ I+

i = I
p
i .

We next give another lemma that plays a central role in the
computation of fout(Gi,r; k′). Let i′ be an integer such that the in-
terval Ii′ has the largest right endpoint among all intervals in I−i .

Lemma 4. Let S be a subset of V(Gi,r) \ {Ii, Ir} and let S ′ =

S ∩ I+
i . In addition, let r′ be an integer such that the interval Ir′

has the smallest left endpoint among all intervals in I+
i ∪{Ir}\S ′.

Then, H(Gi,r; S) = H(Gi′ ,r′ ; S \ S ′).

We have prepared for computing fout(Gi,r; k′) for a triple
(i, r, k′) of integers such that 0 ≤ i < r ≤ n + 1 and 0 ≤ k′ ≤ k.
If i = 0, the graph Gi,r consists of the two isolated vertices I0 and
Ir. Only S = ∅ satisfies the prescribed conditions for fout(Gi,r; k′).
Thus, for any integer r > 0, we have fout(Gi,r; k′) = 0 if k′ = 0;

otherwise fout(Gi,r; k′) = −∞.
Suppose that i > 0. Let S be a subset of V(Gi,r)\{I0, Ii, Ir} such

that S maximizes |H(Gi,r; S)| among all subsets S ⊆ V(Gi,r) \
{I0, Ii, Ir} with |S | = k′. As mentioned before, if |S ∩ I+

i | = p
for an integer p with 0 ≤ p ≤ min{k′, |I+

i | − 1}, we can as-
sume that S ∩ I+

i = I
p
i from Lemma 3. Let r′ be an integer

such that the interval Ir′ has the smallest left endpoint among in-
tervals in I+

i ∪ {Ir} \ I
p
i . For an optimal solution S ∗ of G, if

the quadruple (i, r, i, k′) is compatible with S ∗, then the quadru-
ple (i′, r′, u, k′ − p) is also compatible with S ∗ for some integer u
with 0 ≤ u ≤ i′. Therefore, by setting S ′ = I

p
i on Lemma 4, we

compute fout(Gi,r; k′) as follows:

fout(Gi,r; k′) = max
0≤p≤min{k′ ,|I+

i |−1}
{ fin(Gi′ ,r′ ; k′ − p), fout(Gi′ ,r′ ; k′ − p)}.

The total running time of our algorithm is O(k2n2), as claimed
in Theorem 2.

5. Polynomial-time algorithm for permutation
graphs

Consider two horizontal parallel lines on the plane and a per-
mutation π between integers 1 and n, where the upper line has
distinct n points labeled 1, 2, . . . , n, and the lower line has distinct
n points labeled π(1), π(2), . . . , π(n) in the order from left to right,
respectively. For each integer i = 1, 2, . . . , n, let Li be a line seg-
ment from a point i on the upper line to a point i on the lower
line. A graph G = (V, E) with vertices v1, v2, . . . , vn is called a
permutation graph if there exists a permutation π between 1 and
n such that for any two integers i and j, viv j ∈ E if and only if
Li intersects L j. A family L of line segments corresponding to
G is called a line representation of G. We give a polynomial-
time algorithm for Maximum Happy Set on permutation graphs
by the same algorithmic approach as interval graphs. The details
are omitted from this technical report.

Theorem 3. Given an n-vertex permutation graph G and a non-
negative integer k, Maximum Happy Set is solvable in O(k3n2)
time.

6. Conclusion
In this technical report, we studied the complexity of Max-

imum Happy Set on subclasses of co-comparability graphs; co-
bipartite graphs, interval graphs and permutation graphs. We
showed that Maximum Happy Set remains NP-hard even for co-
bipartite graphs. We then gave polynomial-time algorithms for
interval graphs and permutation graphs which run in O(k2n2) time
and O(k3n2) time, respectively. Especially, our algorithm for
interval graphs improved the best known running time O(kn8).
Our polynomial-time algorithms employ basically the same tech-
nique. We believe that the technique is applicable to Maximum
Happy Set on other graph classes.

