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Abstract: Hashcash, which is a Proof of Work (PoW) of bitcoin, is based on a preimage problem of hash functions
of SHA-2 and RIPEMD. Since these hash functions employ the Merkle-Damgard (MD) construction, a preimage can
be found with a negligible amount of memory. It is well known that such calculations can be speeded up by ASIC, and
this causes a serious problem from the so-called 51% attack by dedicated ASIC mining pools. To address this issue,
we propose a new PoW scheme based on a preimage problem of variants of SHA-3. Unlike SHA-2 and RIPEMD,
SHA-3 adopts a sponge construction as an underlying domain extension algorithm. This difference allows us to make
the problem of finding a preimage very memory-consuming calculations by properly choosing parameters of sponge
functions. As a result, our scheme can achieve ASIC resistance by using SHA-3 for Hashcash.
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1. Introduction

1.1 Background
An essential issue for cryptocurrencies is how to prevent du-

plicate payments. A simple solution is to trade through a trusted
third-party central institution such as a bank. However, this so-
lution has the potential risk that the entire system may be shut
down due to an attack on the central server or the central au-
thority itself might attempt malicious behavior. To mitigate these
risks, cryptocurrencies with a decentralized system, e.g., Bitcoin
and Ethereum, are based on blockchain. The basic idea behind
blockchain is to consistently retain the correct transaction data.
Since the transaction data is stored in a form that everyone can
see and verify its correctness as a distributed ledger, malicious
users cannot manipulate the data. To maintain this property, the
blockchain needs to be secure against so-called 51% attacks in
which malicious users monopolize more than half of the compu-
tational resources.

Many people believe that monopolizing 51% of the compu-
tational power is impractical. However, there have actually
been cases of 51% attacks on cryptocurrencies such as Bitcoin
Gold [1]. The cryptocurrency used an algorithm called Proof of
Work (PoW) to prevent the attack, but this did not work well
enough.

PoW is a consensus algorithm in blockchain [2]. In order
to prevent 51% attacks, PoW should minimize the difference
in computational advantage between dedicated hardware (ASIC)
and ordinary CPUs as much as possible. A solution for this pur-
pose is a memory-hard function which consumes a large amount
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of memory accesses [3], [4], [5]. Since memory-consuming com-
putations cannot be sufficiently sped up by ASIC, the advantage
of mining pools equipmed with dedicated ASIC over ordinary
CPUs is limited. If time and memory are a steep trade-off, then
the person solving the PoW must use a large amount of mem-
ory to reduce time complexity. Therefore, a steep time-memory

tradeoff such that the amount of computational complexity ex-
ponentially increases when the amount of memory is reduced is
very important for ASIC resistance [6].

Hashcash, which is a PoW of bitcoin, is based on a preimage
problem of hash functions of SHA-2 and RIPEMD [7]. Since
these hash functions employ the Merkle-Damgard (MD) con-
struction, a preimage can be found with negligible memory by
a brute force search. Due to lack of a steep time-memory tradeoff,
Hashcash does not have a resistance against the 51% attack by
mining pools equipping ASIC.

1.2 Motivation
Our main purpose in this paper is to explore hash functions

whose preimage problem requires a large amount of memory. By
replacing such a hash function with SHA-2 and RIPEMD as un-
derlying hash functions of Hashcash, we can develop a new PoW
that has a steep time-memory tradeoff.

Equiphash [8] and MTP [6] are recently proposed PoW. These
have the property of a steep time-memory tradeoff. However,
it cannot be a drop-in-replacement for SHA-2 and RIPEMD of
Hashcash, because these are not based on a problem of preimage
finding of cryptographic hash functions.

The preliminary version of this paper was presented at the Computer
Security Symposium (CSS 2020), October 2020. The paper was recom-
mended to be submitted to the Journal of Information Processing (JIP)
by the Program Chair of CSS 2020.
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1.3 Our Contribution
In this paper, we propose a new PoW scheme based on a preim-

age problem of variants of SHA-3, which employs a sponge con-
struction [9]. There are two methods to search the preimages on
the sponge construction: a brute force search and a meet-in-the-
middle (MITM) approach unlike the MD construction. Although
the brute force search is feasible without memory, the MITM ap-
proach requires a large amount of memory to store intermediate
values. Our idea for realizing a memory-consuming PoW is to
make the MITM much more time-efficient than the brute force
search by properly choosing parameters of the sponge function.
In this case, mining pools cannot avoid choosing the memory-
consuming MITM approach as an efficient algorithm of PoW.

Furthermore, we consider two types of memory-efficient al-
gorithms for MITM: Floyd’s MITM [10] and Nikolic-Sasaki
MITM [11], and uncover parameters in order that these algo-
rithms cannot be efficiently applied.

As a result, our PoW scheme achieves a steep-time-memory

tradeoff, or namely the time complexity exponentially increases
when the memory is reduced. For example, an instantiation of
our PoW can be executed with a time complexity of 296 and 232

memory. If the amount of memory is reduced 1
216 times, the time

complexity increases to 2112 which is 216 times higher. Thus,
our scheme retains the idea of Hashcash, but achieves ASIC re-
sistance by using SHA-3 instead of SHA-2 and RIPEMD. Be-
sides, preimage problems of hash functions have been signif-
icantly evaluated by symmetric-key cryptography communities
over the past 20 years. Thus, we can have high confidence in the
difficulty of these problems. It is very important from the point of
the optimization-free requirement. Indeed, several variants of the
first version of MTP [6] were broken [12]. Finally, we show that
our schemes satisfy other PoW requirements.

1.4 Organization of this Paper
In Section 2, we describe an overview of PoW, its security re-

quirements and the problems of Hashcash. In Section 3, we ex-
plain the details of sponge functions and the possible preimage
attacks. In Section 4, we reveal the parameters for the sponge
function for realizing the requirement of a steep time-memory

tradeoff. Section 5 gives instantiations of our schemes by prop-
erly adjusting the parameters. Section 6 discusses the other se-
curity requirements, and compares these with other candidates.
Section 7 provides the conclusion.

2. Proof of Work

This section explains the purpose, definition, and security re-
quirements of PoW and then discusses the problem of existing
hash-based schemes.

2.1 Purpose of PoW
PoW is a problem that requires a certain amount of time to

solve and is utilized as a consensus scheme for decentralization.
For example, Bitcoin utilizes a preimage problem of hash func-
tions called Hashcash as an underlying PoW. Specifically, min-
ers/prover should find a preimage of a digest value of hash func-
tion whose first d bits are all zero as a solution for PoW. This is

the preimage problem of hash functions of SHA-2 or RIPEMD.
In the blockchain, after the prover solves the PoW problem, the

transaction data is connected to the blockchain. Entities can see
the data on the blockchain, however, it is very difficult to tam-
per with it, because blocks consisting of multiple transaction data
are affected by the previous block. To modify a piece of data,
the attacker must modify not only the piece of data but also all
subsequent blocks. In other words, the attacker needs to solve all
corresponding PoW.

If the miner does not have more than 51% of all computing re-
sources, such computation is not possible in principle. Thus, the
blockchain using PoW realizes electronic commerce on peer-to-
peer (P2P) networks without the need for trusted third parties.

2.2 Definition of PoW
As defined in Ref. [8], PoW has defined a problem

P : R × I × S → {true, false}.
as hardcore predicates, where R is the set of parameters that de-
termine the hardness, I is the set of inputs conforming to R and
S is the set of possible solutions. We assume that there is an al-
gorithm (or a family of algorithms) AR that solves PR on any I,
or in other words finds S such that P(R, I, S ) = true.