The complexity of Maximum Happy Set has been studied for
various graph classes. However, the (in)tractability of Maximum
Happy Set on planar graphs remains open. We note that the com-
plexity of the edge variant of Maximum Happy Set is also un-
known for planar graphs.

4ⓒ 2022 Information Processing Society of Japan

Vol.2022-AL-186 No.7
2022/1/28

IPSJ SIG Technical Report

Acknowledgments
This work is partially supported by JSPS KAKENHI

Grant Numbers JP18H04091, JP19K11814, JP20H05793,
JP20H05794, JP20K11666, JP21K11755 and JP21K21302,
Japan.

References
[1] Asahiro, Y., Eto, H., Hanaka, T., Lin, G., Miyano, E. and Terabaru, I.:

Parameterized Algorithms for the Happy Set Problem, WALCOM: Al-
gorithms and Computation (Rahman, M. S., Sadakane, K. and Sung,
W.-K., eds.), Cham, Springer International Publishing, pp. 323–328
(2020).

[2] Asahiro, Y., Eto, H., Hanaka, T., Lin, G., Miyano, E. and Terabaru,
I.: Complexity and approximability of the happy set problem, The-
oretical Computer Science, Vol. 866, pp. 123–144 (online), DOI:
10.1016/j.tcs.2021.03.023 (2021).

[3] Booth, K. S. and Lueker, G. S.: Testing for the consecutive ones prop-
erty, interval graphs, and graph planarity using PQ-tree algorithms,
Journal of Computer and System Sciences, Vol. 13, No. 3, pp. 335–
379 (online), DOI: https://doi.org/10.1016/S0022-0000(76)80045-1
(1976).

[4] Coorg, S. R. and Rangan, C. P.: Feedback vertex set on cocompara-
bility graphs, Networks, Vol. 26, No. 2, pp. 101–111 (online), DOI:
https://doi.org/10.1002/net.3230260205 (1995).

[5] Corneil, D. G., Olariu, S. and Stewart, L.: The LBFS Struc-
ture and Recognition of Interval Graphs, SIAM Journal on Dis-
crete Mathematics, Vol. 23, No. 4, pp. 1905–1953 (online), DOI:
10.1137/S0895480100373455 (2010).

[6] Deogun, J. S. and Steiner, G.: Polynomial Algorithms for Hamiltonian
Cycle in Cocomparability Graphs, SIAM J. Comput., Vol. 23, No. 3,
pp. 520–552 (online), DOI: 10.1137/S0097539791200375 (1994).

[7] Easley, D. and Kleinberg, J.: Networks, Crowds, and Markets: Rea-
soning about a Highly Connected World, Cambridge University Press
(2010).

[8] Eto, H., Ito, T., Miyano, E., Suzuki, A. and Tamura, Y.: Happy Set
Problem on Subclasses of Co-comparability Graphs, WALCOM: Al-
gorithms and Computation (to appear).

[9] Feige, U., Kortsarz, G. and Peleg, D.: The Dense k-Subgraph Prob-
lem, Algorithmica, Vol. 29, No. 3, pp. 410–421 (online), DOI:
10.1007/s004530010050 (2001).

[10] Hsu, W.-L. and Ma, T.-H.: Fast and Simple Algorithms for Rec-
ognizing Chordal Comparability Graphs and Interval Graphs, SIAM
Journal on Computing, Vol. 28, No. 3, pp. 1004–1020 (online), DOI:
10.1137/S0097539792224814 (1998).

[11] Kratsch, D. and Stewart, L.: Domination on Cocomparability Graphs,
SIAM Journal on Discrete Mathematics, Vol. 6, No. 3, pp. 400–417
(online), DOI: 10.1137/0406032 (1993).

[12] Zhang, P. and Li, A.: Algorithmic aspects of homophyly of networks,
Theoretical Computer Science, Vol. 593, pp. 117–131 (online), DOI:
https://doi.org/10.1016/j.tcs.2015.06.003 (2015).

5ⓒ 2022 Information Processing Society of Japan

Vol.2022-AL-186 No.7
2022/1/28