A PoW scheme based on P is an interactive protocol which
operates as follows:
( 1 ) The Verifier sends a challenge input I ∈ I and parameters

R ∈ R to the Prover.
( 2 ) The Prover finds solution S such that P(R, I, S ) = true and

sends it to the Verifier.
( 3 ) The Verifier computes P(R, I, S ).
A non-interactive version (e.g., for cryptocurrencies) can be de-
rived easily. In this setting, I contains some public value (last
block hash in Bitcoin) and prover’s ID. The prover publishes S

so that every party can verify the proof.

2.3 Security Requirements for PoW
Biryukov and Khovratovich propose the seven security require-

ments of problem P and algorithmA [6].
(1) Amortization-free: Producing q outputs for P should be q

times as expensive.
(2) Asymmetry: The solution must be short enough and ver-

ified quickly using little memory in order to prevent DoS
attacks on the verifier.

(3) Steep time-memory Tradeoff: The time-space tradeoffs
must be steep to prevent any price-performance reduction.

(4) Flexibility: The time and memory parameters must be tun-
able independently to sustain constant mining rate.

(5) Optimization-free: To avoid a clever prover obtaining an
advantage over the others the advertised algorithm must be
the most efficient algorithm to date.

(6) Progress-free: The algorithm must be progress-free to pre-
vent centralization: the mining process must be stochastic so
that the probability for finding a solution grows steadily with
time and is non-zero for small time periods.

(7) Parallel-unfriendly: Parallelized implementations must be
limited by the memory bandwidth.
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Among these requirements, (3) is the most important for the
ASIC resistance since it requires a large amount of memory and
random memory access.

2.4 Problems of Hashcash
Hashcash, which is a PoW of the bitcoin, is based on a preim-

age problem of hash functions of SHA-2 and RIPEMD. Since
these hash functions employ the Merkle-Damgard (MD) con-
struction, a preimage can be found with a negligible amount of
memory by a brute force search. Due to lack of the property
of the steep time-memory tradeoff, Hashcash does not have re-
sistance against so-called 51% attack by mining pools equipped
with ASIC. In this paper, we explore hash functions requires to
search the specific preimages with a large amount of memory. By
replacing such function with SHA-2 and RIPEMD as underlying
hash functions of Hashcash, we develop a new PoW that has a
steep time-memory tradeoff.

3. Preimage Problem of Sponge Function

To address the problem of Hashcash, this paper focuses on vari-
ants of SHA-3 which are based on the sponge construction while
SHA-2 and RIPEMD are based on an MD structure as a domain
extension algorithm. In this section, we first look into searching
the preimage of the sponge function. We then introduce the rela-
tionship between the amount of memory consumption and each
parameter of several preimage attacks on sponge functions.

3.1 Sponge Function
The sponge function was introduced by Bertoni et al. as a new

way of constructing a hash function based on public permuta-
tions [13]. The details of the sponge construction are shown in
Fig. 1: The internal state S of the t-bits (t = c + r), consisting of
the capacity of the c-bit and the bit-rate of the r-bit, is first ini-
tialized with a fixed value. After dividing the message into r-bit
chunks with appropriate padding, we take the exclusive OR result
of all r-bit message chunks and the bit-rate portion of the internal
state.

This input process is called the “absorbing process”. Once all
the message chunks have been processed in this absorbing phase,
the r bits are extracted from the bit-rate portion of the internal
state and a substitution process is applied. Finally, these pro-
cesses are repeated to complete the output of n bits. This output
process is called the “squeezing process”.

We use the internal permutation P modeled as a randomly cho-
sen permutation, and then a sponge function that has been proven
to be indifferentiable from a random oracle up to 2c/2 calls to
P [17]. The sponge function offers collision resistance (as a trun-
cated random oracle would) for any output length n smaller than
the capacity c and (2nd) preimage resistance for any n smaller

Fig. 1 Details of the sponge function.

than half of c. When internal substitution is modeled as a ran-
domly selected permutation, the sponge function is indistinguish-
able from a random oracle with up to 2c/2 calls to the substitution
process.

Guo et al. extended the framework of the sponge construction
in which r′ is extracted during each iteration of the squeezing
process, i.e., r

′
can be different from the bit-rate r in absorbing

phase [14], [15].
PoW should satisfy the optimization-free requirement that the

miner must use an free algorithm from further optimization. Gen-
erally speaking, it is difficult for schemes based on symmetric-key
cryptography to determine whether it satisfies optimization-free

requirement because the security of symmetric-key cryptography
is not reduced on mathematical problems, unlike public-key cryp-
tography. SHA-3 won the NIST hash competition, and no vulner-
ability has not been found so far despite considerable cryptana-
lytic efforts over 10 years. Thus, in this paper, we assume that
“Sponge function” is SHA-3.

3.2 Preimage Problem of the Sponge Function
For a sponge function with capacity c, bit-rate r and r′ and n-bit

output, the security of collision resistance, preimage resistance,
and second preimage resistance are estimated as follows [15].

Collision: min{2n/2, 2c/2}
2nd Preimage: min{2n, 2c/2}
Preimage: min{2min(n,t),max{2min(n,t)−r′ , 2c/2}} (1)

It should be noted here that the time complexity of the preim-
age attack is different from that of the MD construction such
as RIPEMD and SHA-2, and depends on many parameters of
sponge functions.

Specifically, there are two approaches for preimage attacks on
the sponge function such that the brute force attack and the meet-
in-the-middle (MITM) attack as shown in Fig. 2.
3.2.1 Brute Force

The term of 2min{n,t} is the time complexity of the exhaustive
search for an n-bit output or a t-bit internal state. In this paper,
we do not consider the case where n is more than 512 and the
internal state length of t of SHA-3 is 1600. Thus, min{n, t}= n

always holds. Note that the brute force attack is feasible with a
negligible amount of memory.
3.2.2 MITM

The term of max{2min{n,t}−r′ , 2c/2} is the time complexity in
MITM. In the MITM, 2c/2 intermediate values are obtained in the
forward computation f (x) and these are stored in memory. Then
2c/2 attempts in the backward computations g(x) are required to
check a collision in the intermediate values as shown in Fig. 2.
MITM requires 2c/2 of time complexity and 2c/2 memory.

The term of 2min{n,t} comes from the cost for inverting the
squeezing process, which is called multiblock constrained-input
constrained-output problem [15]. The best known generic attack
to solve this problem requires 2n−r′ computations when t > n [15].
As discussed above, min{n, t}= n always holds. Thus, Eq. (1) is
rewritten as follows.

Preimage: min{2n,max{2n−r′ , 2c/2}} (2)
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Fig. 2 Time complexity required by the preimage attack of the sponge function.

MITM follows the tradeoff T M = N, where T and M are time
and memory complexities and N is a size of the matching point
i.e., 2c, where T ≥ 2c/2. By reducing the memory, the time com-
plexity increases, and vice versa. The case of T = 2c/2 is optimal
for time complexity.

Thus, our basic idea is to make the mining pool choosing
MITM in an efficient way by properly selecting the parameters
so that MITM is much more time-efficient than the brute force
attack.

3.3 Memory-Efficient MITM
There are two memory-efficient approaches for MITM: Floyd’s

collision finding [10] and Nikolic-Sasaki approach [11].
3.3.1 Floyd’s Collision Finding

In MITM, the adversary finds a collision in two 2n/2 sets of
intermediate values which are computed by forward computation
f (x) and backward computation g(x), respectively, as shown in
Fig. 2. Floyd’s algorithm can be used to find a collision between
the two functions by interleaving the calls to f (x) and g(x) dur-
ing the detection of the cycle [10]. Floyd’s algorithm is based
on a selection function which evaluates either f (x) or g(x) with
equal probability. Thus, a collision is an actual one for f (x) and
g(x) with a probability 1/2 and consequently, the search has to
be repeated twice. Using Floyd’s cycle-finding algorithm for
MITM [10], the time complexity is almost 2c/2 with negligible
memory.
3.3.2 Nikolic-Sasaki Approach

Nikolic and Sasaki proposed the memory-efficient MITM in
the case where the computational cost g(x) is R times higher than
f (x) (called unbalanced MITM) [11]. They utilize Floyd’s algo-
rithm and van Oorschot-Wiener [16]. In this paper, we call this
MITM “NS-MITM” and the standard MITM “S-MITM”. Ac-
cording to [11], if the memory is represented as 2m, the time re-
quired for NS-MITM is estimated as follows.

Time: 2(n+m)/2 + R × 2(n−m)/2 (3)

Memory: 2m

T 2M = R2N (M ≤ R)

NS-MITM can reduce the amount of memory requirements
compared to S-MITM when memory size satisfies the equation
of M < N/R2.

4. Finding Parameters for SHA-3 based PoW

In this section, we explore parameters of the sponge function to

search the preimage with a large amount of memory to efficiently
solve, namely the memory-efficient approaches have no advan-
tage over the one using a large amount of memory with respect
to time complexity. In this case, mining pools equipped with
dedicated ASIC cannot avoid choosing the memory-consuming
MITM approach as an efficient algorithm of PoW.

4.1 Criteria for Parameter Selection
Our aim is to develop a new PoW based on a preimage

problem that has a steep time-memory tradeoff for ASIC resis-
tance. To achieve this purpose, we choose the parameters of the
sponge function such that S-MITM, which is the most memory-
consuming approach, is much more time-efficient than others in
any time-memory tradeoff point of N = T M.

Specifically, we will uncover the parameters of the sponge
function that satisfy the following criteria.
(A) S-MITM is always more time-efficient than the brute force

attack.
(B) S-MITM is always more time-efficient than Floyd’s algo-

rithm [10].
(C) S-MITM is always more time-efficient than NS-

MITM [11].

4.2 A Parameter for (A)
The brute force attack requires 2n computations with negligi-

ble memory while S-MITM follows the tradeoff T M = N for
T ≥ 2c/2. When M = 0, time complexity for S-MITM becomes
the maximum value of T = 2c.

Thus, the parameters must satisfy the following equation.

c ≤ n

In this case, the time complexity of S-MITM is lower than for the
brute force attack in any time-memory tradeoff point.

In addition, the term of 2n−r′ of Eq. (2) always satisfies the
equation of 2n−r′ ≤ 2n when c < 2n. Thus, Eq. (2) is expressed as
follows.

Preimage: min
{
2n,max

{
2n−r′ , 2c/2

}}
= max

{
2n−r′ , 2c/2

}

4.3 A Parameter for (B)
By Floyd’s algorithm, S-MITM is feasible with time complex-

ity of 2c/2 and negligible memory [10]. As discussed by Nikolic
and Sasaki [11], S-MITM is available only when the computa-
tional cost of f (x) and g(x) in MITM is equal (called balanced
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Fig. 3 Computation costs for sponge functions in the unbalanced MITM.

MITM).
To satisfy (B), we make S-MITM an unbalance MITM in

which the computational cost of g(x) is R times higher than f (x).
For the unbalanced MITM, the required time complexity and
memory usage are estimated as follows [11].

Time:
√

RN

Memory:
√

N/R

It also follows a tradeoff of T M = N where (
√

RN ≤ T ).
On the other hand, the unbalanced MITM using Floyd’s algo-

rithm requires R × 2c/2 time complexity because the cost of g(x)
is R times higher.
4.3.1 Unbalance MITM for Sponge Function

We show how to realize the unbalance MITM in the sponge
function. For the sponge function, the computational cost of g(x)
can be different from that of f (x) by choosing parameters of n

and r′ and fixing the meet point as the following assumptions.
Assumption 1: Parameters of n and r′ satisfy the equation of

r′ ≤ n ≤ 2r′.
Assumption 2: The meet point of MITM is fixed to the end of

the absorbing phase.
Under the assumption 1, an n-bit digest consists of two r′-bit out-
put values z0 and z1 in the squeezing phase. In the backward
computation g(x), the miner starts the computation of P−1 with
the value of z1. After that, r′ bits of the result of P−1 must be the
same as z0. Since this probability is estimated as 2−r′ , the compu-
tational cost to correctly compute in the backward direction is 2r′

as shown in Fig. 3.
Note that if the meet point of MITM is different from the end of

the absorbing process, i.e., the middle of the absorbing phase, it
cannot be the unbalance MITM. This is because once the state of
the end of absorbing phase is computed in the backward compu-
tation of the squeezing phase, we can mount the balanced MITM
in the middle of the absorbing phase. On the other hand, under
the assumption 2, to compute the matching state in the end of ab-
sorbing phase, we have to start the computation from z1 and the
result of P−1 must be the same as z0 in each computation. Thus,
each backward computation requires 2r′ executions of P−1.
4.3.2 How to Fix the Meetpoint in PoW

To make it the unbalanced MITM problem, we should impose
a condition such that the matching point is the end of the ab-
sorbing process (Assumption 2). This is achieved by limiting the
degree of freedom in message values, e.g., some message blocks
are predetermined or the number of message block sizes is fixed
as a problem of PoW.

For example, in the case where the size of the matching state
is c bits, if the degree of freedom of message blocks in the ab-
sorbing phase is less than 2c/2, the adversary has to mount MITM
in which the matching point is the end of the absorbing phase as
shown in Fig. 3.
4.3.3 Selecting Parameters

Under the assumptions 1 and 2, we can realize the NS-MITM.
In this case, Floyd’s algorithm is not directly applied. As shown
in Fig. 3, the cost of g(x) is R(= 2r′ ) times higher than that of f(x)
in the unbalanced MITM. The unbalanced MITM using Floyd’s
algorithm requires a time complexity of R×2c/2(= 2r′ ×2c/2) [11].

To satisfy (B), we need to choose parameters so that S-MITM
is always more time-efficient than Floyd’s algorithm. The maxi-
mum value of time complexity of S-MITM in unbalanced MITM
is 2c in the memoryless case, since the unbalanced MITM also
follows the trade-off T M = N. Therefore, parameters must sat-
isfy the relation of 2c ≤ 2r′ × 2c/2, namely 2

c
2 ≤ 2r′ .

In summary, the parameters must satisfy the following equa-
tion.

c
2
≤ r′

r′ ≤ n ≤ 2r′ (Assumption1)

4.4 A Parameter for (C)
In the unbalance MITM, NS-MITM can find a preimage with

more memory efficiency than S-MITM in several parameters [11].
According to Ref. [11], when memory size satisfies the equation
of M < N/R2 = 2c/R2, NS-MITM is more time-efficient than S-
MITM. If we choose R ≥ 2c/2, there is no point where NS-MITM
is more efficient than S-MITM. Therefore, the parameter for (C)
is as follows.

c
2
≤ r′

4.5 Summary of Parameter Selection
The parameters for (A), (B), and (C) are as follows.

c ≤ n
c
2
≤ r′

r′ ≤ n ≤ 2r′

Among these, we want to make sure that the PoW requires
as much memory as possible. Since S-MITM requires

√
N/R

of memory in the unbalanced MITM problem, by decreasing the
value of R, we can increase the memory consumption. Thus, we
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choose R = 2r′ = 2c/2 under the condition of c
2 ≤ r′, and c = n

under the condition of c ≤ n.
The proposed PoW is a preimage recovery problem of SHA-

3. At least four approaches to the preimage recovery problem
of SHA-3 are known: brute force attack, S-MITM, NS-MITM,
and Floyd’s algorithm. Among these, S-MITM is the only one in
which time and memory are steep tradeoffs and can consume a
large quantity of memory. Thus, if we appropriately choose the
parameters and S-MITM is the most advantageous in terms of
time complexity, the PoW will be a memory-hard. In summary,
the parameters must meet the following conditions to satisfy the

Fig. 4 Comparison of Time and Memory for n = 96, 128, 160, 192, 256, 512.

steep time-memory tradeoff and make the PoW ASIC-resistant.

n = c = 2r′

5. PoW based on Variants of SHA-3

In this section, we propose a PoW based on variants of SHA-
3 that achieves a steep time-memory tradeoff. Our PoW is based
on Hashcash in which underlying hash functions of RIPEMD and
SHA-2 are replaced with variants of SHA-3 with parameters of
n = c = 2r′.
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Table 1 Time & Memory (n = 96).

log(M) log(T )
S-MITM NS-MITM [11]

0 96 96
6 90 93

12 84 90
18 78 87
24 72 84

Table 2 Time & Memory (n = 128).

log(M) log(T )
S-MITM NS-MITM [11]

0 128 128
8 120 124

16 112 120
24 104 116
32 96 112

Table 3 Time & Memory (n = 160).

log(M) log(T )
S-MITM NS-MITM [11]

0 160 160
10 150 155
20 140 150
30 130 145
40 120 140

Table 4 Time & Memory (n = 192).

log(M) log(T )
S-MITM NS-MITM [11]

0 192 192
12 180 186
24 168 180
36 156 174
48 144 168

Table 5 Time & Memory (n = 256).

log(M) log(T )
S-MITM NS-MITM [11]

0 256 256
16 240 248
32 224 240
48 208 232
64 192 224

Table 6 Time & Memory (n = 512).

log(M) log(T )
S-MITM NS-MITM [11]

0 512 512
32 480 496
64 448 480
96 416 464

128 384 448

5.1 Instantiations
We give instantiations for n = c = 96, 128, 160, 192, 256, 512.

Figure 4 shows the time complexity and memory consumption
of S-MITM, NS-MITM, Floyd’s-MITM and brute force attack
for each variant. These satisfy the following properties.
• M = 0: All methods require time complexity of 2c (= 2n).
• M > 0: S-MITM is always more efficient than NS-MITM as

shown in Tables 1–6. For example, for n = 128, S-MITM re-
quires times complexity of 296 and 232 memory usage, while
NS-MITM requires time complexity of 297 even if 264 mem-
ory is used.

Thus, S-MITM is much more time-efficient than the other
methods for any point, and mining pools cannot avoid choosing

the memory-consuming MITM approach as an efficient algorithm
of PoW.

5.2 Steep Time-Memory Tradeoff
The required time complexity of S-MITM increases if the

amount of memory usage is reduced, following the relation of
T M = N. If memory of

√
N/R is used, time complexity can be

reduced to
√

RN, which is optimal with respect to time complex-
ity. For example, for n = 128, if the memory usage of S-MITM is
reduced from 232 to 216, the time complexity increases from 296

to 2112. Thus, our scheme satisfies a steep time-memory tradeoff.

6. Discussion of Other Properties

In this section, we discuss whether our scheme satisfies other
properties in addition to the steep time-memory tradeoff, and then
compare our schemes with existing schemes of Hashcash, Equi-
hash [8] and Merkle Tree Proof [6].

6.1 Amortization-Free
To satisfy the amortization-free requirement, the computa-

tional cost to find q solutions should be q times higher than that of
finding one solution. For S-MITM, the intermediate value of the
squeezing phase or the absorbing phase are stored in a table and
might be re-used in the next proofs. This can easily be avoided
by randomly changing target digest values or put a condition of
message values in each time. These allow our scheme to achieve
the amortization-free requirement.

6.2 Asymmetry
To satisfy the asymmetry requirement, the proofs require a cer-

tain amount of time and memory usage, while the verification
needs only a few resources. Our scheme requires

√
NR time com-

plexity and
√

N/R memory for the proof. However, the verifier
only hashes the input sent by the prover and check whether the
digest satisfies the condition. Thus, our scheme fully satisfies the
asymmetry requirement.

6.3 Flexibility
To satisfy the flexibility requirement the time and memory must

be independently adjustable. The time and memory requirements
of our scheme are shown in Fig. 4. This scheme satisfies the flex-
iblity requirement because selecting the parameters allows us to
specify the required time and memory.

6.4 Progress-Free
To satisfy the progress-free requirement, the number of solu-

tions found in a given time by mining must approximate the Pois-
son process under a Poisson distribution. Since SHA-3 is indiffer-
entiable from a random oracle, it can also approximate a Poisson
process [17]. Therefore our scheme achieves the progress-free re-
quirement.

6.5 Optimization-Free
To satisfy the optimization-free requirement, the miner must

use an algorithm that is free from further optimization. Gener-
ally speaking, it is difficult for schemes based on symmetric-key
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Table 7 Security requirements satisfied by our and other schemes.

Hashcash Equihash [8] MTP [6] Our Scheme
Amortization-free Yes Yes Yes Yes

Asymmetry Yes Yes Yes Yes
Flexibility No Yes Yes Yes

Progress-free Yes Yes Yes Yes
Steep time-memory tradeoff No Yes Yes Yes

Parallelism constraint No Yes Yes Yes
Optimization-free Yes Yes Insufficient Yes

cryptography to determine whether optimization-free is satisfied
because the security of symmetric-key cryptography is not re-
duced on mathematical problems, unlike public-key cryptogra-
phy. Indeed, some attacks on the first version of MTP have been
proposed [12]. On the other hand, SHA-3 won the NIST hash
competition, and no vulnerability has not been found so far de-
spite considerable cryptanalytic efforts over 10 years. Therefore,
we consider that our scheme based on SHA-3 sufficiently satis-
fies the optimization-free requirement. On the other hand, there
is a possibility that other more effective attacks than the Standard
MITM will be discovered, so further discussion is necessary.

6.6 Parallel-unfriendly
As discussed in Refs. [6], [8], parallelism is restricted in our

scheme due to memory bandwidth growth in parallel implemen-
tations.

6.7 Comparison with Existing Schemes
Table 7 compares our scheme with Hashcash, Equiphash [8]

and MTP [6], while Hashcash does not satisfy the properties of
flexibility, steep time-memory trade off and parallelism. Our
schemes satisfy the required properties for POW just as with
Equiphash [8].

Importantly, our goal is to achieve ASIC resistance. Equiphash
and MTP do not achieve this goal since these are not based on
preimage problems of hash functions.

7. Conclusion

In this paper, we propose a new PoW scheme based on the
preimage problem of variants of SHA-3. Unlike SHA-2 and
RIPEMD, SHA-3 adopts the sponge construction as an under-
lying domain extension algorithm. This difference allows us to
make the problem of finding a preimage very memory-consuming
calculations by properly choosing parameters of sponge func-
tions. Thus, our scheme can achieve the ASIC resistance by using
SHA-3 for Hashcash.
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Editor’s Recommendation
Proof of Work is a widely known consensus algorithm used in

cryptographic assets such as Bitcoin. This paper proposes a PoW
for the original image restoration problem, which is one of the
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fundamental conditions that SHA-3 and other cryptographic hash
functions should meet. Since the proposed approach is a practi-
cal solution that can compete with fast mining implementations
empowered by ASICs, which are considered to be the cause of
the power wastage problems, we recommend that this paper be
published in a journal article.

(Program Committee Chair of Computer Security
Symposium 2020, Tatsuya Mori)
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